CHAPTER 10
MORTGAGE-BACKED SECTOR OF THE BOND MARKET

I. INTRODUCTION

In this chapter and the next we will discuss securities backed by a pool of loans or receivables—mortgage-backed securities and asset-backed securities. We described these securities briefly in Chapter 3. The mortgage-backed securities sector, simply referred to as the mortgage sector of the bond market, includes securities backed by a pool of mortgage loans. There are securities backed by residential mortgage loans, referred to as residential mortgage-backed securities, and securities backed by commercial loans, referred to as commercial mortgage-backed securities.
In the United States, the securities backed by residential mortgage loans are divided into two sectors: (1) those issued by federal agencies (one federally related institution and two government sponsored enterprises) and (2) those issued by private entities. The former securities are called agency mortgage-backed securities and the latter nonagency mortgage-backed securities.
Securities backed by loans other than traditional residential mortgage loans or commercial mortgage loans and backed by receivables are referred to as asset-backed securities. There is a long and growing list of loans and receivables that have been used as collateral for these securities. Together, mortgage-backed securities and asset-backed securities are referred to as structured financial products.
It is important to understand the classification of these sectors in terms of bond market indexes. A popular bond market index, the Lehman Aggregate Bond Index, has a sector that it refers to as the “mortgage passthrough sector.” Within the “mortgage passthrough sector,” Lehman Brothers includes only agency mortgage-backed securities that are mortgage passthrough securities. To understand why it is essential to understand this sector, consider that the “mortgage passthrough sector” represents more than one third of the Lehman Aggregate Bond Index. It is the largest sector in the bond market index. The commercial mortgage-backed securities sector represents about 2% of the bond market index. The mortgage sector of the Lehman Aggregate Bond Index includes the mortgage passthrough sector and the commercial mortgage-backed securities.
In this chapter, our focus will be on the mortgage sector. Although many countries have developed a mortgage-backed securities sector, our focus in this chapter is the U.S. mortgage sector because of its size and it important role in U.S. bond market indexes. Credit risk does not exist for agency mortgage-backed securities issued by a federally related institution and is viewed as minimal for securities issued by government sponsored enterprises. The significant risk is prepayment risk and there are ways to redistribute prepayment risk among the different bond classes created. Historically, it is important to note that the agency mortgage-backed securities market developed first. The technology developed for creating agency mortgage-backed security was then transferred to the securitization of other types of loans and receivables. In transferring the technology to create securities that expose investors to credit risk, mechanisms had to be developed to create securities that could receive investment grade credit ratings sought by the issuer. In the next chapter, we will discuss these mechanisms. We postpone a discussion of how to value and estimate the interest rate risk of both mortgage-backed and asset-backed securities until Chapter 12.
Outside the United States, market participants treat asset-backed securities more generically. Specifically, asset-backed securities include mortgage-backed securities as a subsector. While that is actually the proper way to classify these securities, it was not the convention adopted in the United States. In the next chapter, the development of the asset-backed securities (including mortgage-backed securities) outside the United States will be covered.
Residential mortgage-backed securities include: (1) mortgage passthrough securities, (2) collateralized mortgage obligations, and (3) stripped mortgage-backed securities. The latter two mortgage-backed securities are referred to as derivative mortgage-backed securities because they are created from mortgage passthrough securities.

II. RESIDENTIAL MORTGAGE LOANS

A mortgage is a loan secured by the collateral of some specified real estate property which obliges the borrower to make a predetermined series of payments. The mortgage gives the lender the right to “foreclose” on the loan if the borrower defaults and to seize the property in order to ensure that the debt is paid off. The interest rate on the mortgage loan is called the mortgage rate or contract rate. Our focus in this section is on residential mortgage loans.
When the lender makes the loan based on the credit of the borrower and on the collateral for the mortgage, the mortgage is said to be a conventional mortgage. The lender may require that the borrower obtain mortgage insurance to guarantee the fulfillment of the borrower’s obligations. Some borrowers can qualify for mortgage insurance which is guaranteed by one of three U.S. government agencies: the Federal Housing Administration (FHA), the Veteran’s Administration (VA), and the Rural Housing Service (RHS). There are also private mortgage insurers. The cost of mortgage insurance is paid by the borrower in the form of a higher mortgage rate.
There are many types of mortgage designs used throughout the world. A mortgage design is a specification of the interest rate, term of the mortgage, and the manner in which the borrowed funds are repaid. In the United States, the alternative mortgage designs include (1) fixed rate, level-payment fully amortized mortgages, (2) adjustable-rate mortgages, (3) balloon mortgages, (4) growing equity mortgages, (5) reverse mortgages, and (6) tiered payment mortgages. Other countries have developed mortgage designs unique to their housing finance market. Some of these mortgage designs relate the mortgage payment to the country’s rate of inflation. Below we will look at the most common mortgage design in the United States—the fixed-rate, level-payment, fully amortized mortgage. All of the principles we need to know regarding the risks associated with investing in mortgage-backed securities and the difficulties associated with their valuation can be understood by just looking at this mortgage design.

A. Fixed-Rate, Level-Payment, Fully Amortized Mortgage

A fixed-rate, level-payment, fully amortized mortgage has the following features:
• the mortgage rate is fixed for the life of the mortgage loan
• the dollar amount of each monthly payment is the same for the life of the mortgage loan (i.e., there is a “level payment”)
• when the last scheduled monthly mortgage payment is made the remaining mortgage balance is zero (i.e., the loan is fully amortized).
The monthly mortgage payments include principal repayment and interest. The frequency of payment is typically monthly. Each monthly mortgage payment for this mortgage design is due on the first of each month and consists of:
1. interest of 251 of the fixed annual interest rate times the amount of the outstanding mortgage balance at the beginning of the previous month, and
2. a repayment of a portion of the outstanding mortgage balance (principal).
The difference between the monthly mortgage payment and the portion of the payment that represents interest equals the amount that is applied to reduce the outstanding mortgage balance. The monthly mortgage payment is designed so that after the last scheduled monthly mortgage payment is made, the amount of the outstanding mortgage balance is zero (i.e., the mortgage is fully repaid).
To illustrate this mortgage design, consider a 30-year (360-month), $100,000 mortgage with an 8.125% mortgage rate. The monthly mortgage payment would be $742.50. Exhibit 1 shows for selected months how each monthly mortgage payment is divided between interest and scheduled principal repayment. At the beginning of month 1, the mortgage balance is $100,000, the amount of the original loan. The mortgage payment for month 1 includes interest on the $100,000 borrowed for the month. Since the interest rate is 8.125%, the monthly interest rate is 0.0067708 (0.08125 divided by 12). Interest for month 1 is therefore $677.08 ($100,000 times 0.0067708). The $65.41 difference between the monthly mortgage payment of $742.50 and the interest of $677.08 is the portion of the monthly mortgage payment that represents the scheduled principal repayment. It is also referred to as the scheduled amortization and we shall use the terms scheduled principal repayment and scheduled amortization interchangeably throughout this chapter. This $65.41 in month 1 reduces the mortgage balance.
The mortgage balance at the end of month 1 (beginning of month 2) is then $99,934.59 ($100,000 minus $65.41). The interest for the second monthly mortgage payment is $676.64, the monthly interest rate (0.0067708) times the mortgage balance at the beginning of month 2 ($99,934.59). The difference between the $742.50 monthly mortgage payment and the $676.64 interest is $65.86, representing the amount of the mortgage balance paid off with that monthly mortgage payment. Notice that the mortgage payment in month 360—the final payment—is sufficient to pay off the remaining mortgage balance.
As Exhibit 1 clearly shows, the portion of the monthly mortgage payment applied to interest declines each month and the portion applied to principal repayment increases. The reason for this is that as the mortgage balance is reduced with each monthly mortgage payment, the interest on the mortgage balance declines. Since the monthly mortgage payment is a fixed dollar amount, an increasingly larger portion of the monthly payment is applied to reduce the mortgage balance outstanding in each subsequent month.
EXHIBIT 1 Amortization Schedule for a Level-Payment, Fixed-Rate, Fully Amortized Mortgage (Selected Months)
252
1. Servicing Fee Every mortgage loan must be serviced. Servicing of a mortgage loan involves collecting monthly payments and forwarding proceeds to owners of the loan; sending payment notices to mortgagors; reminding mortgagors when payments are overdue; maintaining records of principal balances; initiating foreclosure proceedings if necessary; and, furnishing tax information to borrowers (i.e., mortgagors) when applicable.
The servicing fee is a portion of the mortgage rate. If the mortgage rate is 8.125% and the servicing fee is 50 basis points, then the investor receives interest of 7.625%. The interest rate that the investor receives is said to be the net interest or net coupon. The servicing fee is commonly called the servicing spread.
The dollar amount of the servicing fee declines over time as the mortgage amortizes. This is true for not only the mortgage design that we have just described, but for all mortgage designs.
2. Prepayments and Cash Flow Uncertainty Our illustration of the cash flow from a level-payment, fixed-rate, fully amortized mortgage assumes that the homeowner does not pay off any portion of the mortgage balance prior to the scheduled due date. But homeowners can pay off all or part of their mortgage balance prior to the maturity date. A payment made in excess of the monthly mortgage payment is called a prepayment. The prepayment could be to pay off the entire outstanding balance or a partial paydown of the mortgage balance. When a prepayment is not for the entire outstanding balance it is called a curtailment.
The effect of prepayments is that the amount and timing of the cash flow from a mortgage loan are not known with certainty. This risk is referred to as prepayment risk. For example, all that the lender in a $100,000, 8.125% 30-year mortgage knows is that as long as the loan is outstanding and the borrower does not default, interest will be received and the principal will be repaid at the scheduled date each month; then at the end of the 30 years, the investor would have received $100,000 in principal payments. What the investor does not know—the uncertainty—is for how long the loan will be outstanding, and therefore what the timing of the principal payments will be. This is true for all mortgage loans, not just the level-payment, fixed-rate, fully amortized mortgage. Factors affecting prepayments will be discussed later in this chapter.
Most mortgages have no prepayment penalty. The outstanding loan balance can be repaid at par. However, there are mortgages with prepayment penalties. The purpose of the penalty is to deter prepayment when interest rates decline. A prepayment penalty mortgage has the following structure. There is a period of time over which if the loan is prepaid in full or in excess of a certain amount of the outstanding balance, there is a prepayment penalty. This period is referred to as the lockout period or penalty period. During the penalty period, the borrower may prepay up to a specified amount of the outstanding balance without a penalty. Over that specified amount, the penalty is set in terms of the number of months of interest that must be paid.

III. MORTGAGE PASSTHROUGH SECURITIES

A mortgage passthrough security is a security created when one or more holders of mortgages form a collection (pool) of mortgages and sell shares or participation certificates in the pool. A pool may consist of several thousand or only a few mortgages. When a mortgage is included in a pool of mortgages that is used as collateral for a mortgage passthrough security, the mortgage is said to be securitized.

