Index
- absolute deviation
- absolute value
- abstraction levels
- accuracy , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
- – estimation , , ,
- – measure ,
- – rate , , ,
- Advanced Composition Explorer (ACE)
- Aggregate , , , , ,
- aggregation
- algorithm ,
- – flow chart of
- – repetition
- algorithms. See specific algorithms
- anomalies , , . See also outliers
- approximately , , , ,
- Artificial Neural Network , ,
- – Feed Forward Back Propagation
- – Learning Vector Quantization
- association analysis
- association rule
- asymmetric
- attribute construction , , , , , ,
- – classification , , , , , ,
- attribute selection measures , , , ,
- – backward elimination
- – decision tree induction ,
- – forward selection
- – gain ratio
- – Gini index ,
- – greedy methods
- – information gain ,
- – stepwise backward elimination
- – stepwise forward selection
- attributes , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- – Accounts Payable ,
- – Accounts Receivable
- – After Tax ROE ,
- – binary
- – Boolean
- – Capital Surplus ,
- – categorical ,
- – class label ,
- – class label attribute ,
- – continuous
- – correlated
- – discrete
- – generalization threshold control
- – grouping
- – interval-scaled
- – Nominal Attributes
- – Numeric Attributes
- – ordered , , ,
- – ordinal ,
- – ratio-scaled
- – set of , , , ,
- – types of ,
- average (or mean) ,
- backpropagation , , , , , ,
- – activation function ,
- – case updating
- – error ,
- – gradient descent
- – logistic (or sigmoid) function
- – updating
- bar charts
- Bayes bootstrap
- Bayes’ theorem , , , , . See also classification
- – algorithms
- – class conditional independence ,
- – posterior probability ,
- – prior probability
- Bayesian classification , ,
- – basis
- biases , , , ,
- Big Data ,
- Big Data and Data Science
- bimodal
- bin boundaries
- binary attributes , . See also attributes
- – binary
- Binary SVM or Linear SVM ,
- Binning methods
- – equal-frequency
- – smoothing by bin boundaries
- – smoothing by bin means
- bivariate distribution
- Box-Counting Dimension ,
- boxplots , , ,
- – computation
- – example
- Brackets or Punctuation Marks
- BW application of
- – Examples
- C4.5 , , , , . See also decision tree induction
- – examples
- – gain ratio use , ,
- CART , , , , , , , , , 10, 11, 12, 13, 14, 15. See also decision tree induction
- – examples
- – Gini index use , ,
- categorical (or nominal) attributes
- cells ,
- central tendency measures ,
- – for missing values
- – mean (or average)
- – median (or middle value)
- – mode (or most common value)
- challenges ,
- class conditional independence
- class imbalance problem ,
- class label attribute ,
- Classification , , , , , ,
- – accuracy , , , ,
- – backpropagation
- – confusion matrix
- classification methods , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18
- – Bayesian classifier algorithm , ,
- – decision tree induction ,
- – general approach to ,
- – IF-THEN rules , , , ,
- – interpretability
- – k-nearest-neighbor
- – learning step
- – model selection ,
- – multiclass ,
- – neural networks , ,
- – prediction problems
- – random forest
- – recall ,
- – robustness
- – scalability
- – speed
- – support vector machines (SVMs)
- – tree pruning
- Classification of Data
- classifiers , , , ,
- – decision tree
- – error rate ,
- – recognition rate
- class-labelled training
- clusters , , , , , ,
- Colour Models
- – BW colour
- – RGB colour
- Compiler
- completeness
- concept hierarchies
- conditional probability , , , , , ,
- confidence
- confidence interval
- confusion matrix
- consecutive rules
- Constant concept
- Constants ,
- contingency table
- contingency table for
- continuous attribute
- convex
- correlation analysis
- – nominal data
- – numeric data
- correlation coefficient , ,
- Covariance , ,
- Covariance analysis ,
- cross-validation
- Data , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53
- – class-labelled training
- – database , ,
- – for data mining , , , , , , ,
