References

  1. Abajian C (1994). Sputnik. http://www.abajian.com/sputnik.
  2. Agarwal V, Bell GW, Nam JW, Bartel DP (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife digest 4, e05005.
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. Journal of Molecular Biology 215(3): 403–10.
  4. Arquès DG, Lacan J, Michel CJ (2002). Identification of protein coding genes in genomes with statistical functions based on the circular code. Biosystems 66(1–2): 73–92.
  5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics 25: 25–9.
  6. Bainbridge D (2003). The X in Sex: How the X Chromosome Controls Our Lives. Harvard University Press, Cambridge, MA.
  7. Baxevanis AD, Ouellette BFF (2001). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 2nd edition. Wiley and Sons, Chichester, UK.
  8. Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27(2): 573–580.
  9. Benton MJ (1993). The Fossil Record 2. Chapman and Hall, New York.
  10. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. (2009). ClueGO: a Cytoscape plug‐in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25: 1091–3.
  11. Breslauer KJ, Frank R, Blöcker H, Marky LA (1986). Predicting DNA duplex stability from the base sequence. Proceedings of the National Academy of Sciences of the United States of America 83(11): 3746–50.
  12. Breslauer KJ, Frank R, Blöcker H, Marky LA (1986). Predicting DNA duplex stability from the base sequence. Proceedings of the National Academy of Sciences of the United States of America 83: 3746–3750.
  13. Bujnicki JM (2006). Practical Bioinformatics, 1st edition. Springer (India) Private Limited, New Delhi.
  14. Burge C, Karlin S (1997). Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology 268(1): 78–94.
  15. Burge CB (1998). Modeling dependencies in pre‐mRNA splicing signals. In: Salsberg SL, Searls DB, Kasif S (eds). Computational Methods in Molecular Biology. Elsevier Science, Amsterdam.
  16. Byrne KA, Wang YH, Lehnert SA, Harper GS. et al. (2005). Gene expression profiling of muscle tissue in Brahman steers during nutritional restriction. Journal of Animal Science 83, 1–12.
  17. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology 22(11): 3124–3140.
  18. Choudhary RK, Li RW, Evock‐Clover CM, Capuco AV (2013). Comparison of the transcriptomes of long‐term label retaining‐cells and control cells microdissected from mammary epithelium: an initial study to characterize potential stem/progenitor cells. Frontiers in Oncology 3: 21.
  19. Dai X, Zhao PX (2011). psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research 39(suppl 2), W155–W159.
  20. Dayhoff MO, Schwartz R, Orcutt BC (1978). A Model of Evolutionary Change in Proteins. Atlas of Protein Sequence and Structure, 3rd edition. National Biomedical Research Foundation, Waltham, MA.
  21. Dean J, Ghemawat S (2008). MapReduce: simplified data processing on large clusters. Communications of the ACM 51(1): 107–113.
  22. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. (2011). A framework for variation discovery and genotyping using next‐generation DNA sequencing data. Nature Genetics 43(5): 491–498.
  23. Desper R, Gascuel O (2005). The Minimum‐Evolution Distance Based Approach to Phylogenetic Inference. In: Gascuel, O (ed). Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford, UK.
  24. Durbin RM, Eddy SR, Krogh A, Mitchison G (1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, 1st edition. Cambridge University Press, Cambridge, UK.
  25. Edgar RC (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–97.
  26. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2004). MicroRNA targets in Drosophila. Genome Biology 5(1), R1–R1.
  27. Felsenstein J (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17(6): 368–376.
  28. Fetchko M, Kitts A (2011). Users Guide to Bankit: http://www.ncbi.nlm.nih.gov/books/NBK63586.
  29. Fitch W (1969). Locating gaps in amino acid sequences to optimize the homology between two proteins. Biochemical Genetics 3: 99–108.
  30. Fitch WM (1970). Distinguishing homologous from analogous proteins. Systematic Biology 19(2): 99–113.
  31. Fitch WM (1971). Toward defining the course of evolution: minimum change for a specified tree topology. Systematic Zoology 20(4): 406–416.
