CHAPTER 11
ASSET-BACKED SECTOR OF THE BOND MARKET

I. INTRODUCTION

As an alternative to the issuance of a bond, a corporation can issue a security backed by loans or receivables. Debt instruments that have as their collateral loans or receivables are referred to as asset-backed securities. The transaction in which asset-backed securities are created is referred to as a securitization.
While the major issuers of asset-backed securities are corporations, municipal governments use this form of financing rather than issuing municipal bonds and several European central governments use this form of financing. In the United States, the first type of asset-backed security (ABS) was the residential mortgage loan. We discussed the resulting securities, referred to as mortgage-backed securities, in the previous chapter. Securities backed by other types of assets (consumer and business loans and receivables) have been issued throughout the world. The largest sectors of the asset-backed securities market in the United States are securities backed by credit card receivables, auto loans, home equity loans, manufactured housing loans, student loans, Small Business Administration loans, corporate loans, and bonds (corporate, emerging market, and structured financial products). Since home equity loans and manufactured housing loans are backed by real estate property, the securities backed by them are referred to as real estate-backed asset-backed securities. Other asset-backed securities include securities backed by home improvement loans, health care receivables, agricultural equipment loans, equipment leases, music royalty receivables, movie royalty receivables, and municipal parking ticket receivables. Collectively, these products are called credit-sensitive structured products.
In this chapter, we will discuss the securitization process, the basic features of a securitization transaction, and the major asset types that have been securitized. In the last section of this chapter, we look at collateralized debt obligations. While this product has traditionally been classified as part of the ABS market, we will see how the structure of this product differs from that of a typical securitization.
There are two topics not covered in this chapter. The first is the valuation of an ABS. This topic is covered in Chapter 12. Second, the factors considered by rating agencies in rating an ABS transaction are not covered here but are covered in Chapter 15. In that chapter we also compare the factors considered by rating agencies in rating an asset-backed security and a corporate bond.

II. THE SECURITIZATION PROCESS AND FEATURES OF ABS

The issuance of an asset-backed security is more complicated than the issuance of a corporate bond. In this section, we will describe the securitization process and the parties to a securitization. We will do so using a hypothetical securitization.

A. The Basic Securitization Transaction

Quality Home Theaters Inc. (QHT) manufacturers high-end equipment for home theaters. The cost of one of QHT’s home theaters ranges from $20,000 to $200,000. Some of its sales are for cash, but the bulk of its sales are by installment sales contracts. Effectively, an installment sales contract is a loan to the buyer of the home theater who agrees to repay QHT over a specified period of time. For simplicity we will assume that the loans are typically for four years. The collateral for the loan is the home theater purchased by the borrower. The loan specifies an interest rate that the buyer pays.
The credit department of QHT makes the decision as to whether or not to extend credit to a customer. That is, the credit department will request a credit loan application form be completed by a customer and based on criteria established by QHT will decide on whether to extend a loan. The criteria for extending credit are referred to as underwriting standards. Because QHT is extending the loan, it is referred to as the originator of the loan. Moreover, QHT may have a department that is responsible for servicing the loan. Servicing involves collecting payments from borrowers, notifying borrowers who may be delinquent, and, when necessary, recovering and disposing of the collateral (i.e., home theater equipment in our illustration) if the borrower does not make loan repayments by a specified time. While the servicer of the loans need not be the originator of the loans, in our illustration we are assuming that QHT will be the servicer.
Now let’s see how these loans can be used in a securitization. We will assume that QHT has $100 million of installment sales contracts. This amount is shown on QHT’s balance sheet as an asset. We will further assume that QHT wants to raise $100 million. Rather than issuing corporate bonds for $100 million, QHT’s treasurer decides to raise the funds via a securitization. To do so, QHT will set up a legal entity referred to as a special purpose vehicle (SPV). In our discussion of asset-backed securities we described the critical role of this legal entity; its role will become clearer in our illustration. In our illustration, the SPV that is set up is called Homeview Asset Trust (HAT). QHT will then sell to HAT $100 million of the loans. QHT will receive from HAT $100 million in cash, the amount it wanted to raise. But where does HAT get $100 million? It obtains those funds by selling securities that are backed by the $100 million of loans. These securities are the asset-backed securities we referred to earlier and we will discuss these further in Section II.C.
In the prospectus, HAT (the SPV) would be referred to as either the “issuer” or the “trust.” QHT, the seller of the collateral to HAT, would be referred to as the “seller.” The prospectus might then state: “The securities represent obligations of the issuer only and do not represent obligations of or interests in Quality Home Theaters Inc. or any of its affiliates.”
The transaction is diagramed in panel a of Exhibit 1. In panel b, the parties to the transaction are summarized.
The payments that are received from the collateral are distributed to pay servicing fees, other administrative fees, and principal and interest to the security holders. The legal documents in a securitization (prospectus or private placement memorandum) will set forth in considerable detail the priority and amount of payments to be made to the servicer, administrators, and the security holders of each bond class. The priority and amount of payments is commonly referred to as the “waterfall” because the flow of payments in a structure is depicted as a waterfall.

B. Parties to a Securitization

Thus far we have discussed three parties to a securitization: the seller of the collateral (also sometimes referred to as the originator), the special purpose vehicle (referred to in a prospectus or private placement memorandum as the issuer or the trust), and the servicer. There are other parties involved in a securitization: attorneys, independent accountants, trustees, underwriters, rating agencies, and guarantors. All of these parties plus the servicer are referred to as “third parties” to the transaction.
There is a good deal of legal documentation involved in a securitization transaction. The attorneys are responsible for preparing the legal documents. The first is the purchase agreement between the seller of the assets (QHT in our illustration) and the SPV (HAT in our illustration).132 The purchase agreement sets forth the representations and warranties that the seller is making about the assets. The second is one that sets forth how the cash flows are divided among the bond classes (i.e., the structure’s waterfall). Finally, the attorneys create the servicing agreement between the entity engaged to service the assets (in our illustration QHT retained the servicing of the loans) and the SPV.
EXHIBIT 1 Securitization Illustration for QHT
286
An independent accounting firm will verify the accuracy of all numerical information placed in either the prospectus or private placement memorandum.133 The result of this task results in a comfort letter for a securitization.
The trustee or trustee agent is the entity that safeguards the assets after they have been placed in the trust, receives the payments due to the bond holders, and provides periodic information to the bond holders. The information is provided in the form of remittance reports that may be issued monthly, quarterly or whenever agreed to by the terms of the prospectus or the private placement memorandum.
The underwriters and rating agencies perform the same function in a securitization as they do in a standard corporate bond offering. The rating agencies make an assessment of the collateral and the proposed structure to determine the amount of credit enhancement required to achieve a target credit rating for each bond class.
Finally, a securitization may have an entity that guarantees part of the obligations issued by the SPV. These entities are called guarantors and we will discuss their role in a securitization later.