A. Cash Flow Characteristics

The cash flow of a mortgage passthrough security depends on the cash flow of the underlying pool of mortgages. As we explained in the previous section, the cash flow consists of monthly mortgage payments representing interest, the scheduled repayment of principal, and any prepayments.
Payments are made to security holders each month. However, neither the amount nor the timing of the cash flow from the pool of mortgages is identical to that of the cash flow passed through to investors. The monthly cash flow for a passthrough is less than the monthly cash flow of the underlying pool of mortgages by an amount equal to servicing and other fees. The other fees are those charged by the issuer or guarantor of the passthrough for guaranteeing the issue (discussed later). The coupon rate on a passthrough is called the passthrough rate. The passthrough rate is less than the mortgage rate on the underlying pool of mortgages by an amount equal to the servicing and guaranteeing fees.
The timing of the cash flow is also different. The monthly mortgage payment is due from each mortgagor on the first day of each month, but there is a delay in passing through the corresponding monthly cash flow to the security holders. The length of the delay varies by the type of passthrough security.
Not all of the mortgages that are included in a pool of mortgages that are securitized have the same mortgage rate and the same maturity. Consequently, when describing a passthrough security, a weighted average coupon rate and a weighted average maturity are determined. A weighted average coupon rate, or WAC, is found by weighting the mortgage rate of each mortgage loan in the pool by the percentage of the mortgage outstanding relative to the outstanding amount of all the mortgages in the pool. A weighted average maturity, or WAM, is found by weighting the remaining number of months to maturity for each mortgage loan in the pool by the amount of the outstanding mortgage balance.
For example, suppose a mortgage pool has just five loans and the outstanding mortgage balance, mortgage rate, and months remaining to maturity of each loan are as follows:
253
The WAC for this mortgage pool is:
0.2212 (7.5%) + 0.1504 (7.2%) + 0.3097 (7.0%)
+ 0.1947 (7.8%) + 0.1239 (6.90%) = 7.28%
The WAM for this mortgage pool is
0.2212 (275) + 0.1504 (260) + 0.3097 (290) + 0.1947 (285) + 0.1239 (270)
= 279 months (rounded)

B. Types of Mortgage Passthrough Securities

In the United States, the three major types of passthrough securities are guaranteed by agencies created by Congress to increase the supply of capital to the residential mortgage market. Those agencies are the Government National Mortgage Association (Ginnie Mae), the Federal Home Loan Mortgage Corporation (Freddie Mac), and the Federal National Mortgage Association (Fannie Mae).
While Freddie Mac and Fannie Mae are commonly referred to as “agencies” of the U.S. government, both are corporate instrumentalities of the U.S. government. That is, they are government sponsored enterprises; therefore, their guarantee does not carry the full faith and credit of the U.S. government. In contrast, Ginnie Mae is a federally related institution; it is part of the Department of Housing and Urban Development. As such, its guarantee carries the full faith and credit of the U.S. government. The passthrough securities issued by Fannie Mae and Freddie Mac are called conventional passthrough securities. However, in this book we shall refer to those passthrough securities issued by all three entities (Ginnie Mae, Fannie Mae, and Freddie Mac) as agency passthrough securities. It should be noted, however, that market participants do reserve the term “agency passthrough securities” for those issued only by Ginnie Mae.119
In order for a loan to be included in a pool of loans backing an agency security, it must meet specified underwriting standards. These standards set forth the maximum size of the loan, the loan documentation required, the maximum loan-to-value ratio, and whether or not insurance is required. If a loan satisfies the underwriting standards for inclusion as collateral for an agency mortgage-backed security, it is called a conforming mortgage. If a loan fails to satisfy the underwriting standards, it is called a nonconforming mortgage.
Nonconforming mortgages used as collateral for mortgage passthrough securities are privately issued. These securities are called nonagency mortgage passthrough securities and are issued by thrifts, commercial banks, and private conduits. Private conduits may purchase nonconforming mortgages, pool them, and then sell passthrough securities whose collateral is the underlying pool of nonconforming mortgages. Nonagency passthrough securities are rated by the nationally recognized statistical rating organizations. These securities are supported by credit enhancements so that they can obtain an investment grade rating. We shall describe these securities in the next chapter.

C. Trading and Settlement Procedures

Agency passthrough securities are identified by a pool prefix and pool number provided by the agency. The prefix indicates the type of passthrough. There are specific rules established by the Bond Market Association for the trading and settlement of mortgage-backed securities. Many trades occur while a pool is still unspecified, and therefore no pool information is known at the time of the trade. This kind of trade is known as a TBA trade (to-be-announced trade). In a TBA trade the two parties agree on the agency type, the agency program, the coupon rate, the face value, the price, and the settlement date. The actual pools of mortgage loans underlying the agency passthrough are not specified in a TBA trade. However, this information is provided by the seller to the buyer before delivery. There are trades where more specific requirements are established for the securities to be delivered. An example is a Freddie Mac with a coupon rate of 8.5% and a WAC between 9.0% and 9.2%. There are also specified pool trades wherein the actual pool numbers to be delivered are specified.
Passthrough prices are quoted in the same manner as U.S. Treasury coupon securities. A quote of 94-05 means 94 and 5 32nds of par value, or 94.15625% of par value. The price that the buyer pays the seller is the agreed upon sale price plus accrued interest. Given the par value, the dollar price (excluding accrued interest) is affected by the amount of the pool mortgage balance outstanding. The pool factor indicates the percentage of the initial mortgage balance still outstanding. So, a pool factor of 90 means that 90% of the original mortgage pool balance is outstanding. The pool factor is reported by the agency each month.
The dollar price paid for just the principal is found as follows given the agreed upon price, par value, and the month’s pool factor provided by the agency:
price × par value × pool factor
For example, if the parties agree to a price of 92 for $1 million par value for a passthrough with a pool factor of 0.85, then the dollar price paid by the buyer in addition to accrued interest is:
0.92 × $1, 000, 000 × 0.85 = $782, 000
The buyer does not know what he will get unless he specifies a pool number. There are many seasoned issues of the same agency with the same coupon rate outstanding at a given point in time. For example, in early 2000 there were more than 30,000 pools of 30-year Ginnie Mae MBSs outstanding with a coupon rate of 9%. One passthrough may be backed by a pool of mortgage loans in which all the properties are located in California, while another may be backed by a pool of mortgage loans in which all the properties are in Minnesota. Yet another may be backed by a pool of mortgage loans in which the properties are from several regions of the country. So which pool are dealers referring to when they talk about Ginnie Mae 9s? They are not referring to any specific pool but instead to a generic security, despite the fact that the prepayment characteristics of passthroughs with underlying pools from different parts of the country are different. Thus, the projected prepayment rates for passthroughs reported by dealer firms (discussed later) are for generic passthroughs. A particular pool purchased may have a materially different prepayment rate from the generic. Moreover, when an investor purchases a passthrough without specifying a pool number, the seller has the option to deliver the worst-paying pools as long as the pools delivered satisfy good delivery requirements.

D. Measuring the Prepayment Rate

A prepayment is any payment toward the repayment of principal that is in excess of the scheduled principal payment. In describing prepayments, market participants refer to the prepayment rate or prepayment speed. In this section we will see how the historical prepayment rate is computed for a month. We then look at how to annualize a monthly prepayment rate and then explain the convention in the residential mortgage market for describing a pattern of prepayment rates over the life of a mortgage pool.
There are three points to keep in mind in the discussion in this section. First, we will look at how the actual or historical prepayment rate of a mortgage pool is calculated. Second, we will see later how in projecting the cash flow of a mortgage pool, an investor uses the same prepayment measures to project prepayments given a prepayment rate. The third point is that we are just describing the mechanics of calculating prepayment measures. The difficult task of projecting the prepayment rate is not discussed here. In fact, this task is beyond the scope of this chapter. However, the factors that investors use in prepayment models (i.e., statistical models used to project prepayments) will be described in Section III F.
1. Single Monthly Mortality Rate Given the amount of the prepayment for a month and the amount that was available to prepay that month, a monthly prepayment rate can be computed. The amount available to prepay in a month is not the outstanding mortgage balance of the pool in the previous month. The reason is that there will be scheduled principal payments for the month and therefore by definition this amount cannot be prepaid. Thus, the amount available to prepay in a given month, say month t, is the beginning mortgage balance in month t reduced by the scheduled principal payment in month t.
The ratio of the prepayment in a month and the amount available to prepay that month is called the single monthly mortality rate120 or simply SMM. That is, the SMM for month t is computed as follows
254
Let’s illustrate the calculation of the SMM. Assume the following:
beginning mortgage balance in month 33 = $358, 326, 766
scheduled principal payment in month 33 = $297, 825
prepayment in month 33 = $1, 841, 347
The SMM for month 33 is therefore:
255
The SMM33 of 0.5143% is interpreted as follows: In month 33, 0.5143% of the outstanding mortgage balance available to prepay in month 33 prepaid.
Let’s make sure we understand the two ways in which the SMM can be used. First, given the prepayment for a month for a mortgage pool, an investor can calculate the SMM as we just did in our illustration to determine the SMM for month 33. Second given an assumed SMM, an investor will use it to project the prepayment for a month. The prepayment for a month will then be used to determine the cash flow of a mortgage pool for the month. We’ll see this later in this section when we illustrate how to calculate the cash flow for a passthrough security. For now, it is important to understand that given an assumed SMM for month t, the prepayment for month t is found as follows:
For example, suppose that an investor owns a passthrough security in which the remaining mortgage balance at the beginning of some month is $290 million and the scheduled principal payment for that month is $3 million. The investor believes that the SMM next month will be 0.5143%. Then the projected prepayment for the month is:
0.005143 × ($290, 000, 000 − $3, 000, 000) = $1, 476, 041
2. Conditional Prepayment Rate Market participants prefer to talk about prepayment rates on an annual basis rather than a monthly basis. This is handled by annualizing the SMM. The annualized SMM is called the conditional prepayment rate or CPR.121 Given the SMM for a given month, the CPR can be demonstrated to be:122
257
For example, suppose that the SMM is 0.005143. Then the CPR is
258
A CPR of 6% means that, ignoring scheduled principal payments, approximately 6% of the outstanding mortgage balance at the beginning of the year will be prepaid by the end of the year.
Given a CPR, the corresponding SMM can be computed by solving equation (2) for the SMM:
259
To illustrate equation (3), suppose that the CPR is 6%, then the SMM is
SMM = 1 − (1 − 0.06)1/12 = 0.005143 = 0.5143%
3. PSA Prepayment Benchmark An SMM is the prepayment rate for a month. A CPR is a prepayment rate for a year. Market participants describe prepayment rates (historical/actual prepayment rates and those used for projecting future prepayments) in terms of a prepayment pattern or benchmark over the life of a mortgage pool. In the early 1980s, the Public Securities Association (PSA), later renamed the Bond Market Association, undertook a study to look at the pattern of prepayments over the life of a typical mortgage pool. Based on the study, the PSA established a prepayment benchmark which is referred to as the PSA prepayment benchmark. Although sometimes referred to as a “prepayment model,” it is a convention and not a model to predict prepayments.
The PSA prepayment benchmark is expressed as a monthly series of CPRs. The PSA benchmark assumes that prepayment rates are low for newly originated mortgages and then will speed up as the mortgages become seasoned. The PSA benchmark assumes the following prepayment rates for 30-year mortgages: (1) a CPR of 0.2% for the first month, increased by 0.2% per year per month for the next 30 months until it reaches 6% per year, and (2) a 6% CPR for the remaining months.
EXHIBIT 2 Graphical Depiction of 100 PSA
260
This benchmark, referred to as “100% PSA” or simply “100 PSA,” is graphically depicted in Exhibit 2. Mathematically, 100 PSA can be expressed as follows:
if t < 30 then CPR = 6% (t/30)
if t ≥ S 30 then CPR = 6%
where t is the number of months since the mortgages were originated.
It is important to emphasize that the CPRs and corresponding SMMs apply to a mortgage pool based on the number of months since origination. For example, if a mortgage pool has loans that were originally 30-year (360-month) mortgage loans and the WAM is currently 357 months, this means that the mortgage pool is seasoned three months. So, in determining prepayments for the next month, the CPR and SMM that are applicable are those for month 4.
Slower or faster speeds are then referred to as some percentage of PSA. For example, “50 PSA” means one-half the CPR of the PSA prepayment benchmark; “150 PSA” means 1.5 times the CPR of the PSA prepayment benchmark; “300 PSA” means three times the CPR of the prepayment benchmark. A prepayment rate of 0 PSA means that no prepayments are assumed. While there are no prepayments at 0 PSA, there are scheduled principal repayments.
In constructing a schedule for monthly prepayments, the CPR (an annual rate) must be converted into a monthly prepayment rate (an SMM) using equation (3). For example, the SMMs for month 5, month 20, and months 31 through 360 assuming 100 PSA are calculated as follows:
 