  32. Fitch WM, Margoliash E (1967). Construction of phylogenetic trees. Science 155: 279–284.
  33. Frech K, Danescu‐Mayer J, Werner T (1997). A novel method to develop highly specific models for regulatory units detects a new LTR in GenBank which contains a functional promoter. Journal of Molecular Biology 270: 674–687.
  34. Frech K, Quandt K, Werner T (1997). Finding protein‐binding sites in DNA sequences: the next generation. Trends in Biochemical Sciences 22: 103–104.
  35. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology 26: 407–15.
  36. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research 40: 37–52.
  37. Garber M, Grabherr MG, Guttman M, Trapnell C (2011). Computational methods for transcriptome annotation and quantification using RNA‐seq. Nature Methods 8: 469–77.
  38. Gardiner‐Garden M, Frommer M (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology 196(2): 261–82.
  39. Gascuel O, Bryant D, Denis F (2001). Strengths and limitations of the minimum‐evolution principle. Systematic Biology 50: 621–627.
  40. Ghosh J, Mallick B (2008). Bioinformatics: Principles and Applications. Oxford University Press, Oxford, UK.
  41. Ghosh Z, Mallick B (2012). Bioinformatics: Principles and Applications, 3rd edition. Oxford University Press, Oxford, UK.
  42. Gonnet GH, Cohen MA, Benner SA (1992). Exhaustive matching of the entire protein sequence database. Science 256(5062): 1443–5.
  43. Graham LE (1993). Origin of Land Plants. John Wiley, New York.
  44. Grosdidier A, Zoete V, Michielin O (2011). SwissDock, a protein‐small molecule docking web service based on EADock DSS. Nucleic Acids Research 39(Web Server issue): W270–7.
  45. Guttman BS (2007). Evolution: A Beginner’s Guide. Oneworld Publications, Oxford, UK.
  46. Hasegawa M, Kishino H, Yano T (1985). Dating of human‐ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22(2): 160–174.
  47. Hu H, Wang J, Bu D, Wei H, Zhou L, Li F, Loor JJ (2009). In vitro culture and characterization of a mammary epithelial cell line from Chinese Holstein dairy cow. PLoS One 4, e7636. doi: 10.1371/journal.pone.0007636
  48. Huang da W, Sherman BT, Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4: 44–57.
  49. Iquebal MA, Jaiswal S, Mukhopadhyay CS, Sarkar C, Rai A, Kumar D (2015). Applications of Bioinformatics in Plant and Agriculture, 1st edition. Springer Publications, New York.
  50. Jukes TH, Cantor CR (1969). Evolution of Protein Molecules. Academic Press, New York.
  51. Karlin S, Altschul SF (1990). Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proceedings of the National Academy of Sciences of the United States of America 87: 2264–2268.
  52. Katoh K, Misawa K, Kuma K, Miyata T (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14): 3059–66.
  53. Kerstens HH, Kollers S, Kommadath A, Del Rosari M, Dibbits B, Kinders SM, Groenen MA (2009). Mining for single nucleotide polymorphisms in pig genome sequence data. BMC Genomics 10(1): 4.
  54. Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(2): 111–120.
  55. Kozak M (1987). At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. Molecular Biology 196: 947–950.
  56. Kozak M (1989). The scanning model for translation: an update. Cell Biology 108: 229–241.
  57. Kumar S, Stecher G, Tamura K (2015). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870–4.
  58. Kyte J, Doolittle RF (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157(1): 105–32.
  59. Lagesen K, Dave W, Ussery DW, Wassenaar TM (2010). Genome update: the 1000th genome – a cautionary tale. Microbiology 156(3): 603–608.
  60. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. (2007). ClustalW and ClustalX version 2. Bioinformatics 23: 2947–2948.
  61. Lassez J‐L (1976). Circular codes and synchronization. International Journal of Computer Systems Science 5: 201–208.
  62. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, et al. (2013). EBSeq: an empirical Bayes hierarchical model for inference in RNA‐seq experiments. Bioinformatics 29: 1035–43.
  63. Li B, Dewey CN (2011). RSEM: accurate transcript quantification from RNA‐Seq data with or without a reference genome. BMC Bioinformatics 12: 323.
