- Field overloading
- – data analysis
- forward layer
- forward networks
- FracLab
- Fractal , , , , , , ,
- – multifractal spectrum
- – self-similarity ,
- Fractal Dimension , , , , , ,
- free path
- frequency curve
- F-Test for Regression
- fully connected
- gain ratio , , , ,
- – C4.5
- – maximum
- generalization , , , , , ,
- – presentation ,
- Gini index , , , , ,
- – CART ,
- – decision tree induction using
- – minimum ,
- – partitioning ,
- graphic displays
- – histogram ,
- – quantile plot ,
- graphical user interface (GUI)
- greedy methods, attribute subset selection
- harmonic mean
- Hausdorff dimension
- hidden units
- histograms , , , , , , , , , 10, 11, 12, 13, 14, 15 16 17, 18, 19, 20, 21, 22
- – analysis by discretization
- – binning
- – construction
- – equal-width
- – outlier analysis
- Hölder continuity
- Hölder exponent ,
- Hölder regularity , , , , , , ,
- holdout method , ,
- ID3 , , , , . See also Decision tree induction
- – accuracy , ,
- – IF-THEN rules , , ,
- – information gain ,
- – satisfied
- illustrated , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- Image on Coordinate Systems
- imbalance problem
- incremental learning
- inferential
- information , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 162,169, 22, 23, 24, 25, 26, 27, 28, 29
- information gain , , , , ,
- – decision tree induction using
- – split-point
- instance-based learners . See also lazy learners
- instances , ,
- integrable
- integral ,
- internal node ,
- interpolation
- interpretability , ,
- – backpropagation
- – classification ,
- – data quality
- interquartile range (IQR) , , ,
- IQR. See Interquartile range
- iterate/iterated ,
- joint event
- Karush-Kuhn-Tucker (KKT) conditions
- kernel function ,
- Keywords
- k-Nearest Neighbor , ,
- K-nearest Neighbor Algorithm ,
- – Compute distance
- – editing method
- k-nearest-neighbor classification , , , , , ,
- – distance-based comparisons
- – number of neighbors , , , ,
- – partial distance method
- Koch snowflakes
- lazy learners
- – k-nearest-neighbor classifiers
- learning , , , , , , ,
- – backpropagation , , , , , ,
- – supervised
- – unsupervised
- Left side value
- Likelihood
- linear regression , , , , , , , , , 10, 11
- – multiple regression
- linearly , , , , ,
- logistic function
- log-linear models
- machine learning , , , ,
- – supervised
- – unsupervised
- machine learning efficiency
- – data mining
- Magnetic Resonance Image (MRI)
- majority voting
- margin , , , ,
- maximum marginal hyperplane (MMH) , , , , ,
- – SVM finds
- mean , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
- – weighted arithmetic
- mean() , , ,
- measures , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- – accuracy-based
- – attribute selection
- – categories
- – dispersion
- – dispersion of data
- – of central tendency , ,
- – precision , ,
- – sensitivity ,
- – significance ,
- – similarity
- – dissimilarit
- – specificity ,
- measures classification methods
- – precision measure
- median , , , , , , , , , 10, 11
- Median() , , , ,
- metadata ,
- – importance
- – operational
- metrics , ,
- midrange , ,
- min-max normalization
- missing values , , ,
- mode , , , , , , , , , 10
- – example ,
- model selection
- models , , , , , , , , , 10
- Multi linear regression model , , , , , , ,
- – straight line , ,
- multifractional Brownian motion (mfBm)
- multimodal
- multiple linear regression
- Naïve Bayes ,
- naive Bayesian classification ,
- – class labels
- nearest-neighbor algorithm , , ,
- negative correlation , ,
- negatively skewed data
- neighborhoods ,
- neural network
- – multilayer feed-forward ,
- neural networks ,
- – backpropagation , , , , ,
- – disadvantages
- – for classification , ,
- – fully connected
- – learning
- – multilayer feed-forward , , ,
- – rule extraction
- New York Stock Exchange (NYSE) , , , ,
- no-differentiable
- noisy data , , , ,
- nominal attributes , , . See also attributes
- – correlation analysis
- – dissimilarity between
- nonlinear SVMs , ,
- non-random variables
- normalization , , , , , ,
- – by decimal scaling
- – data transformation ,
- – min-max normalization ,
- – z-score ,
- null rules
- numeric attributes , , , , , , , , , 10, 11, 12
- – covariance analysis , , ,
- – interval-scaled
- – ratio-scaled
- numeric data , ,
- numeric prediction , , ,
- – classification , ,
- – support vector machines (SVMs) for
- numerosity reduction
- operators
- ordering , , ,
- ordinal attributes
- outlier analysis
- partial distance method
- particle cluster , , ,
- partitioning , , , , ,
- – algorithms , , , ,
- – cross-validation ,
- – Gini index and , ,
- – holdout method
- – random sample
- – recursive
- patterns , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18
- – search space
- Peano curve
- percentiles ,
- Pixel Coordinates
- Polynomial Hölder Function , , , ,
- posterior probability , , , , ,
- predictive ,
- predictor model
- predictors , , ,
- pre-processing , , ,
- probability , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- – estimation of ,
- – posterior , , , , , ,
- – prior ,
- probability theory and statistic
- processing , , , , ,
- pruning (or condensing) ,
- – decision trees
- – K-nearest Neighbor Classifiers ,
- – n-dimensional pattern
- – pessimistic
- q-q plot ,
- – example ,
- qualitative , ,
- quantile plots , , , ,
- quantile-quantile plots , , , . See also graphic displays
- – example ,
- – illustrated
- quantitative , , , ,
- quartiles ,
- – first quartile
- – third quartile ,
- Radius of cluster , , , , , ,
- random forest
- random sample
- random variable , , , ,
- random walk , ,
- range , , , , , , , , , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. See also quartiles
- Range() , , ,
- Ranking (meaningful order)
- – dimensions
- Ratio-scaled attribute
- Real Data Set
- Recall , , ,
- Recallclassification methods
- – recall
- recognition rate
- recursion
- recursive , , , ,
- redundancy , , ,
- – in data integration
- regression analysis , , , , ,
- relational database management systems
- (RDBMS) ,
- relational databases
- repetition , ,
- residual sum of squares (RSS) ,
- resubstitution error
- RGB, application of , ,
- – Examples ,
- Right side value ,
- robustness, classification methods
- – robustness
- Root Node Initial Value ,
- rule extraction
- rule-based classification ,
- – IF-THEN rules
- – rule extraction
- rule-based classification methods
- – IF-THEN rules , , ,
- samples
- – cluster
- scalability
- – classification
- – decision tree induction using
- scaling , ,
- Scatter plots , , , , , ,
- – correlations between attributes ,
- Scatter plots , , , , , ,
- self-similarity , ,
- self-similarity dimension
- sensitivity , , ,
- sequences , , , , , ,
- Sierpinski , ,
- Sigmoid/logistic function
- significant singularities
- similarity , , , , , ,
- – asymmetric (skewed) data
- – measuring
- – specificity
- singled out singularities , , , , , ,
- skewed data ,
- – negatively
- – positively
- smoothing ,
- – Binning methods
- – levelling by bin medians
- – by bin boundaries
- – by bin means
- – for data discretization
- snowflake ,
- – example
- spatial coordinates
- spectrum , ,
..................Content has been hidden....................
You can't read the all page of ebook, please click
here login for view all page.