for month 5:
CPR = 6% (5/30) = 1% = 0.01
SMM = 1 − (1 − 0.01)1/12 = 1 − (0.99)0.083333 = 0.000837
for month 20:
CPR = 6% (20/30) = 4% = 0.04
SMM = 1 − (1 − 0.04)1/12 = 1 − (0.96)0.083333 = 0.003396
for months 31 - 360:
CPR = 6%
SMM = 1 − (1 − 0.06)1/12 = 1 − (0.94)0.083333 = 0.005143
What if the PSA were 165 instead? The SMMs for month 5, month 20, and months 31 through 360 assuming 165 PSA are computed as follows:
for month 5:
CPR = 6% (5/30) = 1% = 0.01
165 PSA = 1.65(0.01) = 0.0165
SMM = 1 − (1 − 0.0165)1/12 = 1 − (0.9835)0.08333 = 0.001386
for month 20:
CPR = 6% (20/30) = 4% = 0.04
165 PSA = 1.65 (0.04) = 0.066
SMM = 1 − (1 − 0.066)1/12 = 1 − (0.934)0.08333 = 0.005674
for months 31 - 360:
CPR = 6%
165 PSA = 1.65 (0.06) = 0.099
SMM = 1 − (1 − 0.099)1/12 = 1 − (0.901)0.08333 = 0.008650
Notice that the SMM assuming 165 PSA is not just 1.65 times the SMM assuming 100 PSA. It is the CPR that is a multiple of the CPR assuming 100 PSA.
4. Illustration of Monthly Cash Flow Construction As our first step in valuing a hypothetical passthrough given a PSA assumption, we must construct a monthly cash flow. For the purpose of this illustration, the underlying mortgages for this hypothetical passthrough are assumed to be fixed-rate, level-payment, fully amortized mortgages with a weighted average coupon (WAC) rate of 8.125%. It will be assumed that the passthrough rate is 7.5% with a weighted average maturity (WAM) of 357 months.
Exhibit 3 shows the cash flow for selected months assuming 100 PSA. The cash flow is broken down into three components: (1) interest (based on the passthrough rate), (2) the scheduled principal repayment (i.e., scheduled amortization), and (3) prepayments based on 100 PSA.
Let’s walk through Exhibit 3 column by column.
Column 1: This is the number of months from now when the cash flow will be received.
Column 2: This is the number of months of seasoning. Since the WAM for this mortgage pool is 357 months, this means that the loans are seasoned an average of 3 months (360 months − 357 months) now.
Column 3: This column gives the outstanding mortgage balance at the beginning of the month. It is equal to the outstanding balance at the beginning of the previous month reduced by the total principal payment in the previous month.
Column 4: This column shows the SMM based on the number of months the loans are seasoned—the number of months shown in Column (2). For example, for the first month shown in the exhibit, the loans are seasoned three months going into that month. Therefore, the CPR used is the CPR that corresponds to four months. From the PSA benchmark, the CPR is 0.8% (4 times 0.2%). The corresponding SMM is 0.00067. The mortgage pool becomes fully seasoned in Column (1) corresponding to month 27 because by that time the loans are seasoned 30 months. When the loans are fully seasoned the CPR at 100 PSA is 6% and the corresponding SMM is 0.00514.
EXHIBIT 3 Monthly Cash Flow for a $400 Million Passthrough with a 7.5% Passthrough Rate, a WAC of 8.125%, and a WAM of 357 Months Assuming 100 PSA
261
Column 5: The total monthly mortgage payment is shown in this column. Notice that the total monthly mortgage payment declines over time as prepayments reduce the mortgage balance outstanding. There is a formula to determine what the monthly mortgage balance will be for each month given prepayments.123
Column 6: The net monthly interest (i.e., amount available to pay bondholders after the servicing fee) is found in this column. This value is determined by multiplying the outstanding mortgage balance at the beginning of the month by the passthrough rate of 7.5% and then dividing by 12.
Column 7: This column gives the scheduled principal repayment (i.e., scheduled amortization). This is the difference between the total monthly mortgage payment [the amount shown in Column (5)] and the gross coupon interest for the month. The gross coupon interest is found by multiplying 8.125% by the outstanding mortgage balance at the beginning of the month and then dividing by 12.
Column 8: The prepayment for the month is reported in this column. The prepayment is found by using equation (1). For example, in month 100, the beginning mortgage balance is $231,249,776, the scheduled principal payment is $332,928, and the SMM at 100 PSA is 0.00514301 (only 0.00514 is shown in the exhibit to save space), so the prepayment is:
0.00514301 × ($231, 249, 776 − $332, 928) = $1, 187, 608
Column 9: The total principal payment, which is the sum of columns (7) and (8), is shown in this column.
Column 10: The projected monthly cash flow for this passthrough is shown in this last column. The monthly cash flow is the sum of the interest paid [Column (6)] and the total principal payments for the month [Column (9)].
Let’s look at what happens to the cash flows for this passthrough if a different PSA assumption is made. Suppose that instead of 100 PSA, 165 PSA is assumed. Prepayments are assumed to be faster. Exhibit 4 shows the cash flow for this passthrough based on 165 PSA. Notice that the cash flows are greater in the early years compared to Exhibit 3 because prepayments are higher. The cash flows in later years are less for 165 PSA compared to 100 PSA because of the higher prepayments in the earlier years.

E. Average Life

It is standard practice in the bond market to refer to the maturity of a bond. If a bond matures in five years, it is referred to as a “5-year bond.” However, the typical bond repays principal only once: at the maturity date. Bonds with this characteristic are referred to as “bullet bonds.” We know that the maturity of a bond affects its interest rate risk. More specifically, for a given coupon rate, the greater the maturity the greater the interest rate risk.
For a mortgage-backed security, we know that the principal repayments (scheduled payments and prepayments) are made over the life of the security. While a mortgage-backed has a “legal maturity,” which is the date when the last scheduled principal payment is due, the legal maturity does not tell us much about the characteristic of the security as its pertains to interest rate risk. For example, it is incorrect to think of a 30-year corporate bond and a mortgage-backed security with a 30-year legal maturity with the same coupon rate as being equivalent in terms of interest rate risk. Of course, duration can be computed for both the corporate bond and the mortgage-backed security. (We will see how this is done for a mortgage-backed security in Chapter 12.) Instead of duration, another measure widely used by market participants is the weighted average life or simply average life. This is the convention-based average time to receipt of principal payments (scheduled principal payments and projected prepayments).
EXHIBIT 4 Monthly Cash Flow for a $400 Million Passthrough with a 7.5% Passthrough Rate, a WAC of 8.125%, and a WAM of 357 Months Assuming 165 PSA
262
Mathematically, the average life is expressed as follows:
263
where T is the number of months.
The average life of a passthrough depends on the prepayment assumption. To see this, the average life is shown below for different prepayment speeds for the pass-through we used to illustrate the cash flow for 100 PSA and 165 PSA in Exhibits 3 and 4:
264

F. Factors Affecting Prepayment Behavior

The factors that affect prepayment behavior are:
1. prevailing mortgage rate
2. housing turnover
3. characteristics of the underlying residential mortgage loans
The current mortgage rate affects prepayments. The spread between the prevailing mortgage rate in the market and the rate paid by the homeowner affects the incentive to refinance. Moreover, the path of mortgage rates since the loan was originated affects prepayments through a phenomenon referred to as refinancing burnout. Both the spread and path of mortgage rates affect prepayments that are the product of refinancing.
By far, the single most important factor affecting prepayments because of refinancing is the current level of mortgage rates relative to the borrower’s contract rate. The greater the difference between the two, the greater the incentive to refinance the mortgage loan. For refinancing to make economic sense, the interest savings must be greater than the costs associated with refinancing the mortgage. These costs include legal expenses, origination fees, title insurance, and the value of the time associated with obtaining another mortgage loan. Some of these costs will vary proportionately with the amount to be financed. Other costs such as the application fee and legal expenses are typically fixed.
Historically it had been observed that mortgage rates had to decline by between 250 and 350 basis points below the contract rate in order to make it worthwhile for borrowers to refinance. However, the creativity of mortgage originators in designing mortgage loans such that the refinancing costs are folded into the amount borrowed has changed the view that mortgage rates must drop dramatically below the contract rate to make refinancing economic. Moreover, mortgage originators now do an effective job of advertising to make homeowners cognizant of the economic benefits of refinancing.
The historical pattern of prepayments and economic theory suggests that it is not only the level of mortgage rates that affects prepayment behavior but also the path that mortgage rates take to get to the current level. To illustrate why, suppose the underlying contract rate for a pool of mortgage loans is 11% and that three years after origination, the prevailing mortgage rate declines to 8%. Let’s consider two possible paths of the mortgage rate in getting to the 8% level. In the first path, the mortgage rate declines to 8% at the end of the first year, then rises to 13% at the end of the second year, and then falls to 8% at the end of the third year. In the second path, the mortgage rate rises to 12% at the end of the first year, continues its rise to 13% at the end of the second year, and then falls to 8% at the end of the third year.
If the mortgage rate follows the first path, those who can benefit from refinancing will more than likely take advantage of this opportunity when the mortgage rate drops to 8% in the first year. When the mortgage rate drops again to 8% at the end of the third year, the likelihood is that prepayments because of refinancing will not surge; those who want to benefit by taking advantage of the refinancing opportunity will have done so already when the mortgage rate declined for the first time. This is the prepayment behavior referred to as the refinancing burnout (or simply, burnout) phenomenon. In contrast, the expected prepayment behavior when the mortgage rate follows the second path is quite different. Prepayment rates are expected to be low in the first two years. When the mortgage rate declines to 8% in the third year, refinancing activity and therefore prepayments are expected to surge. Consequently, the burnout phenomenon is related to the path of mortgage rates.
There is another way in which the prevailing mortgage rate affects prepayments: through its effect on the affordability of housing and housing turnover. The level of mortgage rates affects housing turnover to the extent that a lower rate increases the affordability of homes. However, even without lower interest rates, there is a normal amount of housing turnover. This is attribute to economic growth. The link is as follows: a growing economy results in a rise in personal income and in opportunities for worker migration; this increases family mobility and as a result increases housing turnover. The opposite holds for a weak economy.
Two characteristics of the underlying residential mortgage loans that affect prepayments are the amount of seasoning and the geographical location of the underlying properties. Seasoning refers to the aging of the mortgage loans. Empirical evidence suggests that prepayment rates are low after the loan is originated and increase after the loan is somewhat seasoned. Then prepayment rates tend to level off, in which case the loans are referred to as fully seasoned. This is the underlying theory for the PSA prepayment benchmark discussed earlier in this chapter. In some regions of the country the prepayment behavior tends to be faster than the average national prepayment rate, while other regions exhibit slower prepayment rates. This is caused by differences in local economies that affect housing turnover.