C. Bonds Issued

Now let’s take a closer look at the securities issued, what we refer to as the asset-backed securities.
A simple transaction can involve the sale of just one bond class with a par value of $100 million in our illustration. We will call this Bond Class A. Suppose HAT issues 100,000 certificates for Bond Class A with a par value of $1,000 per certificate. Then, each certificate holder would be entitled to 1/100,000 of the payment from the collateral after payment of fees and expenses. Each payment made by the borrowers (i.e., the buyers of the home theater equipment) consists of principal repayment and interest.
A structure can be more complicated. For example, there can be rules for distribution of principal and interest other than on a pro rata basis to different bond classes. As an example, suppose HAT issues Bond Classes A1, A2, A3, and A4 whose total par value is $100 million as follows:
Bond class Par value (million)
A1$40
A230
A320
A410
Total$100
As with a collateralized mortgage obligation (CMO) structure described in the previous chapter, there are different rules for the distribution of principal and interest to these four bond classes or tranches. A simple structure would be a sequential-pay one. As explained in the previous chapter, in a basic sequential-pay structure, each bond class receives periodic interest. However, the principal is repaid as follows: all principal received from the collateral is paid first to Bond Class A1 until it is fully paid off its $40 million par value. After Bond Class A1 is paid off, all principal received from the collateral is paid to Bond Class A2 until it is fully paid off. All principal payments from the collateral are then paid to Bond Class A3 until it is fully paid off and then all principal payments are made to Bond Class A4.
The reason for the creation of the structure just described, as explained in the previous chapter, is to redistribute the prepayment risk among different bond classes. Prepayment risk is the uncertainty about the cash flow due to prepayments. This risk can be decomposed into contraction risk (i.e., the undesired shortening in the average life of a security) or extension risk (i.e., the undesired lengthening in the average life of a security). The creation of these bond classes is referred to as prepayment tranching or time tranching.
Now let’s look at a more common structure in a transaction. As will be explained later, there are structures where there is more than one bond class and the bond classes differ as to how they will share any losses resulting from defaults of the borrowers. In such a structure, the bond classes are classified as senior bond classes and subordinate bond classes. This structure is called a senior-subordinate structure. Losses are realized by the subordinate bond classes before there are any losses realized by the senior bond classes. For example, suppose that HAT issued $90 million par value of Bond Class A, the senior bond class, and $10 million par value of Bond Class B, the subordinate bond class. So the structure is as follows:
Bond class Par value (million)
A (senior)$90
B (subordinate)10
Total$100
In this structure, as long as there are no defaults by the borrower greater than $10 million, then Bond Class A will be repaid fully its $90 million.
The purpose of this structure is to redistribute the credit risk associated with the collateral. This is referred to as credit tranching. As explained later, the senior-subordinate structure is a form of credit enhancement for a transaction.
There is no reason why only one subordinate bond class is created. Suppose that HAT issued the following structure
Bond class Par value (million)
A (senior)$90
B (subordinate)7
C (subordinate)3
Total$100
In this structure, Bond Class A is the senior bond class while both Bond Classes B and C are subordinate bond classes from the perspective of Bond Class A. The rules for the distribution of losses would be as follows. All losses on the collateral are absorbed by Bond Class C before any losses are realized by Bond Classes A or B. Consequently, if the losses on the collateral do not exceed $3 million, no losses will be realized by Bond Classes A and B. If the losses exceed $3 million, Bond Class B absorbs the loss up to $7 million (its par value). As an example, if the total loss on the collateral is $8 million, Bond Class C losses its entire par value ($3 million) and Bond Class B realizes a loss of $5 million of its $7 million par value. Bond Class A does not realize any loss in this scenario. It should be clear that Bond Class A only realizes a loss if the loss from the collateral exceeds $10 million. The bond class that must absorb the losses first is referred to as the first loss piece. In our hypothetical structure, Bond Class C is the first loss piece.
Now we will add just one more twist to the structure. Often in larger transactions, the senior bond class will be carved into different bond classes in order to redistribute the prepayment risk. For example, HAT might issue the following structure:
Bond class Par value (million)
A1 (senior)$35
A2 (senior)28
A3 (senior)15
A4 (senior)12
B (subordinate)7
C (subordinate)3
Total$100
In this structure there is both prepayment tranching for the senior bond class (creation of Bond Classes A1, A2, A3, and A4) and credit tranching (creation of the senior bond classes and the two subordinate bond classes, Bond Classes B and C).
As explained in the previous chapter, a bond class in a securitization is also referred to as a “tranche.” Consequently, throughout this chapter the terms “bond class” and “tranche” are used interchangeably.