  64. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010). RNA‐Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26: 493–500.
  65. Li H, Durbin R (2010). Fast and accurate long‐read alignment with Burrows–Wheeler transform. Bioinformatics 26(5): 589–595.
  66. Li H, Jiang T (2004). A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs. Proceedings of the 8th International Conference on Research in Computational Molecular Biology, pp. 262–271.
  67. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Durbin R (2009a). The sequence alignment/map format and SAMtools. Bioinformatics 25(16): 2078–2079.
  68. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009b). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–9.
  69. Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R (2015). The EMBL‐EBI bioinformatics web and programmatic tools framework. Nucleic Acids Research 43(W1): W580–4.
  70. Li W‐H (1997). Molecular Evolution. Sinauer Associates, Sunderland, MA. ISBN: 978‐0878934638.
  71. Li Y, Zhang Z, Liu F, Vongsangnak W, Jing Q, Shen B (2012). Performance comparison and evaluation of software tools for microRNA deep‐sequencing data analysis. Nucleic Acids Research 40: 4298–305.
  72. Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Li J (2013). A high‐density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One 8(12): e83052.
  73. Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method. Methods 25: 402–8.
  74. Lopez R, Cowley A, Li W, McWilliam H (2014). Using EMBL‐EBI Services via Web Interface and Programmatically via Web Services. Current Protocols in Bioinformatics 48: 1–3.
  75. Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology 15: 550.
  76. Lukashin A, Borodovsky M (1998). GeneMark.hmm: new solutions for gene finding, Nucleic Acid Research 26(4): 1107–1115.
  77. Luscombe NM, Greebaum D, Gerstein M (2001). What is bioinformatics? A proposed definition and overview of the field. Methods of Information in Medicine 40(4): 346–358.
  78. Magis C, Taly JF, Bussotti G, Chang JM, Di Tommaso P, Erb I, Espinosa‐Carrasco J, Notredame C (2014). T‐Coffee: Tree‐based consistency objective function for alignment evaluation. Methods in Molecular Biology 1079: 117–29.
  79. Manikanandakuar K (2009). Dictionary of Bioinformatics, 1st Edition. MJP Publishers, Chennai, India.
  80. Markoff A, Savov A, Vladimirov V, Bogdanova N, Kremensky I, Ganev V (1997). Optimization of single‐strand conformation polymorphism analysis in the presence of polyethylene glycol. Clinical Chemistry 43(1): 30–3.
  81. Michel CJ, Pirillo G, Pirillo MA (2008). A relation between trinucleotide comma‐free codes and trinucleotide circular codes. Theoretical Computer Science 401: 17–26.
  82. Miller SL (1953). Production of Amino Acids Under Possible Primitive Earth Conditions. Science 117(3046): 528–529.
  83. Miller SL, Urey HC (1959). Organic Compound Synthesis on the Primitive Earth. Science 130 (3370): 245–251.
  84. Min‐Jou W, Haegeman G, Ysebaert M, Fiers W (1972). Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature 237(5350): 82–88.
  85. Morgan GJ (1998). Emile Zuckerkandl, Linus Pauling, and the Molecular Evolutionary Clock, 1959–1965.Journal of the History of Biology 31: 155–178.
  86. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008). Mapping and quantifying mammalian transcriptomes by RNA‐Seq. Nature Methods 5: 621–8.
  87. Moyes KM, Drackley JK, Morin DE, Rodriguez‐Zas SL, Everts RE, Lewin HA, Loor JJ (2010). Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response. Physiological Genomics 41, 161–70. doi: 10.1152/physiolgenomics.00197.2009
  88. Mukhopadhyay CS, Osahan SS (2015a). Sequence alignment: concepts and methods. In: Bioinformatic Approaches for Livestock Genome Analysis. Satish Serial Publishing House, Delhi, India.
  89. Mukhopadhyay CS, Osahan SS (2015b). Molecular phylogeny: basics, methods, and applications. In: Bioinformatic Approaches for Livestock Genome Analysis. Satish Serial Publishing House, Delhi, India.