G. Contraction Risk and Extension Risk

An investor who owns passthrough securities does not know what the cash flow will be because that depends on actual prepayments. As we noted earlier, this risk is called prepayment risk.
To understand the significance of prepayment risk, suppose an investor buys a 9% coupon passthrough security at a time when mortgage rates are 10%. Let’s consider what will happen to prepayments if mortgage rates decline to, say, 6%. There will be two adverse consequences. First, a basic property of fixed income securities is that the price of an option-free bond will rise. But in the case of a passthrough security, the rise in price will not be as large as that of an option-free bond because a fall in interest rates will give the borrower an incentive to prepay the loan and refinance the debt at a lower rate. This results in the same adverse consequence faced by holders of callable bonds. As in the case of those instruments, the upside price potential of a passthrough security is compressed because of prepayments. (This is the negative convexity characteristic explained in Chapter 7.) The second adverse consequence is that the cash flow must be reinvested at a lower rate. Basically, the faster prepayments resulting from a decline in interest rates causes the passthrough to shorten in terms of the timing of its cash flows. Another way of saying this is that “shortening” results in a decline in the average life. Consequently, the two adverse consequences from a decline in interest rates for a passthrough security are referred to as contraction risk.
Now let’s look at what happens if mortgage rates rise to 15%. The price of the passthrough, like the price of any bond, will decline. But again it will decline more because the higher rates will tend to slow down the rate of prepayment, in effect increasing the amount invested at the coupon rate, which is lower than the market rate. Prepayments will slow down, because homeowners will not refinance or partially prepay their mortgages when mortgage rates are higher than the contract rate of 10%. Of course this is just the time when investors want prepayments to speed up so that they can reinvest the prepayments at the higher market interest rate. Basically, the slower prepayments associated with a rise in interest rates that causes these adverse consequences are due to the passthrough lengthening in terms of the timing of its cash flows. Another way of saying this is that “lengthening” results in an increase in the average life. Consequently, the adverse consequence from a rise in interest rates for a passthrough security is referred to as extension risk.
Therefore, prepayment risk encompasses contraction risk and extension risk. Prepayment risk makes passthrough securities unattractive for certain financial institutions to hold from an asset/liability management perspective. Some institutional investors are concerned with extension risk and others with contraction risk when they purchase a passthrough security. This applies even for assets supporting specific types of insurance contracts. Is it possible to alter the cash flow of a passthrough so as to reduce the contraction risk or extension risk for institutional investors? This can be done, as we shall see, when we describe collateralized mortgage obligations.

IV. COLLATERALIZED MORTGAGE OBLIGATIONS

As we noted, there is prepayment risk associated with investing in a mortgage passthrough security. Some institutional investors are concerned with extension risk and others with contraction risk. This problem can be mitigated by redirecting the cash flows of mortgage-related products (passthrough securities or a pool of loans) to different bond classes, called tranches,124 so as to create securities that have different exposure to prepayment risk and therefore different risk/return patterns than the mortgage-related product from which they are created.
When the cash flows of mortgage-related products are redistributed to different bond classes, the resulting securities are called collateralized mortgage obligations (CMO). The mortgage-related products from which the cash flows are obtained are referred to as the collateral. Since the typical mortgage-related product used in a CMO is a pool of passthrough securities, sometimes market participants will use the terms “collateral” and “passthrough securities” interchangeably. The creation of a CMO cannot eliminate prepayment risk; it can only distribute the various forms of this risk among different classes of bondholders. The CMO’s major financial innovation is that the securities created more closely satisfy the asset/liability needs of institutional investors, thereby broadening the appeal of mortgage-backed products.
There is a wide range of CMO structures.125 We review the major ones below.

A. Sequential-Pay Tranches

The first CMO was structured so that each class of bond would be retired sequentially. Such structures are referred to as sequential-pay CMOs. The rule for the monthly distribution of the principal payments (scheduled principal plus prepayments) to the tranches would be as follows:
• Distribute all principal payments to Tranche 1 until the principal balance for Tranche 1 is zero. After Tranche 1 is paid off,
Payment rules:
1. For payment of monthly coupon interest: Disburse monthly coupon interest to each tranche on the basis of the amount of principal outstanding for each tranche at the beginning of the month.
2. For disbursement of principal payments: Disburse principal payments to tranche A until it is completely paid off. After tranche A is completely paid off, disburse principal payments to tranche B until it is completely paid off. After tranche B is completely paid off, disburse principal payments to tranche C until it is completely paid off. After tranche C is completely paid off, disburse principal payments to tranche D until it is completely paid off.
• distribute all principal payments to Tranche 2 until the principal balance for Tranche 2 is zero; After Tranche 2 is paid off,
• distribute all principal payments to Tranche 3 until the principal balance for Tranche 3 is zero; After Tranche 3 is paid off, ... and so on.
EXHIBIT 5 FJF-01—A Hypothetical 4-Tranche Sequential-Pay Structure
Tranche Par amount Coupon rate (%)
A194,500,0007.5
B36,000,0007.5
C96,500,0007.5
D73,000,0007.5
Total400,000,000
To illustrate a sequential-pay CMO, we discuss FJF-01, a hypothetical deal made up to illustrate the basic features of the structure. The collateral for this hypothetical CMO is a hypothetical passthrough with a total par value of $400 million and the following characteristics: (1) the passthrough coupon rate is 7.5%, (2) the weighted average coupon (WAC) is 8.125%, and (3) the weighted average maturity (WAM) is 357 months. This is the same passthrough that we used in Section III to describe the cash flow of a passthrough based on some PSA assumption.
From this $400 million of collateral, four bond classes or tranches are created. Their characteristics are summarized in Exhibit 5. The total par value of the four tranches is equal to the par value of the collateral (i.e., the passthrough security).126 In this simple structure, the coupon rate is the same for each tranche and also the same as the coupon rate on the collateral. There is no reason why this must be so, and, in fact, typically the coupon rate varies by tranche.
Now remember that a CMO is created by redistributing the cash flow—interest and principal—to the different tranches based on a set of payment rules. The payment rules at the bottom of Exhibit 5 describe how the cash flow from the passthrough (i.e., collateral) is to be distributed to the four tranches. There are separate rules for the distribution of the coupon interest and the payment of principal (the principal being the total of the scheduled principal payment and any prepayments).
While the payment rules for the disbursement of the principal payments are known, the precise amount of the principal in each month is not. This will depend on the cash flow, and therefore principal payments, of the collateral, which depends on the actual prepayment rate of the collateral. An assumed PSA speed allows the cash flow to be projected. Exhibit 6 shows the cash flow (interest, scheduled principal repayment, and prepayments) assuming 165 PSA. Assuming that the collateral does prepay at 165 PSA, the cash flow available to all four tranches of FJF-01 will be precisely the cash flow shown in Exhibit 6.
To demonstrate how the payment rules for FJF-01 work, Exhibit 6 shows the cash flow for selected months assuming the collateral prepays at 165 PSA. For each tranche, the exhibit shows: (1) the balance at the end of the month, (2) the principal paid down (scheduled principal repayment plus prepayments), and (3) interest. In month 1, the cash flow for the collateral consists of a principal payment of $709,923 and an interest payment of $2.5 million (0.075 times $400 million divided by 12). The interest payment is distributed to the four tranches based on the amount of the par value outstanding. So, for example, tranche A receives $1,215,625 (0.075 times $194,500,000 divided by 12) of the $2.5 million. The principal, however, is all distributed to tranche A. Therefore, the cash flow for tranche A in month 1 is $1,925,548. The principal balance at the end of month 1 for tranche A is $193,790,076 (the original principal balance of $194,500,000 less the principal payment of $709,923). No principal payment is distributed to the three other tranches because there is still a principal balance outstanding for tranche A. This will be true for months 2 through 80. The cash flow for tranche A for each month is found by adding the amounts shown in the “Principal” and “Interest” columns. So, for tranche A, the cash flow in month 8 is $1,483,954 plus $1,169,958, or $2,653,912. The cash flow from months 82 on is zero based on 165 PSA.
After month 81, the principal balance will be zero for tranche A. For the collateral, the cash flow in month 81 is $3,318,521, consisting of a principal payment of $2,032,197 and interest of $1,286,325. At the beginning of month 81 (end of month 80), the principal balance for tranche A is $311,926. Therefore, $311,926 of the $2,032,196 of the principal payment from the collateral will be disbursed to tranche A. After this payment is made, no additional principal payments are made to this tranche as the principal balance is zero. The remaining principal payment from the collateral, $1,720,271, is distributed to tranche B. Based on an assumed prepayment speed of 165 PSA, tranche B then begins receiving principal payments in month 81. The cash flow for tranche B for each month is found by adding the amounts shown in the “Principal” and “Interest” columns. For months 1 though 80, the cash flow is just the interest. There is no cash flow after month 100 for tranche B.
Exhibit 6 shows that tranche B is fully paid off by month 100, when tranche C begins to receive principal payments. Tranche C is not fully paid off until month 178, at which time tranche D begins receiving the remaining principal payments. The maturity (i.e., the time until the principal is fully paid off) for these four tranches assuming 165 PSA would be 81 months for tranche A, 100 months for tranche B, 178 months for tranche C, and 357 months for tranche D. The cash flow for each month for tranches C and D is found by adding the principal and the interest for the month.
The principal pay down window or principal window for a tranche is the time period between the beginning and the ending of the principal payments to that tranche. So, for example, for tranche A, the principal pay down window would be month 1 to month 81 assuming 165 PSA. For tranche B it is from month 81 to month 100.127 In confirmation of trades involving CMOs, the principal pay down window is specified in terms of the initial month that principal is expected to be received to the final month that principal is expected to be received.
Let’s look at what has been accomplished by creating the CMO. Earlier we saw that the average life of the passthrough is 8.76 years assuming a prepayment speed of 165 PSA. Exhibit 7 reports the average life of the collateral and the four tranches assuming different prepayment speeds. Notice that the four tranches have average lives that are both shorter and longer than the collateral, thereby attracting investors who have a preference for an average life different from that of the collateral.
There is still a major problem: there is considerable variability of the average life for the tranches. We’ll see how this can be handled later on. However, there is some protection provided for each tranche against prepayment risk. This is because prioritizing the distribution of principal (i.e., establishing the payment rules for principal) effectively protects the shorter-term tranche A in this structure against extension risk. This protection must come from somewhere, so it comes from the three other tranches. Similarly, tranches C and D provide protection against extension risk for tranches A and B. At the same time, tranches C and D benefit because they are provided protection against contraction risk, the protection coming from tranches A and B.
EXHIBIT 6 Monthly Cash Flow for Selected Months for FJF-01 Assuming 165 PSA
265
266

B. Accrual Tranches

In our previous example, the payment rules for interest provided for all tranches to be paid interest each month. In many sequential-pay CMO structures, at least one tranche does not receive current interest. Instead, the interest for that tranche would accrue and be added to the principal balance. Such a tranche is commonly referred to as an accrual tranche or a Z bond. The interest that would have been paid to the accrual tranche is used to pay off the principal balance of earlier tranches.
EXHIBIT 7 Average Life for the Collateral and the Four Tranches of FJF-01
267
To see this, consider FJF-02, a hypothetical CMO structure with the same collateral as our previous example and with four tranches, each with a coupon rate of 7.5%. The last tranche, Z, is an accrual tranche. The structure for FJF-02 is shown in Exhibit 8.
Exhibit 9 shows cash flows for selected months for tranches A and B. Let’s look at month 1 and compare it to month 1 in Exhibit 6. Both cash flows are based on 165 PSA. The principal payment from the collateral is $709,923. In FJF-01, this is the principal paydown for tranche A. In FJF-02, the interest for tranche Z, $456,250, is not paid to that tranche but instead is used to pay down the principal of tranche A. So, the principal payment to tranche A in Exhibit 9 is $1,166,173, the collateral’s principal payment of $709,923 plus the interest of $456,250 that was diverted from tranche Z.
The expected final maturity for tranches A, B, and C has shortened as a result of the inclusion of tranche Z. The final payout for tranche A is 64 months rather than 81 months; for tranche B it is 77 months rather than 100 months; and, for tranche C it is 113 months rather than 178 months.
EXHIBIT 8 FJF-02—A Hypothetical 4-Tranche Sequential-Pay Structure with an Accrual Tranche
268
EXHIBIT 9 Monthly Cash Flow for Selected Months for Tranches A and B for FJF-02 Assuming 165 PSA
269
The average lives for tranches A, B, and C are shorter in FJF-02 compared to our previous non-accrual, sequential-pay tranche example, FJF-01, because of the inclusion of the accrual tranche. For example, at 165 PSA, the average lives are as follows:
270
The reason for the shortening of the non-accrual tranches is that the interest that would be paid to the accrual tranche is being allocated to the other tranches. Tranche Z in FJF-02 will have a longer average life than tranche D in FJF-01 because in tranche Z the interest payments are being diverted to tranches A, B, and C.
EXHIBIT 10 FJF-03—A Hypothetical 5-Tranche Sequential-Pay Structure with Floater, Inverse Floater, and Accrual Bond Tranches
271
Thus, shorter-term tranches and a longer-term tranche are created by including an accrual tranche in FJF-02 compared to FJF-01. The accrual tranche has appeal to investors who are concerned with reinvestment risk. Since there are no coupon payments to reinvest, reinvestment risk is eliminated until all the other tranches are paid off.