D. General Classification of Collateral and Transaction Structure

Later in this chapter, we will describe some of the major assets that have been securitized. In general, the collateral can be classified as either amortizing or non-amortizing assets. Amortizing assets are loans in which the borrower’s periodic payment consists of scheduled principal and interest payments over the life of the loan. The schedule for the repayment of the principal is called an amortization schedule. The standard residential mortgage loan falls into this category. Auto loans and certain types of home equity loans (specifically, closed-end home equity loans discussed later in this chapter) are amortizing assets. Any excess payment over the scheduled principal payment is called a prepayment. Prepayments can be made to pay off the entire balance or a partial prepayment, called a curtailment.
In contrast to amortizing assets, non-amortizing assets require only minimum periodic payments with no scheduled principal repayment. If that payment is less than the interest on the outstanding loan balance, the shortfall is added to the outstanding loan balance. If the periodic payment is greater than the interest on the outstanding loan balance, then the difference is applied to the reduction of the outstanding loan balance. Since there is no schedule of principal payments (i.e., no amortization schedule) for a non-amortizing asset, the concept of a prepayment does not apply. A credit card receivable is an example of a non-amortizing asset.
The type of collateral—amortizing or non-amortizing—has an impact on the structure of the transaction. Typically, when amortizing assets are securitized, there is no change in the composition of the collateral over the life of the securities except for loans that have been removed due to defaults and full principal repayment due to prepayments or full amortization. For example, if at the time of issuance the collateral for an ABS consists of 3,000 four-year amortizing loans, then the same 3,000 loans will be in the collateral six months from now assuming no defaults and no prepayments. If, however, during the first six months, 200 of the loans prepay and 100 have defaulted, then the collateral at the end of six months will consist of 2,700 loans (3,000 - 200 - 100). Of course, the remaining principal of the 2,700 loans will decline because of scheduled principal repayments and any partial prepayments. All of the principal repayments from the collateral will be distributed to the security holders.
In contrast, for an ABS transaction backed by non-amortizing assets, the composition of the collateral changes. The funds available to pay the security holders are principal repayments and interest. The interest is distributed to the security holders. However, the principal repayments can be either (1) paid out to security holders or (2) reinvested by purchasing additional loans. What will happen to the principal repayments depends on the time since the transaction was originated. For a certain amount of time after issuance, all principal repayments are reinvested in additional loans. The period of time for which principal repayments are reinvested rather than paid out to the security holders is called the lockout period or revolving period. At the end of the lockout period, principal repayments are distributed to the security holders. The period when the principal repayments are not reinvested is called the principal amortization period. Notice that unlike the typical transaction that is backed by amortizing assets, the collateral backed by non-amortizing assets changes over time. A structure in which the principal repayments are reinvested in new loans is called a revolving structure.
While the receivables in a revolving structure may not be prepaid, all the bonds issued by the trust may be retired early if certain events occur. That is, during the lockout period, the trustee is required to use principal repayments to retire the securities rather than reinvest principal in new collateral if certain events occur. The most common trigger is the poor performance of the collateral. This provision that specifies the redirection of the principal repayments during the lockout period to retire the securities is referred to as the early amortization provision or rapid amortization provision.
Not all transactions that are revolving structures are backed by non-amortizing assets. There are some transactions in which the collateral consists of amortizing assets but during a lockout period, the principal repayments are reinvested in additional loans. For example, there are transactions in the European market in which the collateral consists of residential mortgage loans but during the lockout period principal repayments are used to acquire additional residential mortgage loans.

E. Collateral Cash Flow

For an amortizing asset, projection of the cash flows requires projecting prepayments. One factor that may affect prepayments is the prevailing level of interest rates relative to the interest rate on the loan. In projecting prepayments it is critical to determine the extent to which borrowers take advantage of a decline in interest rates below the loan rate in order to refinance the loan.
As with nonagency mortgage-backed securities, described in the previous chapter, modeling defaults for the collateral is critical in estimating the cash flows of an asset-backed security. Proceeds that are recovered in the event of a default of a loan prior to the scheduled principal repayment date of an amortizing asset represent a prepayment and are referred to as an involuntary prepayment. Projecting prepayments for amortizing assets requires an assumption about the default rate and the recovery rate. For a non-amortizing asset, while the concept of a prepayment does not exist, a projection of defaults is still necessary to project how much will be recovered and when.
The analysis of prepayments can be performed on a pool level or a loan level. In pool-level analysis it is assumed that all loans comprising the collateral are identical. For an amortizing asset, the amortization schedule is based on the gross weighted average coupon (GWAC) and weighted average maturity (WAM) for that single loan. We explained in the previous chapter what the WAC and WAM of a pool of mortgage loans is and illustrated how it is computed. In this chapter, we refer to the WAC as gross WAC. Pool-level analysis is appropriate where the underlying loans are homogeneous. Loan-level analysis involves amortizing each loan (or group of homogeneous loans).
The expected final maturity of an asset-backed security is the maturity date based on expected prepayments at the time of pricing of a deal. The legal final maturity can be two or more years after the expected final maturity. The average life, or weighted average life, was explained in the previous chapter.
Also explained in the previous chapter is a tranche’s principal window which refers to the time period over which the principal is expected to be paid to the bondholders. A principal window can be wide or narrow. When there is only one principal payment that is scheduled to be made to a bondholder, the bond is referred to as having a bullet maturity. Due to prepayments, an asset-backed security that is expected to have a bullet maturity may have an actual maturity that differs from that specified in the prospectus. Hence, asset-backed securities bonds that have an expected payment of only one principal are said to have a soft bullet.