  90. Mukhopadhyay CS (2015c). Designing and in silico quality checking of PCR primers. In: Bioinformatic Approaches for Livestock Genome Analysis. Satish Serial Publishing House, Delhi, India.
  91. Mukhopadhyay CS (2015d). Submitting Nucleotide sequence to Bankit. In: Bioinformatic Approaches for Livestock Genome Analysis. Satish Serial Publishing House, Delhi, India.
  92. Needleman SB, Wunsch CD (1970). A general method applicable to the search for similarities in the amino acid sequences of two proteins. Journal of Molecular Biology 48: 443–453.
  93. Nielsen PH (1997). Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. In: Proceedings of the 5th International Conference on Intelligent Systems for Molecular Biology, pp. 226–233.
  94. Notredame C, Higgins DG, Heringa J (2000). T‐Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302(1): 205–17.
  95. Ogden R, Gharbi K, Mugue N, Martinsohn J, Senn H, Davey JW, Congiu L (2013). Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing. Molecular Ecology 22(11): 3112–3123.
  96. Oparin AI (1924). The Origin of Life. Moscow Worker publisher, Moscow (in Russian: Proiskhozhdenie zhizny).
  97. Pedersen AG, Nielsen H (1997). Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology, pp. 226–33.
  98. Pfaffl MW (2001). A new mathematical model for relative quantification in real‐time RT‐PCR. Nucleic Acids Research 29: e45.
  99. Ravindran R, Saravanan BC, Rao JR, Mishra AK, Bansal GC, Ray D (2007). A PCR‐RFLP method for the simultaneous detection of Babesia bigemina and Theileria annulata infections in cattle. Current Science 93(12), pp. 1840–1843.
  100. Reimand J, Kull M, Peterson H, Hansen J, Vilo J (2007). g:Profiler – a web‐based toolset for functional profiling of gene lists from large‐scale experiments. Nucleic Acids Research 35: W193–200.
  101. Reimand J, Arak T, Vilo J (2011). g: Profiler‐a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Research 39: W307–15.
  102. Robinson MD, McCarthy DJ, Smyth GK (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–40.
  103. Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression analysis of RNA‐seq data. Genome Biology 11: R25.
  104. Rozen S, Skaletsky HJ (2000). Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ.
  105. Rust AG, Mongin E, Birney E (2002). Genome annotation techniques: new approaches and challenges. Drug Discovery Today 7(11): S70–6
  106. Rzhetsky A, Nei M (1993). Theoretical foundation of the minimum‐evolution method of phylogenetic inference. Molecular Biology and Evolution 10(5): 1073–95.
  107. Saitou N, Nei M (1987). The neighbor‐joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–25.
  108. Salamov T, Nishikawa MBS (1998). Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 14: 384–390.
  109. Salzberg S (1997). A method for identifying splice sites and translational start sites in eukaryotic mRNA. Computer Applications in Biosciences (CABIOS) 13: 365–376.
  110. Sanger F, Nicklen S, Coulson AR (1977). DNA sequencing with chain‐terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74(12): 5463–5467.
  111. SantaLucia J, Jr (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest‐neighbor thermodynamics. Proceedings of the National Academy of Sciences of the United States of America 95(4): 1460–1465.
  112. Sarika MAI, Mukhopadhyay CS, Koringa PG, Rai A, Joshi CG, Kumar D (2015). Genome annotation in Prokaryotes and Eukaryotes. In: Bioinformatic Approaches for Livestock Genome Analysis. Satish Serial Publishing House, Delhi, India.
  113. Schlee D (1978). In Memoriam Willi Hennig 1913–1976. Einebiographische Skizze. Entomologica Germanica 4: 377–391.
  114. Schmittgen TD, Livak KJ (2008). Analyzing real‐time PCR data by the comparative CT method. Nature Protocols 3: 1101–1108.
  115. Schulz J (2008). Inroduction to dot‐plots. Available online at http://www.code10.info/index.php?option=com_content&view=article&id=64:inroduction‐to‐dotplots&catid=52:cat_coding_algorithms_dotplots&Itemid=76.