C. Floating-Rate Tranches

The tranches described thus far have a fixed rate. There is a demand for tranches that have a floating rate. The problem is that the collateral pays a fixed rate and therefore it would be difficult to create a tranche with a floating rate. However, a floating-rate tranche can be created. This is done by creating from any fixed-rate tranche a floater and an inverse floater combination. We will illustrate the creation of a floating-rate tranche and an inverse floating-rate tranche using the hypothetical CMO structure—the 4-tranche sequential-pay structure with an accrual tranche (FJF-02).128 We can select any of the tranches from which to create a floating-rate and inverse floating-rate tranche. In fact, we can create these two securities for more than one of the four tranches or for only a portion of one tranche.
In this case, we create a floater and an inverse floater from tranche C. A floater could have been created from any of the other tranches. The par value for this tranche is $96.5 million, and we create two tranches that have a combined par value of $96.5 million. We refer to this CMO structure with a floater and an inverse floater as FJF-03. It has five tranches, designated A, B, FL, IFL, and Z, where FL is the floating-rate tranche and IFL is the inverse floating-rate tranche. Exhibit 10 describes FJF-03. Any reference rate can be used to create a floater and the corresponding inverse floater. The reference rate for setting the coupon rate for FL and IFL in FJF-03 is 1-month LIBOR.
The amount of the par value of the floating-rate tranche will be some portion of the $96.5 million. There are an infinite number of ways to slice up the $96.5 million between the floater and inverse floater, and final partitioning will be driven by the demands of investors. In the FJF-03 structure, we made the floater from $72,375,000 or 75% of the $96.5 million. The coupon formula for the floater is 1-month LIBOR plus 50 basis points. So, for example, if LIBOR is 3.75% at the reset date, the coupon rate on the floater is 3.75% + 0.5%, or 4.25%. There is a cap on the coupon rate for the floater (discussed later).
Unlike a floating-rate note in the corporate bond market whose principal is unchanged over the life of the instrument, the floater’s principal balance declines over time as principal payments are made. The principal payments to the floater are determined by the principal payments from the tranche from which the floater is created. In our CMO structure, this is tranche C.
Since the floater’s par value is $72,375,000 of the $96.5 million, the balance is par value for the inverse floater. Assuming that 1-month LIBOR is the reference rate, the coupon formula for the inverse floater takes the following form:
KL × (1-month LIBOR)
where K and L are constants whose interpretation will be explained shortly.
In FJF-03, K is set at 28.50% and L at 3. Thus, if 1-month LIBOR is 3.75%, the coupon rate for the month is:
28.50% − 3 × (3.75%) = 17.25%
K is the cap or maximum coupon rate for the inverse floater. In FJF-03, the cap for the inverse floater is 28.50%. The determination of the inverse floater’s cap rate is based on (1) the amount of interest that would have been paid to the tranche from which the floater and the inverse floater were created, tranche C in our hypothetical deal, and (2) the coupon rate for the floater if 1-month LIBOR is zero.
We will explain the determination of K by example. Let’s see how the 28.5% for the inverse floater is determined. The total interest to be paid to tranche C if it was not split into the floater and the inverse floater is the principal of $96,500,000 times 7.5%, or $7,237,500. The maximum interest for the inverse floater occurs if 1-month LIBOR is zero. In that case, the coupon rate for the floater is
1-month LIBOR + 0.5% = 0.5%
Since the floater receives 0.5% on its principal of $72,375,000, the floater’s interest is $361,875. The remainder of the interest of $7,237,500 from tranche C goes to the inverse floater. That is, the inverse floater’s interest is $6,875,625 (= $7, 237, 500 − $361, 875). Since the inverse floater’s principal is $24,125,000, the cap rate for the inverse floater is
272
In general, the formula for the cap rate on the inverse floater, K, is
273
The L or multiple in the coupon formula to determine the coupon rate for the inverse floater is called the leverage. The higher the leverage, the more the inverse floater’s coupon rate changes for a given change in 1-month LIBOR. For example, a coupon leverage of 3 means that a 1-basis point change in 1-month LIBOR will change the coupon rate on the inverse floater by 3 basis points.
As in the case of the floater, the principal paydown of an inverse floater will be a proportionate amount of the principal paydown of tranche C.
Because 1-month LIBOR is always positive, the coupon rate paid to the floater cannot be negative. If there are no restrictions placed on the coupon rate for the inverse floater, however, it is possible for its coupon rate to be negative. To prevent this, a floor, or minimum, is placed on the coupon rate. In most structures, the floor is set at zero. Once a floor is set for the inverse floater, a cap or ceiling is imposed on the floater.
In FJF-03, a floor of zero is set for the inverse floater. The floor results in a cap or maximum coupon rate for the floater of 10%. This is determined as follows. If the floor for the inverse floater is zero, this means that the inverse floater receives no interest. All of the interest that would have been paid to tranche C, $7,237,500, would then be paid to the floater. Since the floater’s principal is $72,375,000, the cap rate on the floater is $7,237,500/$72,375,000, or 10%.
In general, the cap rate for the floater assuming a floor of zero for inverse floater is determined as follows:
274
The cap for the floater and the inverse floater, the floor for the inverse floater, the leverage, and the floater’s spread are not determined independently. Any cap or floor imposed on the coupon rate for the floater and the inverse floater must be selected so that the weighted average coupon rate does not exceed the collateral tranche’s coupon rate.

D. Structured Interest-Only Tranches

CMO structures can be created so that a tranche receives only interest. Interest only (IO) tranches in a CMO structure are commonly referred to as structured IOs to distinguish them from IO mortgage strips that we will describe later in this chapter. The basic principle in creating a structured IO is to set the coupon rate below the collateral’s coupon rate so that excess interest can be generated. It is the excess interest that is used to create one or more structured IOs.
Let’s look at how a structured IO is created using an illustration. Thus far, we used a simple CMO structure in which all the tranches have the same coupon rate (7.5%) and that coupon rate is the same as the collateral. A structured IO is created from a CMO structure where the coupon rate for at least one tranche is different from the collateral’s coupon rate. This is seen in FJF-04 shown in Exhibit 11. In this structure, notice that the coupon interest rate for each tranche is less than the coupon interest rate for the collateral. That means that there is excess interest from the collateral that is not being paid to all the tranches. At one time, all of that excess interest not paid to the tranches was paid to a bond class called a “residual.” Eventually (due to changes in the tax law that do not concern us here), structurers of CMO began allocating the excess interest to the tranche that receives only interest. This is tranche IO in FJF-04.
Notice that for this structure the par amount for the IO tranche is shown as $52,566,667 and the coupon rate is 7.5%. Since this is an IO tranche there is no par amount. The amount shown is the amount upon which the interest payments will be determined, not the amount that will be paid to the holder of this tranche. Therefore, it is called a notional amount. The resulting IO is called a notional IO.
EXHIBIT 11 FJF-04—A Hypothetical Five Tranche Sequential Pay with an Accrual Tranche, an Interest-Only Tranche, and a Residual Class
275
Let’s look at how the notional amount is determined. Consider tranche A. The par value is $194.5 million and the coupon rate is 6%. Since the collateral’s coupon rate is 7.5%, the excess interest is 150 basis points (1.5%). Therefore, an IO with a 1.5% coupon rate and a notional amount of $194.5 million can be created from tranche A. But this is equivalent to an IO with a notional amount of $38.9 million and a coupon rate of 7.5%. Mathematically, this notional amount is found as follows:
276
where
excess interest = collateral tranche’s coupon rate − tranche coupon rate
For example, for tranche A:
277
EXHIBIT 12 Creating a Notional IO Tranche
278
Similarly, from tranche B with a par value of $36 million, the excess interest is 100 basis points (1%) and therefore an IO with a coupon rate of 1% and a notional amount of $36 million can be created. But this is equivalent to creating an IO with a notional amount of $4.8 million and a coupon rate of 7.5%. This procedure is shown in Exhibit 12 for all four tranches.