F. Credit Enhancements

All asset-backed securities are credit enhanced. That means that support is provided for one or more of the bondholders in the structure. Credit enhancement levels are determined relative to a specific rating desired by the issuer for a security by each rating agency. Specifically, an investor in a triple A rated security expects to have “minimal” (virtually no) chance of losing any principal due to defaults. For example, a rating agency may require credit enhancement equal to four times expected losses to obtain a triple A rating or three times expected losses to obtain a double A rating. The amount of credit enhancement necessary depends on rating agency requirements.
There are two general types of credit enhancement structures: external and internal. We describe each type below.
1. External Credit Enhancements In an ABS, there are two principal parties: the issuer and the security holder. The issuer in our hypothetical securitization is HAT. If another entity is introduced into the structure to guarantee any payments to the security holders, that entity is referred to as a “third party.”
The most common third party in a securitization is a monoline insurance company (also referred to as a monoline insurer). A monoline insurance company is an insurance company whose business is restricted to providing guarantees for financial products such as municipal securities and asset-backed securities.134 When a securitization has external credit enhancement that is provided by a monoline insurer, the securities are said to be “wrapped.” The insurance works as follows. The monoline insurer agrees to make timely payment of interest and principal up to a specified amount should the issuer fail to make the payment. Unlike municipal bond insurance which guarantees the entire principal amount, the guarantee in a securitization is only for a percentage of the par value at origination. For example, a $100 million securitization may have only $5 million guaranteed by the monoline insurer.
Two less common forms of external credit enhancement are a letter of credit from a bank and a guarantee by the seller of the assets (i.e., the entity that sold the assets to the SPV—QHT in our hypothetical illustration).135 The reason why these two forms of credit enhancement are less commonly used is because of the “weak link approach” employed by rating agencies when they rate securitizations. According to this approach, when rating a proposed structure, the credit quality of a security is only as good as the weakest link in its credit enhancement regardless of the quality of underlying assets. Consequently, if an issuer seeks a triple A rating for one of the bond classes in the structure, it would be unlikely to be awarded such a rating if the external credit enhancer has a rating that is less than triple A. Since few corporations and banks that issue letters of credit have a sufficiently high rating themselves to achieve the rating that may be sought in a securitization, these two forms of external credit enhancement are not as common as insurance.
There is credit risk in a securitization when there is a third-party guarantee because the downgrading of the third party could result in the downgrading of the securities in a structure.
2. Internal Credit Enhancements Internal credit enhancements come in more complicated forms than external credit enhancements. The most common forms of internal credit enhancement are reserve funds, overcollateralization, and senior/subordinate structures.
a. Reserve Funds Reserve funds come in two forms:
• cash reserve funds
• excess spread accounts
Cash reserve funds are straight deposits of cash generated from issuance proceeds. In this case, part of the underwriting profits from the deal are deposited into a fund which typically invests in money market instruments. Cash reserve funds are typically used in conjunction with external credit enhancements.
Excess spread accounts involve the allocation of excess spread or cash into a separate reserve account after paying out the net coupon, servicing fee, and all other expenses on a monthly basis. The excess spread is a design feature of the structure. For example, suppose that:
1. gross weighted average coupon (gross WAC) is 8.00%—this is the interest rate paid by the borrowers
2. servicing and other fees are 0.25%
3. net weighted average coupon (net WAC) is 7.25%—this is the rate that is paid to all the tranches in the structure
So, for this hypothetical deal, 8.00% is available to make payments to the tranches, to cover servicing fees, and to cover other fees. Of that amount, 0.25% is paid for servicing and other fees and 7.25% is paid to the tranches. This means that only 7.50% must be paid out, leaving 0.50% (8.00% − 7.50%). This 0.50% or 50 basis points is called the excess spread. This amount is placed in a reserve account—the excess servicing account—and it will gradually increase and can be used to pay for possible future losses.
b. Overcollateralization Overcollateralization in a structure refers to a situation in which the value of the collateral exceeds the amount of the par value of the outstanding securities issued by the SPV. For example, if $100 million par value of securities are issued and at issuance the collateral has a market value of $105, there is $5 million in overcollateralization. Over time, the amount of overcollateralization changes due to (1) defaults, (2) amortization, and (3) prepayments. For example, suppose that two years after issuance, the par value of the securities outstanding is $90 million and the value of the collateral at the time is $93 million. As a result, the overcollateralization is $3 million ($93 million - $90 million).
Overcollateralization represents a form of internal credit enhancement because it can be used to absorb losses. For example, if the liability of the structure (i.e., par value of all the bond classes) is $100 million and the collateral’s value is $105 million, then the first $5 million of losses will not result in a loss to any of the bond classes in the structure.
c. Senior-Subordinate Structure Earlier in this section we explained a senior-subordinate structure in describing the bonds that can be issued in a securitization. We explained that there are senior bond classes and subordinate bond classes. The subordinate bond classes are also referred to as junior bond classes or non-senior bond classes.
As explained earlier, the creation of a senior-subordinate structure is done to provide credit tranching. More specifically, the senior-subordinate structure is a form of internal credit enhancement because the subordinate bond classes provide credit support for the senior bond classes. To understand why, the hypothetical HAT structure with one subordinate bond class that was described earlier is reproduced below:
Bond class Par value (million)
A (senior)$90
B (subordinate)10
Total$100
The senior bond class, A, is credit enhanced because the first $10 million in losses is absorbed by the subordinate bond class, B. Consequently, if defaults do not exceed $10 million, then the senior bond will receive the entire par value of $90 million.
Note that one subordinate bond class can provide credit enhancement for another subordinate bond class. To see this, consider the hypothetical HAT structure with two subordinate bond classes presented earlier:
Bond class Par value (million)
A (senior)$90
B (subordinate)7
C (subordinate)3
Total$100
Bond Class C, the first loss piece, provides credit enhancement for not only the senior bond class, but also the subordinate bond class B.
The basic concern in the senior-subordinate structure is that while the subordinate bond classes provide a certain level of credit protection for the senior bond class at the closing of the deal, the level of protection changes over time due to prepayments. Faster prepayments can remove the desired credit protection. Thus, the objective after the deal closes is to distribute any prepayments such that the credit protection for the senior bond class does not deteriorate over time.
In real-estate related asset-backed securities, as well as nonagency mortgage-backed securities, the solution to the credit protection problem is a well developed mechanism called the shifting interest mechanism. Here is how it works. The percentage of the mortgage balance of the subordinate bond class to that of the mortgage balance for the entire deal is called the level of subordination or the subordinate interest. The higher the percentage, the greater the level of protection for the senior bond classes. The subordinate interest changes after the deal is closed due to prepayments. That is, the subordinate interest shifts (hence the term “shifting interest”). The purpose of a shifting interest mechanism is to allocate prepayments so that the subordinate interest is maintained at an acceptable level to protect the senior bond class. In effect, by paying down the senior bond class more quickly, the amount of subordination is maintained at the desired level.
The prospectus will provide the shifting interest percentage schedule for calculating the senior prepayment percentage (the percentage of prepayments paid to the senior bond class). For mortgage loans, a commonly used shifting interest percentage schedule is as follows:
Year after issuance Senior prepayment percentage
1-5100%
670
760
840
920
after year 90
So, for example, if prepayments in month 20 are $1 million, the amount paid to the senior bond class is $1 million and no prepayments are made to the subordinated bond classes. If prepayments in month 90 (in the seventh year after issuance) are $1 million, the senior bond class is paid $600,000 (60% × $1 million).
The shifting interest percentage schedule given in the prospectus is the “base” schedule. The set of shifting interest percentages can change over time depending on the performance of the collateral. If the performance is such that the credit protection for the senior bond class has deteriorated because credit losses have reduced the subordinate bond classes, the base shifting interest percentages are overridden and a higher allocation of prepayments is made to the senior bond class.
Performance analysis of the collateral is undertaken by the trustee for determining whether or not to override the base schedule. The performance analysis is in terms of tests and if the collateral fails any of the tests, this will trigger an override of the base schedule.
It is important to understand that the presence of a shifting interest mechanism results in a trade-off between credit risk and contraction risk for the senior bond class. The shifting interest mechanism reduces the credit risk to the senior bond class. However, because the senior bond class receives a larger share of any prepayments, contraction risk increases.