- – graph
- – growth , , , , ,
- – linearly inseparable
- – measures of dissimilarity
- – measures of similarity
- – multivariate
- – overfitting ,
- – Real dataset , , , , ,
- – relational ,
- – sample , , , , , , , , , 10, 11, 12, 13, 14, 15, 16
- – skewed ,
- – spatial
- – statistical descriptions , ,
- – Synthetic dataset , , , , , ,
- – training , , , , , , , , , 10, 11, 12
- – types of , , ,
- – web
- data aggregation
- data analysis. See data mining
- – algorithm ,
- – core objects
- – density estimation
- – density-based cluster
- – density-connected , ,
- – density-reachable , , ,
- – directly density-reachable
- – neighborhood density ,
- – RDBMS
- data auditing tools
- data classification. See classification
- data cleaning. See also data preprocessing
- – discrepancy detection
- – missing values ,
- – noisy data
- – outlier analysis
- data contents
- data discretization. See discretization data dispersion , ,
- – boxplots
- – quartiles ,
- – standard deviation ,
- – variance
- data integration. See also data preprocessing
- – correlation analysis
- – entity identification problem
- – redundancy ,
- data matrix ,
- – rows and columns
- – two-mode matrix
- data migration tools
- data mining , , , , , , , ,
- Data Normalization. See also data preprocessing
- – attribute construction ,
- – concept hierarchy generation
- – discretization ,
- – smoothing
- – strategies
- data objects , , , ,
- data preprocessing , , ,
- – cleaning , , ,
- – integration , ,
- – quality
- – reduction , ,
- – transformation , ,
- data quality
- – completeness
- – consistency
- – interpretability
- data reduction. See also data preprocessing
- – attribute subset selection
- – clustering
- – compression
- – data aggregation
- – numerosity ,
- – parametric
- – sampling
- Data Set (or dataset) ,
- – economy dataset (USA, New Zealand, Italy, Sweden (U.N.I.S.))
- – medical dataset (WAIS-R dataset and MS dataset)
- data type , , ,
- – complex
- – cross-validation
- – data visualization
- – for data mining
- – pixel
- databases , ,
- – relational database management systems (RDBMS)
- – statistical ,
- decimal scaling, normalization by
- decision tree induction , , , ,
- – attribute selection measures
- – attribute subset selection ,
- – C4.5 ,
- – CART ,
- – gain ratio
- – Gini index
- – ID3 ,
- – incremental
- – information gain
- – parameters
- – scalability
- – splitting criterion , ,
- – training datasets , ,
- – tree pruning
- decision trees
- – branches , , , ,
- – branches internal node
- – internal nodes
- – leaf nodes
- – pruning
- – root node ,
- – rule extraction from descriptive
- – distributed , ,
- – efficiency ,
- – histograms
- – multidimensional
- – incremental ,
- – integration ,
- – knowledge discovery
- – multidimensional
- – predictive ,
- – relational databases
- – scalability
- descriptive backpropagation
- – efficiency
- Devil’s staircase
- Diffusion Limited Aggregation (DLA) , , ,
- dimensionality reduction ,
- dimensionality reduction techniques
- dimensions , , , , , ,
- – association rule
- – concept hierarchies
- – pattern , , ,
- – pattern
- – ranking
- – selection
- discrepancy detection ,
- discrete attributes
- Discretization , , ,
- – binning ,
- – by clustering
- – correlation analysis
- – examples
- – one-mode matrix
- – techniques
- – two-mode matrix
- dispersion of data ,
- dissimilarity ,
- dissimilarity matrix ,
- – as one-mode matrix
- – data matrix versus
- – distance measurements , ,
- – n-by-n table
- – types of
- economy data analysis
- efficiency
- – data mining , ,
- entropy value , , ,
- equal-width ,
- error rate/ misclassification rate , , , ,
- Euclidean distance
- evaluation ,
- Expanded Disability Status Scale (EDSS) , , ,
- expected values , ,
- extraction ,
- extraction/transformation/loading (ETL) tools
- facts
- false negatives
- false positive
..................Content has been hidden....................
You can't read the all page of ebook, please click
here login for view all page.