E. Planned Amortization Class Tranches

The CMO structures discussed above attracted many institutional investors who had previously either avoided investing in mortgage-backed securities or allocated only a nominal portion of their portfolio to this sector of the bond market. While some traditional corporate bond buyers shifted their allocation to CMOs, a majority of institutional investors remained on the sidelines, concerned about investing in an instrument they continued to perceive as posing significant prepayment risk. This concern was based on the substantial average life variability, despite the innovations designed to mitigate prepayment risk.
In 1987, several structures came to market that shared the following characteristic: if the prepayment speed is within a specified band over the collateral’s life, the cash flow pattern is known. The greater predictability of the cash flow for these classes of bonds, now referred to as planned amortization class (PAC) bonds, occurs because there is a principal repayment schedule that must be satisfied. PAC bondholders have priority over all other classes in the CMO structure in receiving principal payments from the collateral. The greater certainty of the cash flow for the PAC bonds comes at the expense of the non-PAC tranches, called the support tranches or companion tranches. It is these tranches that absorb the prepayment risk. Because PAC tranches have protection against both extension risk and contraction risk, they are said to provide two-sided prepayment protection.
To illustrate how to create a PAC bond, we will use as collateral the $400 million passthrough with a coupon rate of 7.5%, an 8.125% WAC, and a WAM of 357 months. The creation requires the specification of two PSA prepayment rates—a lower PSA prepayment assumption and an upper PSA prepayment assumption. In our illustration the lower PSA prepayment assumption will be 90 PSA and the upper PSA prepayment assumption will be 300 PSA. A natural question is: How does one select the lower and upper PSA prepayment assumptions? These are dictated by market conditions. For our purpose here, how they are determined is not important. The lower and upper PSA prepayment assumptions are referred to as the initial PAC collar or the initial PAC band. In our illustration the initial PAC collar is 90 - 300 PSA.
The second column of Exhibit 13 shows the principal payment (scheduled principal repayment plus prepayments) for selected months assuming a prepayment speed of 90 PSA, and the next column shows the principal payments for selected months assuming that the passthrough prepays at 300 PSA.
The last column of Exhibit 13 gives the minimum principal payment if the collateral prepays at 90 PSA or 300 PSA for months 1 to 349. (After month 349, the outstanding principal balance will be paid off if the prepayment speed is between 90 PSA and 300 PSA.) For example, in the first month, the principal payment would be $508,169 if the collateral prepays at 90 PSA and $1,075,931 if the collateral prepays at 300 PSA. Thus, the minimum principal payment is $508,169, as reported in the last column of Exhibit 13. In month 103, the minimum principal payment is also the amount if the prepayment speed is 90 PSA, $1,446,761, compared to $1,458,618 for 300 PSA. In month 104, however, a prepayment speed of 300 PSA would produce a principal payment of $1,433,539, which is less than the principal payment of $1,440,825 assuming 90 PSA. So, $1,433,539 is reported in the last column of Exhibit 13. From month 104 on, the minimum principal payment is the one that would result assuming a prepayment speed of 300 PSA.
EXHIBIT 13 Monthly Principal Payment for $400 Million, 7.5% Coupon Passthrough with an 8.125% WAC and a 357 WAM Assuming Prepayment Rates of 90 PSA and 300 PSA
279
EXHIBIT 14 FJF-05—CMO Structure with One PAC Tranche and One Support Tranche
280
In fact, if the collateral prepays at any one speed between 90 PSA and 300 PSA over its life, the minimum principal payment would be the amount reported in the last column of Exhibit 13. For example, if we had included principal payment figures assuming a prepayment speed of 200 PSA, the minimum principal payment would not change: from month 1 through month 103, the minimum principal payment is that generated from 90 PSA, but from month 104 on, the minimum principal payment is that generated from 300 PSA.
This characteristic of the collateral allows for the creation of a PAC tranche, assuming that the collateral prepays over its life at a speed between 90 PSA to 300 PSA. A schedule of principal repayments that the PAC bondholders are entitled to receive before any other tranche in the CMO structure is specified. The monthly schedule of principal repayments is as specified in the last column of Exhibit 13, which shows the minimum principal payment. That is, this minimum principal payment in each month is the principal repayment schedule (i.e., planned amortization schedule) for investors in the PAC tranche. While there is no assurance that the collateral will prepay at a constant speed between these two speeds over its life, a PAC tranche can be structured to assume that it will.
Exhibit 14 shows a CMO structure, FJF-05, created from the $400 million, 7.5% coupon passthrough with a WAC of 8.125% and a WAM of 357 months. There are just two tranches in this structure: a 7.5% coupon PAC tranche created assuming 90 to 300 PSA with a par value of $243.8 million, and a support tranche with a par value of $156.2 million.
Exhibit 15 reports the average life for the PAC tranche and the support tranche in FJF-05 assuming various actual prepayment speeds. Notice that between 90 PSA and 300 PSA, the average life for the PAC bond is stable at 7.26 years. However, at slower or faster PSA speeds, the schedule is broken, and the average life changes, extending when the prepayment speed is less than 90 PSA and contracting when it is greater than 300 PSA. Even so, there is much greater variability for the average life of the support tranche.
EXHIBIT 15 Average Life for PAC Tranche and Support Tranche in FJF-05 Assuming Various Prepayment Speeds (Years)
Prepayment rate (PSA) PAC bond (P) Support bond (S)
015.9727.26
509.4424.00
907.2620.06
1007.2618.56
1507.2612.57
1657.2611.16
2007.268.38
2507.265.37
3007.263.13
3506.562.51
4005.922.17
4505.381.94
5004.931.77
7003.701.37
EXHIBIT 16 FJF-06—CMO Structure with Six PAC Tranches and a Support Tranche
281
1. Creating a Series of PAC Tranches Most CMO PAC structures have more than one class of PAC tranches. A sequence of six PAC tranches (i.e., PAC tranches paid off in sequence as specified by a principal schedule) is shown in Exhibit 16 and is called FJF-06. The total par value of the six PAC tranches is equal to $243.8 million, which is the amount of the single PAC tranche in FJF-05. The schedule of principal repayments for selected months for each PAC bond is shown in Exhibit 17.
Exhibit 18 shows the average life for the six PAC tranches and the support tranche in FJF-06 at various prepayment speeds. From a PAC bond in FJF-05 with an average life of 7.26, six tranches have been created with an average life as short as 2.58 years (P-A) and as long as 16.92 years (P-F) if prepayments stay within 90 PSA and 300 PSA.
EXHIBIT 17 Mortgage Balance for Selected Months for FJF-06 Assuming 165 PSA
282
EXHIBIT 18 Average Life for the Six PAC Tranches in FJF-06 Assuming Various Prepayment Speeds
283
As expected, the average lives are stable if the prepayment speed is between 90 PSA and 300 PSA. Notice that even outside this range the average life is stable for several of the PAC tranches. For example, the PAC P-A tranche is stable even if prepayment speeds are as high as 400 PSA. For the PAC P-B, the average life does not vary when prepayments are in the initial collar until prepayments are greater than 350 PSA. Why is it that the shorter the PAC, the more protection it has against faster prepayments?
To understand this phenomenon, remember there are $156.2 million in support tranches that are protecting the $85 million of PAC P-A. Thus, even if prepayments are faster than the initial upper collar, there may be sufficient support tranches to assure the satisfaction of the schedule. In fact, as can be seen from Exhibit 18, even if prepayments are 400 PSA over the life of the collateral, the average life is unchanged.
Now consider PAC P-B. The support tranches provide protection for both the $85 million of PAC P-A and $93 million of PAC P-B. As can be seen from Exhibit 18, prepayments could be 350 PSA and the average life is still unchanged. From Exhibit 18 it can be seen that the degree of protection against extension risk increases the shorter the PAC. Thus, while the initial collar may be 90 to 300 PSA, the effective collar is wider for the shorter PAC tranches.
2. PAC Window The length of time over which expected principal repayments are made is referred to as the window. For a PAC tranche it is referred to as the PAC window. A PAC window can be wide or narrow. The narrower a PAC window, the more it resembles a corporate bond with a bullet payment. For example, if the PAC schedule calls for just one principal payment (the narrowest window) in month 120 and only interest payments up to month 120, this PAC tranche would resemble a 10-year (120-month) corporate bond.
PAC buyers appear to prefer tight windows, although institutional investors facing a liability schedule are generally better off with a window that more closely matches their liabilities. Investor demand dictates the PAC windows that dealers will create. Investor demand in turn is governed by the nature of investor liabilities.
3. Effective Collars and Actual Prepayments The creation of a mortgage-backed security cannot make prepayment risk disappear. This is true for both a passthrough and a CMO. Thus, the reduction in prepayment risk (both extension risk and contraction risk) that a PAC offers investors must come from somewhere.
Where does the prepayment protection come from? It comes from the support tranches. It is the support tranches that defer principal payments to the PAC tranches if the collateral prepayments are slow; support tranches do not receive any principal until the PAC tranches receive the scheduled principal repayment. This reduces the risk that the PAC tranches will extend. Similarly, it is the support tranches that absorb any principal payments in excess of the scheduled principal payments that are made. This reduces the contraction risk of the PAC tranches. Thus, the key to the prepayment protection offered by a PAC tranche is the amount of support tranches outstanding. If the support tranches are paid off quickly because of faster-than-expected prepayments, then there is no longer any protection for the PAC tranches. In fact, in FJF-06, if the support tranche is paid off, the structure effectively becomes a sequential-pay CMO.
The support tranches can be thought of as bodyguards for the PAC bondholders. When the bullets fly—i.e., prepayments occur—it is the bodyguards that get killed off first. The bodyguards are there to absorb the bullets. Once all the bodyguards are killed off (i.e., the support tranches paid off with faster-than-expected prepayments), the PAC tranches must fend for themselves: they are exposed to all the bullets. A PAC tranche in which all the support tranches have been paid off is called a busted PAC or broken PAC.
With the bodyguard metaphor for the support tranches in mind, let’s consider two questions asked by investors in PAC tranches:
1. Will the schedule of principal repayments be satisfied if prepayments are faster than the initial upper collar?
2. Will the schedule of principal repayments be satisfied as long as prepayments stay within the initial collar?
a. Actual Prepayments Greater than the Initial Upper Collar Let’s address the first question. The initial upper collar for FJF-06 is 300 PSA. Suppose that actual prepayments are 500 PSA for seven consecutive months. Will this disrupt the schedule of principal repayments? The answer is: It depends!
There are two pieces of information we will need to answer this question. First, when does the 500 PSA occur? Second, what has been the actual prepayment experience up to the time that prepayments are 500 PSA? For example, suppose six years from now is when the prepayments reach 500 PSA, and also suppose that for the past six years the actual prepayment speed has been 90 PSA every month. What this means is that there are more bodyguards (i.e., support tranches) around than were expected when the PAC was structured at the initial collar. In establishing the schedule of principal repayments, it is assumed that the bodyguards would be killed off at 300 PSA. (Recall that 300 PSA is the upper collar prepayment assumption used in creating FJF-06.) But the actual prepayment experience results in them being killed off at only 90 PSA. Thus, six years from now when the 500 PSA is assumed to occur, there are more bodyguards than expected. In turn, a 500 PSA for seven consecutive months may have no effect on the ability of the schedule of principal repayments to be met.
In contrast, suppose that the actual prepayment experience for the first six years is 300 PSA (the upper collar of the initial PAC collar). In this case, there are no extra bodyguards around. As a result, any prepayment speeds faster than 300 PSA, such as 500 PSA in our example, jeopardize satisfaction of the principal repayment schedule and increase contraction risk. This does not mean that the schedule will be “busted”—the term used in the CMO market when the support tranches are fully paid off. What it does mean is that the prepayment protection is reduced.
It should be clear from these observations that the initial collars are not particularly useful in assessing the prepayment protection for a seasoned PAC tranche. This is most important to understand, as it is common for CMO buyers to compare prepayment protection of PACs in different CMO structures and conclude that the greater protection is offered by the one with the wider initial collar. This approach is inadequate because it is actual prepayment experience that determines the degree of prepayment protection, as well as the expected future prepayment behavior of the collateral.
The way to determine this protection is to calculate the effective collar for a seasoned PAC bond. An effective collar for a seasoned PAC is the lower and the upper PSA that can occur in the future and still allow maintenance of the schedule of principal repayments. For example, consider two seasoned PAC tranches in two CMO structures where the two PAC tranches have the same average life and the prepayment characteristics of the remaining collateral (i.e., the remaining mortgages in the mortgage pools) are similar. The information about these PAC tranches is as follows:
Notice that at issuance PAC tranche Y offered greater prepayment protection than PAC tranche X as indicated by the wider initial PAC collar. However, that protection is irrelevant for an investor who is considering the purchase of one of these two tranches today. Despite PAC tranche Y’s greater prepayment protection at issuance than PAC tranche X, tranche Y has a much narrower effective PAC collar than PAC tranche X and therefore less prepayment protection.
The effective collar changes every month. An extended period over which actual prepayments are below the upper range of the initial PAC collar will result in an increase in the upper range of the effective collar. This is because there will be more bodyguards around than anticipated. An extended period of prepayments slower than the lower range of the initial PAC collar will raise the lower range of the effective collar. This is because it will take faster prepayments to make up the shortfall of the scheduled principal payments not made plus the scheduled future principal payments.
b. Actual Prepayments within the Initial Collar The PAC schedule may not be satisfied even if the actual prepayments never fall outside of the initial collar. This may seem surprising since our previous analysis indicated that the average life would not change if prepayments are at either extreme of the initial collar. However, recall that all of our previous analysis has been based on a single PSA speed for the life of the structure.
The following table shows for FJF-05 what happens to the effective collar if prepayments are 300 PSA for the first 24 months but another prepayment speed for the balance of the life of the structure:
Notice that the average life is stable at six years if the prepayments for the subsequent months are between 115 PSA and 300 PSA. That is, the effective PAC collar is no longer the initial collar. Instead, the lower collar has shifted upward. This means that the protection from year 2 on is for 115 to 300 PSA, a narrower band than initially (90 to 300 PSA), even though the earlier prepayments did not exceed the initial upper collar.
PAC tranche X PAC tranche Y
Initial PAC collar180 PSA-350 PSA170 PSA-410 PSA
Effective PAC collar160 PSA-450 PSA240 PSA-300 PSA
PSA from year 2 on Average life
956.43
1056.11
1156.01
1206.00
1256.00
3006.00
3055.62