G. Call Provisions

Corporate, federal agency, and municipal bonds may contain a call provision. This provision gives the issuer the right to retire the bond issue prior to the stated maturity date. The issuer motivation for having the provision is to benefit from a decline in interest rates after the bond is issued. Asset-backed securities typically have call provisions. The motivation is twofold. As with other bonds, the issuer (the SPV) will want to take advantage of a decline in interest rates. In addition, to reduce administrative fees, the trustee may want to call in the issue because the par value of a bond class is small and it is more cost effective to payoff the one or more bond classes.
Typically, for a corporate, federal agency, and municipal bond the trigger event for a call provision is that a specified amount of time has passed.136 In the case of asset-backed securities, it is not simply the passage of time whereby the trustee is permitted to exercise any call option. There are trigger events for exercising the call option based on the amount of the issue outstanding.
There are two call provisions where the trigger that grants the trustee to call in the issue is based on a date being reached: (1) call on or after specified date and (2) auction call. A call on or after specified date operates just like a standard call provision for corporate, federal agency, and municipal securities: once a specified date is reached, the trustee has the option to call all the outstanding bonds. In an auction call, at a certain date a call will be exercised if an auction results in the outstanding collateral being sold at a price greater than its par value. The premium over par value received from the auctioned collateral is retained by the trustee and is eventually distributed to the seller of the assets.
Provisions that allow the trustee to call an issue or a tranche based on the par value outstanding are referred to as optional clean-up call provisions. Two examples are (1) percent of collateral call and (2) percent of bond call. In a percent of collateral call, the outstanding bonds can be called at par value if the outstanding collateral’s balance falls below a predetermined percent of the original collateral’s balance. This is the most common type of clean-up call provision for amortizing assets and the predetermined level is typically 10%. For example, suppose that the value for the collateral is $100 million. If there is a percent of collateral call provision with a trigger of 10%, then the trustee can call the entire issue if the value of the call is $10 million or less. In a percent of bond call, the outstanding bonds can be called at par value if the outstanding bond’s par value relative to the original par value of bonds issued falls below a specified amount.
There is a call option that combines two triggers based on the amount outstanding and date. In a latter of percent or date call, the outstanding bonds can be called if either (1) the collateral’s outstanding balance reaches a predetermined level before the specified call date or (2) the call date has been reached even if the collateral outstanding is above the predetermined level.
In addition to the above call provisions which permit the trustee to call the bonds, there may be an insurer call. Such a call permits the insurer to call the bonds if the collateral’s cumulative loss history reaches a predetermined level.

III. HOME EQUITY LOANS

A home equity loan (HEL) is a loan backed by residential property. At one time, the loan was typically a second lien on property that was already pledged to secure a first lien. In some cases, the lien was a third lien. In recent years, the character of a home equity loan has changed. Today, a home equity loan is often a first lien on property where the borrower has either an impaired credit history and/or the payment-to-income ratio is too high for the loan to qualify as a conforming loan for securitization by Ginnie Mae, Fannie Mae, or Freddie Mac. Typically, the borrower used a home equity loan to consolidate consumer debt using the current home as collateral rather than to obtain funds to purchase a new home.
Home equity loans can be either closed end or open end. A closed-end HEL is structured the same way as a fully amortizing residential mortgage loan. That is, it has a fixed maturity and the payments are structured to fully amortize the loan by the maturity date. With an open-end HEL, the homeowner is given a credit line and can write checks or use a credit card for up to the amount of the credit line. The amount of the credit line depends on the amount of the equity the borrower has in the property. Because home equity loan securitizations are predominately closed-end HELs, our focus in this section is securities backed by them.
There are both fixed-rate and variable-rate closed-end HELs. Typically, variable-rate loans have a reference rate of 6-month LIBOR and have periodic caps and lifetime caps. (A periodic cap limits the change in the mortgage rate from the previous time the mortgage rate was reset; a lifetime cap sets a maximum that the mortgage rate can ever be for the loan.) The cash flow of a pool of closed-end HELs is comprised of interest, regularly scheduled principal repayments, and prepayments, just as with mortgage-backed securities. Thus, it is necessary to have a prepayment model and a default model to forecast cash flows. The prepayment speed is measured in terms of a conditional prepayment rate (CPR).

