The model-based approach should be considered in the context of the objectives of any given problem. Many problems in actuarial science involve the building of a mathematical model that can be used to forecast or predict insurance costs in the future.
A model is a simplified mathematical description that is constructed based on the knowledge and experience of the actuary combined with data from the past. The data guide the actuary in selecting the form of the model as well as in calibrating unknown quantities, usually called parameters. The model provides a balance between simplicity and conformity to the available data.
The simplicity is measured in terms of such things as the number of unknown parameters (the fewer the simpler); the conformity to data is measured in terms of the discrepancy between the data and the model. Model selection is based on a balance between the two criteria, namely, fit and simplicity.
The modeling process is illustrated in Figure 1.1, which describes the following six stages:
As new data are collected or the environment changes, the six stages will need to be repeated to improve the model.
In recent years, actuaries have become much more involved in “big data” problems. Massive amounts of data bring with them challenges that require adaptation of the steps outlined above. Extra care must be taken to avoid building overly complex models that match the data but perform less well when used to forecast future observations. Techniques such as hold-out samples and cross-validation are employed to addresses such issues. These topics are beyond the scope of this book. There are numerous references available, among them [61].
Determination of the advantages of using models requires us to consider the alternative: decision-making based strictly upon empirical evidence. The empirical approach assumes that the future can be expected to be exactly like a sample from the past, perhaps adjusted for trends such as inflation. Consider Example 1.1.
It seems much more reasonable to build a model, in this case a mortality table. This table would be based on the experience of many lives, not just the 1,000 in our group. With this model, not only can we estimate the expected payment for next year, but we can also measure the risk involved by calculating the standard deviation of payments or, perhaps, various percentiles from the distribution of payments. This is precisely the problem covered in texts such as [25] and [28].
This approach was codified by the Society of Actuaries Committee on Actuarial Principles. In the publication “Principles of Actuarial Science” [114, p. 571], Principle 3.1 states that “Actuarial risks can be stochastically modeled based on assumptions regarding the probabilities that will apply to the actuarial risk variables in the future, including assumptions regarding the future environment.” The actuarial risk variables referred to are occurrence, timing, and severity – that is, the chances of a claim event, the time at which the event occurs if it does, and the cost of settling the claim.
This text takes us through the modeling process but not in the order presented in Section 1.1. There is a difference between how models are best applied and how they are best learned. In this text, we first learn about the models and how to use them, and then we learn how to determine which model to use, because it is difficult to select models in a vacuum. Unless the analyst has a thorough knowledge of the set of available models, it is difficult to narrow the choice to the ones worth considering. With that in mind, the organization of the text is as follows:
3.147.66.24