F. Support Tranches

The support tranches are the bonds that provide prepayment protection for the PAC tranches. Consequently, support tranches expose investors to the greatest level of prepayment risk. Because of this, investors must be particularly careful in assessing the cash flow characteristics of support tranches to reduce the likelihood of adverse portfolio consequences due to prepayments.
The support tranche typically is divided into different tranches. All the tranches we have discussed earlier are available, including sequential-pay support tranches, floater and inverse floater support tranches, and accrual support tranches.
The support tranche can even be partitioned to create support tranches with a schedule of principal payments. That is, support tranches that are PAC tranches can be created. In a structure with a PAC tranche and a support tranche with a PAC schedule of principal payments, the former is called a PAC I tranche or Level I PAC tranche and the latter a PAC II tranche or Level II PAC tranche or scheduled tranche (denoted SCH in a prospectus). While PAC II tranches have greater prepayment protection than the support tranches without a schedule of principal repayments, the prepayment protection is less than that provided PAC I tranches.
The support tranche without a principal repayment schedule can be used to create any type of tranche. In fact, a portion of the non-PAC II support tranche can be given a schedule of principal repayments. This tranche would be called a PAC III tranche or a Level III PAC tranche. While it provides protection against prepayments for the PAC I and PAC II tranches and is therefore subject to considerable prepayment risk, such a tranche has greater protection than the support tranche without a schedule of principal repayments.

G. An Actual CMO Structure

Thus far, we have presented some hypothetical CMO structures in order to demonstrate the characteristics of the different types of tranches. Now let’s look at an actual CMO structure, one that we will look at further in Chapter 12 when we discuss how to analyze a CMO deal.
The CMO structure we will discuss is the Freddie Mac (FHLMC) Series 1706 issued in early 1994. The collateral for this structure is Freddie Mac 7% coupon passthroughs. A summary of the deal is provided in Exhibit 19.
EXHIBIT 19 Summary of Federal Home Loan Mortgage Corporation—Multiclass Mortgage Participation Certificates (Guaranteed), Series 1706
284
There are 17 tranches in this structure: 10 PAC tranches, three scheduled tranches, a floating-rate support tranche, and an inverse floating-rate support tranche.129 There are also two “TAC” support tranches. We will explain a TAC tranche below. Let’s look at all tranches.
First, we know what a PAC tranche is. There are 10 of them: tranches A, B, C, D, E, G, H, J, K, and IA. The initial collar used to create the PAC tranches was 95 PSA to 300 PSA. The PAC tranches except for tranche IA are simply PACs that pay off in sequence. Tranche IA is structured such that the underlying collateral’s interest not allocated to the other PAC tranches is paid to the IO tranche. This is a notional IO tranche and we described earlier in this section how it is created. In this deal the tranches from which the interest is stripped are the PAC tranches. So, tranche IA is referred to as a PAC IO. (As of the time of this writing, tranches A and B had already paid off all of their principal.)
The prepayment protection for the PAC bonds is provided by the support tranches. The support tranches in this deal are tranches LA, LB, M, O, OA, PF, and PS. Notice that the support tranches have been carved up in different ways. First, there are scheduled (SCH) tranches. These are what we have called the PAC II tranches earlier in this section. The scheduled tranches are LA, LB, and M. The initial PAC collar used to create the scheduled tranches was 190 PSA to 250 PSA.
There are two support tranches that are designed such that they are created with a schedule that provides protection against contraction risk but not against extension. We did not discuss these tranches in this chapter. They are called target amortization class (TAC) tranches. The support tranches O and OA are TAC tranches. The schedule of principal payments is created by using just a single PSA. In this structure the single PSA is 225 PSA.
Finally, the support tranche without a schedule (that must provide support for the scheduled bonds and the PACs) was carved into two tranches—a floater (tranche PF) and an inverse floater (tranche PS). In this structure the creation of the floater and inverse floater was from a support tranche.
Now that we know what all these tranches are, the next step is to analyze them in terms of their relative value and their price volatility characteristics when rates change. We will do this in Chapter 12.

V. STRIPPED MORTGAGE-BACKED SECURITIES

In a CMO, there are multiple bond classes (tranches) and separate rules for the distribution of the interest and the principal to the bond classes. There are mortgage-backed securities where there are only two bond classes and the rule for the distribution for interest and principal is simple: one bond class receives all of the principal and one bond class receives all of the interest. This mortgage-backed security is called a stripped mortgage-backed security. The bond class that receives all of the principal is called the principal-only class or PO class. The bond class that receives all of the interest is called the interest-only class or IO class. These securities are also called mortgage strips. The POs are called principal-only mortgage strips and the IOs are called interest-only mortgage strips.
We have already seen interest-only type mortgage-backed securities: the structured IO. This is a product that is created within a CMO structure. A structured IO is created from the excess interest (i.e., the difference between the interest paid on the collateral and the interest paid to the bond classes). There is no corresponding PO class within the CMO structure. In contrast, in a stripped mortgage-backed security, the IO class is created by simply specifying that all interest payments be made to that class.

A. Principal-Only Strips

A principal-only mortgage strip is purchased at a substantial discount from par value. The return an investor realizes depends on the speed at which prepayments are made. The faster the prepayments, the higher the investor’s return. For example, suppose that a pool of 30-year mortgages has a par value of $400 million and the market value of the pool of mortgages is also $400 million. Suppose further that the market value of just the principal payments is $175 million. The dollar return from this investment is the difference between the par value of $400 million that will be repaid to the investor in the principal mortgage strip and the $175 million paid. That is, the dollar return is $225 million.
Since there is no interest that will be paid to the investor in a principal-only mortgage strip, the investor’s return is determined solely by the speed at which he or she receives the $225 million. In the extreme case, if all homeowners in the underlying mortgage pool decide to prepay their mortgage loans immediately, PO investors will realize the $225 million immediately. At the other extreme, if all homeowners decide to remain in their homes for 30 years and make no prepayments, the $225 million will be spread out over 30 years, which would result in a lower return for PO investors.
EXHIBIT 20 Relationship between Price and Mortgage Rates for a Passthrough, PO, and IO
285
Let’s look at how the price of the PO would be expected to change as mortgage rates in the market change. When mortgage rates decline below the contract rate, prepayments are expected to speed up, accelerating payments to the PO investor. Thus, the cash flow of a PO improves (in the sense that principal repayments are received earlier). The cash flow will be discounted at a lower interest rate because the mortgage rate in the market has declined. The result is that the PO price will increase when mortgage rates decline. When mortgage rates rise above the contract rate, prepayments are expected to slow down. The cash flow deteriorates (in the sense that it takes longer to recover principal repayments). Couple this with a higher discount rate, and the price of a PO will fall when mortgage rates rise.
Exhibit 20 shows the general relationship between the price of a principal-only mortgage strip when interest rates change and compares it to the relationship for the underlying passthrough from which it is created.

B. Interest-Only Strips

An interest-only mortgage strip has no par value. In contrast to the PO investor, the IO investor wants prepayments to be slow. The reason is that the IO investor receives interest only on the amount of the principal outstanding. When prepayments are made, less dollar interest will be received as the outstanding principal declines. In fact, if prepayments are too fast, the IO investor may not recover the amount paid for the IO even if the security is held to maturity.
Let’s look at the expected price response of an IO to changes in mortgage rates. If mortgage rates decline below the contract rate, prepayments are expected to accelerate. This would result in a deterioration of the expected cash flow for an IO. While the cash flow will be discounted at a lower rate, the net effect typically is a decline in the price of an IO. If mortgage rates rise above the contract rate, the expected cash flow improves, but the cash flow is discounted at a higher interest rate. The net effect may be either a rise or fall for the IO.
Thus, we see an interesting characteristic of an IO: its price tends to move in the same direction as the change in mortgage rates (1) when mortgage rates fall below the contract rate and (2) for some range of mortgage rates above the contract rate. Both POs and IOs exhibit substantial price volatility when mortgage rates change. The greater price volatility of the IO and PO compared to the passthrough from which they were created is due to the fact that the combined price volatility of the IO and PO must be equal to the price volatility of the passthrough.
Exhibit 20 shows the general relationship between the price of an interest-only mortgage strip when interest rates change and compares it to the relationship for the corresponding principal-only mortgage strip and underlying passthrough from which it is created.
An average life for a PO can be calculated based on some prepayment assumption. However, an IO receives no principal payments, so technically an average life cannot be computed. Instead, for an IO a cash flow average life is computed, using the projected interest payments in the average life formula instead of principal.

C. Trading and Settlement Procedures

The trading and settlement procedures for stripped mortgage-backed securities are similar to those set by the Public Securities Association for agency passthroughs described in Section III C. IOs and POs are extreme premium and discount securities and consequently are very sensitive to prepayments, which are driven by the specific characteristics (weighted average coupon, weighted average maturity, geographic concentration, average loan size) of the underlying loans. Therefore, almost all secondary trades in IOs and POs are on a specified pool basis rather than on a TBA basis.
All IOs and POs are given a trust number. For instance, Fannie Mae Trust 1 is a IO/PO trust backed by specific pools of Fannie Mae 9% mortgages. Fannie Mae Trust 2 is backed by Fannie Mae 10% mortgages. Fannie Mae Trust 23 is another IO/PO trust backed by Fannie Mae 10% mortgages. Therefore, a portfolio manager must specify which trust he or she is buying.
The total proceeds of a PO trade are calculated the same way as with a passthrough trade except that there is no accrued interest. The market trades IOs based on notional principal. The proceeds include the price on the notional amount and the accrued interest.

VI. NONAGENCY RESIDENTIAL MORTGAGE-BACKED SECURITIES

In the previous sections we looked at agency mortgage-backed securities in which the underlying mortgages are 1- to 4-single family residential mortgages. The mortgage-backed securities market includes other types of securities. These securities are called nonagency mortgage-backed securities (referred to as nonagency securities hereafter).
The underlying mortgage loans for nonagency securities can be for any type of real estate property. There are securities backed by 1- to 4-single family residential mortgages with a first lien (i.e., the lender has a first priority or first claim) on the mortgaged property. There are nonagency securities backed by other types of single family residential loans. These include home equity loan-backed securities and manufactured housing-loan backed securities. Our focus in this section is on nonagency securities in which the underlying loans are first-lien mortgages for 1- to 4-single-family residential properties.
As with an agency mortgage-backed security, the servicer is responsible for the collection of interest and principal. The servicer also handles delinquencies and foreclosures. Typically, there will be a master servicer and subservicers. The servicer plays a key role. In fact, in assessing the credit risk of a nonagency security, rating companies look carefully at the quality of the servicers.