A. Prepayments

As explained in the previous chapter, in the agency MBS market the PSA prepayment benchmark is used as the base case prepayment assumption in the prospectus. This benchmark assumes that the conditional prepayment rate (CPR) begins at 0.2% in the first month and increases linearly for 30 months to 6% CPR. From month 36 to the last month that the security is expected to be outstanding, the CPR is assumed to be constant at 6%. At the time that the prepayment speed is assumed to be constant, the security is said to be seasoned. For the PSA benchmark, a security is assumed to be seasoned in month 36. When the prepayment speed is depicted graphically, the linear increase in the CPR from month 1 to the month when the security is assumed to be seasoned is called the prepayment ramp. For the PSA benchmark, the prepayment ramp begins at month 1 and extends to month 30. Speeds that are assumed to be faster or slower than the PSA prepayment benchmark are quoted as a multiple of the base case prepayment speed.
There are differences in the prepayment behavior for home equity loans and agency MBS. Wall Street firms involved in the underwriting and market making of securities backed by HELs have developed prepayment models for these deals. Several firms have found that the key difference between the prepayment behavior of HELs and agency residential mortgages is the important role played by the credit characteristics of the borrower.137
Borrower characteristics and the amount of seasoning (i.e., how long the loans have been outstanding) must be kept in mind when trying to assess prepayments for a particular deal. In the prospectus of a HEL, a base case prepayment assumption is made. Rather than use the PSA prepayment benchmark as the base case prepayment speed, issuer’s now use a base case prepayment benchmark that is specific to that issuer. The benchmark prepayment speed in the prospectus is called the prospectus prepayment curve or PPC. As with the PSA benchmark, faster or slower prepayments speeds are a quoted as a multiple of the PPC. Having an issuer-specific prepayment benchmark is preferred to a generic benchmark such as the PSA benchmark. The drawback for this improved description of the prepayment characteristics of a pool of mortgage loans is that it makes comparing the prepayment characteristics and investment characteristics of the collateral between issuers and issues (newly issued and seasoned issues) difficult.
Since HEL deals are backed by both fixed-rate and variable-rate loans, a separate PPC is provided for each type of loan. For example, in the prospectus for the Contimortgage Home Equity Loan Trust 1998-2, the base case prepayment assumption for the fixed-rate collateral begins at 4% CPR in month 1 and increases 1.45455% CPR per month until month 12, at which time it is 20% CPR. Thus, the collateral is assumed to be seasoned in 12 months. The prepayment ramp begins in month 1 and ends in month 12. If an investor analyzed the deal based on 200% PPC, this means doubling the CPRs cited and using 12 months for when the collateral seasons. For the variable-rate collateral in the ContiMortgage deal, 100% PPC assumes the collateral is seasoned after 18 months with the CPR in month 1 being 4% and increasing 1.82353% CPR each month. From month 18 on, the CPR is 35%. Thus, the prepayment ramp starts at month 1 and ends at month 18. Notice that for this issuer, the variable-rate collateral is assumed to season slower than the fixed-rate collateral (18 versus 12 months), but has a faster CPR when the pool is seasoned (35% versus 20%).

B. Payment Structure

As with nonagency mortgage-backed securities discussed in the previous chapter, there are passthrough and paythrough home equity loan-backed structures.
Typically, home equity loan-backed securities are securitized by both closed-end fixed-rate and adjustable-rate (or variable-rate) HELs. The securities backed by the latter are called HEL floaters. The reference rate of the underlying loans typically is 6-month LIBOR. The cash flow of these loans is affected by periodic and lifetime caps on the loan rate.
Institutional investors that seek securities that better match their floating-rate funding costs are attracted to securities that offer a floating-rate coupon. To increase the attractiveness of home equity loan-backed securities to such investors, the securities typically have been created in which the reference rate is 1-month LIBOR. Because of (1) the mismatch between the reference rate on the underlying loans (6-month LIBOR) and that of the HEL floater and (2) the periodic and life caps of the underlying loans, there is a cap on the coupon rate for the HEL floater. Unlike a typical floater, which has a cap that is fixed throughout the security’s life, the effective periodic and lifetime cap of a HEL floater is variable. The effective cap, referred to as the available funds cap, will depend on the amount of funds generated by the net coupon on the principal, less any fees.
Let’s look at one issue, Advanta Mortgage Loan Trust 1995-2 issued in June 1995. At the offering, this issue had approximately $122 million closed-end HELs. There were 1,192 HELs consisting of 727 fixed-rate loans and 465 variable-rate loans. There were five classes (A-1, A-2, A-3, A-4, and A-5) and a residual. The five classes are summarized below:
Class Par amount ($) Passthrough coupon rate (%)
A-19,229,0007.30
A-230,330,0006.60
A-316,455,0006.85
A-49,081,000floating rate
A-556,917,000floating rate
The collateral is divided into group I and group II. The 727 fixed-rate loans are included in group I and support Classes A-1, A-2, A-3, and A-4 certificates. The 465 variable-rate loans are in group II and support Class A-5.
Tranches have been structured in home equity loan deals so as to give some senior tranches greater prepayment protection than other senior tranches. The two types of structures that do this are the non-accelerating senior tranche and the planned amortization class tranche.
Months Share of pro rata principal
1 through 360%
37 through 6045%
61 through 7280%
73 through 84100%
After month 84300%
1. Non-Accelerating Senior Tranches A non-accelerating senior tranche (NAS tranche) receives principal payments according to a schedule. The schedule is not a dollar amount. Rather, it is a principal schedule that shows for a given month the share of pro rata principal that must be distributed to the NAS tranche. A typical principal schedule for a NAS tranche is as follows:138
The average life for the NAS tranche is stable for a large range of prepayments because for the first three years all prepayments are made to the other senior tranches. This reduces the risk of the NAS tranche contracting (i.e., shortening) due to fast prepayments. After month 84, 300% of its pro rata share is paid to the NAS tranche thereby reducing its extension risk.
The average life stability over a wide range of prepayments is illustrated in Exhibit 2. The deal analyzed is the ContiMortgage Home Equity Loan Trust 1997-2.139 Class A-9 is the NAS tranche. The analysis was performed on Bloomberg shortly after the deal was issued using the issue’s PPC. As can be seen, the average life is fairly stable between 75% to 200% PPC. In fact, the difference in the average life between 75% PPC and 200% PPC is slightly greater than 1 year.
In contrast, Exhibit 2 also shows the average life over the same prepayment scenarios for a non-NAS sequential-pay tranche in the same deal—Class A-7. Notice the substantial average life variability. While the average life difference between 75% and 200% PPC for the NAS tranche is just over 1 year, it is more than 9 years for the non-NAS tranche. Of course, the non-NAS in the same deal will be less stable than a regular sequential tranche because the non-NAS gets a greater share of principal than it would otherwise.
2. Planned Amortization Class Tranche In our discussion of collateralized mortgage obligations issued by the agencies in the previous chapter we explained how a planned amortization class tranche can be created. These tranches are also created in HEL structures. Unlike agency CMO PAC tranches that are backed by fixed-rate loans, the collateral for HEL deals is both fixed rate and adjustable rate.
An example of a HEL PAC tranche in a HEL-backed deal is tranche A-6 in ContiMortgage 1998-2. We described the PPC for this deal in Section III.A.1 above. There is a separate PAC collar for both the fixed-rate and adjustable-rate collateral. For the fixed-rate collateral the PAC collar is 125%-175% PPC; for the adjustable-rate collateral the PAC collar is 95%-130% PPC. The average life for tranche A-6 (a tranche backed by the fixed-rate collateral) is 5.1 years. As explained in Chapter 3, the effective collar for shorter tranches can be greater than the upper collar specified in the prospectus. The effective upper collar for tranche A-6 is actually 180% PPC (assuming that the adjustable-rate collateral pays at 100% PPC).140
EXHIBIT 2 Average Life for NAS Tranche (Class A-9) and Non-Nas Tranche (Class A-7) for ContiMortgage Home Equity Loan Trust 1997-2 for a Range of Prepayments
287
For shorter PACs, the effective upper collar is greater. For example, for tranche A-3 in the same deal, the initial PAC collar is 125% to 175% PPC with an average life of 2.02 years. However, the effective upper collar is 190% PPC (assuming the adjustable-rate collateral pays at 100% PPC).
The effective collar for PAC tranches changes over time based on actual prepayments and therefore based on when the support tranches depart from the initial PAC collar. For example, if for the next 36 months after the issuance of the ContiMortgage 1998-2 actual prepayments are a constant 150% PPC, then the effective collar would be 135% PPC to 210% PPC.141 That is, the lower and upper collar will increase. If the actual PPC is 200% PPC for the 10 months after issuance, the support bonds will be fully paid off and there will be no PAC collateral. In this situation the PAC is said to be a broken PAC.