  116. Sievers F, Higgins DG (2014). Clustal omega. Current Protocols in Bioinformatics 48: 1–16.
  117. Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, et al. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7: 539.
  118. Simons A Tils D, von Wilcken‐Bergmann B, Müller‐Hill B (1984). Possible ideal lac operator: Escherichia coli lac operator‐like sequences from eukaryotic genomes lack the central G X C pair. Proceedings of the National Academy of Sciences of the USA 81, 1624–1628.
  119. Smit AFA, Hubley R, Green P (1996). RepeatMasker Open‐3.0. http://www.repeatmasker.org.
  120. Smith TF, Waterman MS (1981). Identification of common molecular subsequences. Journal of Molecular Biology 147: 195–197.
  121. Sokal R, Michener C (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38: 1409–1438.
  122. Stothard P (2000). The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28: 1102–1104.
  123. Suchyta SP, Sipkovsky S, Halgren RG, et al. (2003). Bovine mammary gene expression profiling using a cDNA microarray enhanced for mammary‐specific transcripts. Physiological Genomics 16: 8–18.
  124. Tamura K (1992). Estimation of the number of nucleotide substitutions when there are strong transition‐transversion and G + C content biases. Molecular Biology and Evolution 9 (4): 678–687.
  125. Tamura K, Nei M (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial‐DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3): 512–526.
  126. Tamura K, Nei M, Kumar S (2004). Prospects for inferring very large phylogenies by using the neighbor‐joining method. Proceedings of the National Academy of Sciences (USA) 101: 11030–11035.
  127. Tavaré S (1986). Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. Lectures on Mathematics in the Life Sciences (American Mathematical Society) 17: 57–86.
  128. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Research 11(8): 1441–1452.
  129. Thiel T, Michalek W, Varshney RK, Graner A. (2003). Exploiting EST databases for the development and characterization of gene‐derived SSR‐markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106(3): 411–422.
  130. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.
  131. Thornton B, Basu C (2011). Real‐Time PCR (qPCR) Primer Design Using Free Online Software. Biochemistry & Molecular Biology Education 39: 145–154.
  132. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. (2012). Differential gene and transcript expression analysis of RNA‐seq experiments with TopHat and Cufflinks. Nature Protocols 7: 562–78.
  133. Vincze T, Posfai J, Roberts RJ (2003). NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Research 31(13): 3688–91.
  134. Wagner GP, Kin K, Lynch VJ (2012). Measurement of mRNA abundance using RNA‐seq data: RPKM measure is inconsistent among samples. Theory in Biosciences 131: 281–5.
  135. Wang Z, Gerstein M, Snyder M (2009). RNA‐Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10: 57–63.
  136. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, et al. (2000). TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Research 28: 316–319.
  137. Wingender E, Chen X, Fricke E, Geffers R, Hehl R, Liebich I, Krull M, Matys V, Michael H, Ohnhauser R et al. (2001). The TRANSFAC system on gene expression regulation. Nucleic Acids Research 29: 281–283.
  138. Wu TD, Watanabe CK (2005). GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21: 1859–75.
  139. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012). Primer‐BLAST: A tool to design target‐specific primers for polymerase chain reaction. BMC Bioinformatics 13(1): 134.
  140. Ying H (2013). MicroRNA and transcription factor mediated regulatory network for ovarian cancer: regulatory network of ovarian cancer. Tumor Biology 34: 3219–3225.
  141. Ying H, Lv J, Ying T, Li J, Yang Q, Ma Y (2013). MicroRNA and transcription factor mediated regulatory network for ovarian cancer: regulatory network of ovarian cancer. Tumor Biology 34: 3219–3225.
  142. Zimmermann W (1931). Arbeitsweise der botanischen Phylogenetik und anderer Gruppierungswissenschaften. In: Abderhalden E (ed). Handbuch der biologischen Arbeilsmethoden, 9: 941–1053.
  143. Zuker M (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31(13): 3406–3415.
  144. Zvelebil, Marketa J (2013). Study Guide for Understanding Bioinformatics. Cram101 Publisher; ISBN‐13 9781490216034.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.144.17.43