A. Underlying Mortgage Loans

The underlying loans for agency securities are those that conform to the underwriting standards of the agency issuing or guaranteeing the issue. That is, only conforming loans are included in pools that are collateral for an agency mortgage-backed security. The three main underwriting standards deal with
1. the maximum loan-to-value ratio
2. the maximum payment-to-income ratio
3. the maximum loan amount
The loan-to-value ratio (LTV) is the ratio of the amount of the loan to the market value or appraised value of the property. The lower the LTV, the greater the protection afforded the lender. For example, an LTV of 0.90 means that if the lender has to repossess the property and sell it, the lender must realize at least 90% of the market value in order to recover the amount lent. An LTV of 0.80 means that the lender only has to sell the property for 80% of its market value in order to recover the amount lent.130 Empirical studies of residential mortgage loans have found that the LTV is a key determinant of whether a borrower will default: the higher the LTV, the greater the likelihood of default.
As mentioned earlier in this chapter, a nonconforming mortgage loan is one that does not conform to the underwriting standards established by any of the agencies. Typically, the loans for a nonagency security are nonconforming mortgage loans that fail to qualify for inclusion because the amount of the loan exceeds the limit established by the agencies. Such loans are referred to as jumbo loans. Jumbo loans do not necessarily have greater credit risk than conforming mortgages.
Loans that fail to qualify because of the first two underwriting standards expose the lender to greater credit risk than conforming loans. There are specialized lenders who provide mortgage loans to individuals who fail to qualify for a conforming loan because of their credit history. These specialized lenders classify borrowers by credit quality. Borrowers are classified as A borrowers, B borrowers, C borrowers, and D borrowers. A borrowers are those that are viewed as having the best credit record. Such borrowers are referred to as prime borrowers. Borrowers rated below A are viewed as subprime borrowers. However, there is no industry-wide classification system for prime and subprime borrowers.

B. Differences Between Agency and Nonagency Securities

Nonagency securities can be either passthroughs or CMOs. In the agency market, CMOs are created from pools of passthrough securities. In the nonagency market, CMOs are created from unsecuritized mortgage loans. Since a mortgage loan not securitized as a passthrough is called a whole loan, nonagency CMOs are commonly referred to as whole-loan CMOs.
The major difference between agency and nonagency securities has to do with guarantees. With a nonagency security there is no explicit or implicit government guarantee of payment of interest and principal as there is with an agency security. The absence of any such guarantee means that the investor in a nonagency security is exposed to credit risk. The nationally recognized statistical rating organizations rate nonagency securities.
Because of the credit risk, all nonagency securities are credit enhanced. By credit enhancement it means that additional support against defaults must be obtained. The amount of credit enhancement needed is determined relative to a specific rating desired for a security rating agency. There are two general types of credit enhancement mechanisms: external and internal. We describe each of these types of credit enhancement in the next chapter where we cover asset-backed securities.

VII. COMMERCIAL MORTGAGE-BACKED SECURITIES

Commercial mortgage-backed securities (CMBSs) are backed by a pool of commercial mortgage loans on income-producing property—multifamily properties (i.e., apartment buildings), office buildings, industrial properties (including warehouses), shopping centers, hotels, and health care facilities (i.e., senior housing care facilities). The basic building block of the CMBS transaction is a commercial loan that was originated either to finance a commercial purchase or to refinance a prior mortgage obligation.
There are two types of CMBS deal structures that have been of primary interest to bond investors: (1) multiproperty single borrower and (2) multiproperty conduit. Conduits are commercial-lending entities that are established for the sole purpose of generating collateral to securitize.
CMBS have been issued outside the United States. The dominant issues have been U.K. based (more than 80% in 2000) with the primary property types being retail and office properties. Starting in 2001, there was dramatic increase in the number of CMBS deals issued by German banks. An increasing number of deals include multi-country properties. The first pan-European securitization was Pan European Industrial Properties in 2001.131

A. Credit Risk

Unlike residential mortgage loans where the lender relies on the ability of the borrower to repay and has recourse to the borrower if the payment terms are not satisfied, commercial mortgage loans are nonrecourse loans. This means that the lender can only look to the income-producing property backing the loan for interest and principal repayment. If there is a default, the lender looks to the proceeds from the sale of the property for repayment and has no recourse to the borrower for any unpaid balance. The lender must view each property as a stand-alone business and evaluate each property using measures that have been found useful in assessing credit risk.
While fundamental principles of assessing credit risk apply to all property types, traditional approaches to assessing the credit risk of the collateral differs between CMBS and nonagency mortgage-backed securities and real estate-backed securities that fall into the asset-backed securities sector described in Chapter 11 (those backed by home equity loans and manufactured housing loans). For mortgage-backed securities and asset backed securities in which the collateral is residential property, typically the loans are lumped into buckets based on certain loan characteristics and then assumptions regarding default rates are made regarding each bucket. In contrast, for commercial mortgage loans, the unique economic characteristics of each income-producing property in a pool backing a CMBS require that credit analysis be performed on a loan-by-loan basis not only at the time of issuance, but monitored on an ongoing basis.
Regardless of the type of commercial property, the two measures that have been found to be key indicators of the potential credit performance is the debt-to-service coverage ratio and the loan-to-value ratio.
The debt-to-service coverage ratio (DSC) is the ratio of the property’s net operating income (NOI) divided by the debt service. The NOI is defined as the rental income reduced by cash operating expenses (adjusted for a replacement reserve). A ratio greater than 1 means that the cash flow from the property is sufficient to cover debt servicing. The higher the ratio, the more likely that the borrower will be able to meet debt servicing from the property’s cash flow.
For all properties backing a CMBS deal, a weighted average DSC ratio is computed. An analysis of the credit quality of an issue will also look at the dispersion of the DSC ratios for the underlying loans. For example, one might look at the percentage of a deal with a DSC ratio below a certain value.
As explained in Section VI.A, in computing the LTV, the figure used for “value” in the ratio is either market value or appraised value. In valuing commercial property, it is typically the appraised value. There can be considerable variation in the estimates of the property’s appraised value. Thus, analysts tend to be skeptical about estimates of appraised value and the resulting LTVs reported for properties.

B. Basic CMBS Structure

As with any structured finance transaction, a rating agency will determine the necessary level of credit enhancement to achieve a desired rating level. For example, if certain DSC and LTV ratios are needed, and these ratios cannot be met at the loan level, then “subordination” is used to achieve these levels. By subordination it is meant that there will be bond classes in the structure whose claims on the cash flow of the collateral are subordinated to that of other bond classes in the structure.
The rating agencies will require that the CMBS transaction be retired sequentially, with the highest-rated bonds paying off first. Therefore, any return of principal caused by amortization, prepayment, or default will be used to repay the highest-rated tranche.
Interest on principal outstanding will be paid to all tranches. In the event of a delinquency resulting in insufficient cash to make all scheduled payments, the transaction’s servicer will advance both principal and interest. Advancing will continue from the servicer for as long as these amounts are deemed recoverable.
Losses arising from loan defaults will be charged against the principal balance of the lowest-rated CMBS tranche outstanding. The total loss charged will include the amount previously advanced as well as the actual loss incurred in the sale of the loan’s underlying property.
1. Call Protection A critical investment feature that distinguishes residential MBS and commercial MBS is the call protection afforded an investor. An investor in a residential MBS is exposed to considerable prepayment risk because the borrower has the right to prepay a loan, in whole or in part, before the scheduled principal repayment date. Typically, the borrower does not pay any penalty for prepayment. When we discussed CMOs, we saw how certain types of tranches (e.g., sequential-pay and PAC tranches) can be purchased by an investor to reduce prepayment risk.
With CMBS, there is considerable call protection afforded investors. In fact, it is this protection that results in CMBS trading in the market more like corporate bonds than residential MBS. This call protection comes in two forms: (1) call protection at the loan level and (2) call protection at the structure level. We discuss both below.
a. Protection at the Loan Level At the commercial loan level, call protection can take the following forms:
1. prepayment lockout
2. defeasance
3. prepayment penalty points
4. yield maintenance charges
A prepayment lockout is a contractual agreement that prohibits any prepayments during a specified period of time, called the lockout period. The lockout period at issuance can be from 2 to 5 years. After the lockout period, call protection comes in the form of either prepayment penalty points or yield maintenance charges. Prepayment lockout and defeasance are the strongest forms of prepayment protection.
With defeasance, rather than loan prepayment, the borrower provides sufficient funds for the servicer to invest in a portfolio of Treasury securities that replicates the cash flows that would exist in the absence of prepayments. Unlike the other call protection provisions discussed next, there is no distribution made to the bondholders when the defeasance takes place. So, since there are no penalties, there is no issue as to how any penalties paid by the borrower are to be distributed amongst the bondholders in a CMBS structure. Moreover, the substitution of the cash flow of a Treasury portfolio for that of the borrower improves the credit quality of the CMBS deal.
Prepayment penalty points are predetermined penalties that must be paid by the borrower if the borrower wishes to refinance. (A point is equal to 1% of the outstanding loan balance.) For example, 5-4-3-2-1 is a common prepayment penalty point structure. That is, if the borrower wishes to prepay during the first year, the borrower must pay a 5% penalty for a total of $105 rather than $100 (which is the norm in the residential market). Likewise, during the second year, a 4% penalty would apply, and so on.
When there are prepayment penalty points, there are rules for distributing the penalty among the tranches. Prepayment penalty points are not common in new CMBS structures. Instead, the next form of call protection discussed, yield maintenance charges, is more commonly used.
Yield maintenance charge, in its simplest terms, is designed to make the lender indifferent as to the timing of prepayments. The yield maintenance charge, also called the make-whole charge, makes it uneconomical to refinance solely to get a lower mortgage rate. While there are several methods used in practice for calculating the yield maintenance charge, the key principle is to make the lender whole. However, when a commercial loan is included as part of a CMBS deal, there must be an allocation of the yield maintenance charge amongst the tranches. Several methods are used in practice for distributing the yield maintenance charge and, depending on the method specified in a deal, not all tranches may be made whole.
b. Structural Protection The other type of call protection available in CMBS transactions is structural. Because the CMBS bond structures are sequential-pay (by rating), the AA-rated tranche cannot pay down until the AAA is completely retired, and the AA-rated bonds must be paid off before the A-rated bonds, and so on. However, principal losses due to defaults are impacted from the bottom of the structure upward.
2. Balloon Maturity Provisions Many commercial loans backing CMBS transactions are balloon loans that require substantial principal payment at the end of the term of the loan. If the borrower fails to make the balloon payment, the borrower is in default. The lender may extend the loan, and in so doing may modify the original loan terms. During the workout period for the loan, a higher interest rate will be charged, called the default interest rate.
The risk that a borrower will not be able to make the balloon payment because either the borrower cannot arrange for refinancing at the balloon payment date or cannot sell the property to generate sufficient funds to pay off the balloon balance is called balloon risk. Since the term of the loan will be extended by the lender during the workout period, balloon risk is a type of “extension risk.” This is the same risk that we referred to earlier in describing residential mortgage-backed securities.
Although many investors like the “bullet bond-like” pay down of the balloon maturities, it does present difficulties from a structural standpoint. That is, if the deal is structured to completely pay down on a specified date, an event of default will occur if any delays occur. However, how such delays impact CMBS investors is dependent on the bond type (premium, par, or discount) and whether the servicer will advance to a particular tranche after the balloon default.
Another concern for CMBS investors in multitranche transactions is the fact that all loans must be refinanced to pay off the most senior bondholders. Therefore, the balloon risk of the most senior tranche (i.e., AAA) may be equivalent to that of the most junior tranche (i.e., B).
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.136.18.218