IV. MANUFACTURED HOUSING-BACKED SECURITIES

Manufactured housing-backed securities are backed by loans for manufactured homes. In contrast to site-built homes, manufactured homes are built at a factory and then transported to a site. The loan may be either a mortgage loan (for both the land and the home) or a consumer retail installment loan.
Manufactured housing-backed securities are issued by Ginnie Mae and private entities. The former securities are guaranteed by the full faith and credit of the U.S. government. The manufactured home loans that are collateral for the securities issued and guaranteed by Ginnie Mae are loans guaranteed by the Federal Housing Administration (FHA) or Veterans Administration (VA).
Loans not backed by the FHA or VA are called conventional loans. Manufactured housing-backed securities that are backed by such loans are called conventional manufactured housing-backed securities. These securities are issued by private entities.
The typical loan for a manufactured home is 15 to 20 years. The loan repayment is structured to fully amortize the amount borrowed. Therefore, as with residential mortgage loans and HELs, the cash flow consists of net interest, regularly scheduled principal, and prepayments. However, prepayments are more stable for manufactured housing-backed securities because they are not sensitive to refinancing.
There are several reasons for this. First, the loan balances are typically small so that there is no significant dollar savings from refinancing. Second, the rate of depreciation of mobile homes may be such that in the earlier years depreciation is greater than the amount of the loan paid off. This makes it difficult to refinance the loan. Finally, typically borrowers are of lower credit quality and therefore find it difficult to obtain funds to refinance.
As with residential mortgage loans and HELs, prepayments on manufactured housing-backed securities are measured in terms of CPR and each issue contains a PPC.
The payment structure is the same as with nonagency mortgage-backed securities and home equity loan-backed securities.

V. RESIDENTIAL MBS OUTSIDE THE UNITED STATES

Throughout the world where the market for securitized assets has developed, the largest sector is the residential mortgage-backed sector. It is not possible to provide a discussion of the residential mortgage-backed securities market in every country. Instead, to provide a flavor for this market sector and the similarities with the U.S. nonagency mortgage-backed securities market, we will discuss just the market in the United Kingdom and Australia.

A. U.K. Residential Mortgage-Backed Securities

In Europe, the country in which there has been the largest amount of issuance of asset-backed securities is the United Kingdom.142 The largest component of that market is the residential mortgage-backed security market which includes “prime” residential mortgage-backed securities and “nonconforming” residential mortgage-backed securities. In the U.S. mortgage market, a nonconforming mortgage loan is one that does not meet the underwriting standards of Ginnie Mae, Fannie Mae, or Freddie Mac. However, this does not mean that the loan has greater credit risk. In contrast, in the U.K. mortgage market, nonconforming mortgage loans are made to borrowers that are viewed as having greater credit risk-those that do not have a credit history and those with a history of failing to meet their obligations.
The standard mortgage loan is a variable rate, fully amortizing loan. Typically, the term of the loan is 25 years. As in the U.S. mortgage market, borrowers seeking a loan with a high loan-to-value ratio are required to obtain mortgage insurance, called a “mortgage indemnity guarantee” (MIG).
The deals are more akin to the nonagency market since there is no guarantee by a federally related agency or a government sponsored enterprise as in the United States. Thus, there is credit enhancement as explained below.
Because the underlying mortgage loans are floating rate, the securities issued are floating rate (typically, LIBOR is the reference rate). The cash flow depends on the timing of the principal payments. The deals are typically set up as a sequential-pay structure. For example, consider the Granite Mortgage 00-2 transaction, a typical structure in the United Kingdom.143 The mortgage pool consists of prime mortgages. There are four bond classes. The two class A tranches, Class A-1 and Class A-2, are rated AAA. One is a dollar denominated tranche and the other a pound sterling tranche. Class B is rated single A and tranche C is rated triple BBB. The sequence of principal payments is as follows: Class A-1 and Class A-2 are paid off on a pro rata basis, then Class B is paid off, and then Class C is paid off.
The issuer has the option to call the outstanding notes under the following circumstances:
• A withholding tax is imposed on the interest payments to noteholders
• a clean up call (if the mortgage pool falls to 10% or less of the original pool amount)
• on a specified date (called the “step up date”) or dates in the future
For example, for the Granite Mortgage 00-02 transaction, the step up date is September 2007. The issuer is likely to call the issue because the coupon rate on the notes increases at that time. In this deal, as with most, the margin over LIBOR doubles.
Credit enhancement can consist of excess spread, reserve fund, and subordination. For the Granite Mortgage 00-2, there was subordination: Class B and C tranches for the two Class A tranche and Class C tranche for the Class B tranche. The reserve was fully funded at the time of issuance and the excess spread was used to build up the reserve fund. In addition, there is a “principal shortfall provision.” This provision requires that if the realized losses for a period are such that the excess reserve for that period is not sufficient to cover the losses, as excess spread becomes available in future periods they are used to cover these losses. Also there are performance triggers that under certain conditions will provide further credit protection to the senior bonds by modifying the payment of principal. When the underlying mortgage pool consists of nonconforming mortgage loans, additional protections are provided for investors.
Since prepayments will reduce the average life of the senior notes in a transaction, typical deals have provision that permit the purchase of substitute mortgages if the prepayment rate exceeds a certain rate. For example, in the Granite Mortgage 00-02 deal, this rate is 20% per annum.

B. Australian Mortgage-Backed Securities

In Australia, lending is dominated by mortgage banks, the larger ones being ANZ, Commonwealth Bank of Australia, National Australia Bank, Westpac, and St. George Bank.144 Non-mortgage bank competitors who have entered the market have used securitization as a financing vehicle. The majority of the properties are concentrated in New South Wales, particularly the city of Sydney. Rating agencies have found that the risk of default is considerably less than in the U.S. and the U.K.
Loan maturities are typically between 20 and 30 years. As in the United States, there is a wide range of mortgage designs with respect to interest rates. There are fixed-rate, variable-rate (both capped and uncapped), and rates tied to a benchmark.
There is mortgage insurance for loans to protect lenders, called “lenders mortgage insurance” (LMI). Loans typically have LMI covering 20% to 100% of the loan. The companies that provide this insurance are private corporations.145 When mortgages loans that do not have LMI are securitized, typically the issuer will purchase insurance for those loans.
LMI is important for securitized transactions since it is the first layer of credit enhancement in a deal structure. The rating agencies recognize this in rating the tranches in a structure. The amount that a rating agency will count toward credit enhancement for LMI depends on the rating agency’s assessment of the mortgage insurance company.
When securitized, the tranches have a floating rate. There is an initial revolving period—which means that no principal payments are made to the tranche holders but instead reinvested in new collateral. As with the U.K. Granite Mortgage 00-02 deal, the issuer has the right to call the issue if there is an imposition of a withholding tax on note holders’ interest payments, after a certain date, or if the balance falls below a certain level (typically, 10%).
Australian mortgage-backed securities have tranches that are U.S. dollar denominated and some that are denominated in Euros.146 These global deals typically have two or three AAA senior tranches and one AA or AA− junior tranche.
For credit enhancement, there is excess spread (which in most deals is typically small), subordination, and, as noted earlier, LMI. To illustrate this, consider the Interstar Millennium Series 2000-3E Trust—a typical Australian MBS transaction. There are two tranches: a senior tranche (Class A) that was rated AAA and a subordinated tranche (Class B) that was AA−. The protection afforded the senior tranche is the subordinated tranche, LMI (all the properties were covered up to 100% and were insured by all five major mortgage insurance companies), and the excess spread.

VI. AUTO LOAN-BACKED SECURITIES

Auto loan-backed securities represents one of the oldest and most familiar sectors of the asset-backed securities market. Auto loan-backed securities are issued by:
1. the financial subsidiaries of auto manufacturers
2. commercial banks
3. independent finance companies and small financial institutions specializing in auto loans
Historically, auto loan-backed securities have represented between 18% to 25% of the asset-backed securities market. The auto loan market is tiered based on the credit quality of the borrowers. “Prime auto loans” are of fundamentally high credit quality and originated by the financial subsidiaries of major auto manufacturers. The loans are of high credit quality for the following reasons. First, they are a secured form of lending. Second, they begin to repay principal immediately through amortization. Third, they are short-term in nature. Finally, for the most part, major issuers of auto loans have tended to follow reasonably prudent underwriting standards.
Unlike the sub-prime mortgage industry, there is less consistency on what actually constitutes various categories of prime and sub-prime auto loans. Moody’s assumes the prime market is composed of issuers typically having cumulative losses of less than 3%; near-prime issuers have cumulative losses of 3-7%; and sub-prime issuers have losses exceeding 7%.
The auto sector was a small part of the European asset-backed securities market in 2002, about 5% of total securitization. There are two reasons for this. First, there is lower per capita car ownership in Europe. Second, there is considerable variance of tax and regulations dealing with borrower privacy rules in Europe thereby making securitization difficult.147 Auto deals have been done in Italy, the U.K., Germany, Portugal, and Belgium.

A. Cash Flow and Prepayments

The cash flow for auto loan-backed securities consists of regularly scheduled monthly loan payments (interest and scheduled principal repayments) and any prepayments. For securities backed by auto loans, prepayments result from (1) sales and trade-ins requiring full payoff of the loan, (2) repossession and subsequent resale of the automobile, (3) loss or destruction of the vehicle, (4) payoff of the loan with cash to save on the interest cost, and (5) refinancing of the loan at a lower interest cost.
Prepayments due to repossession and subsequent resale are sensitive to the economic cycle. In recessionary economic periods, prepayments due to this factor increase. While refinancings may be a major reason for prepayments of mortgage loans, they are of minor importance for automobile loans. Moreover, the interest rates for the automobile loans underlying some deals are substantially below market rates since they are offered by manufacturers as part of a sales promotion.

B. Measuring Prepayments

For most asset-backed securities where there are prepayments, prepayments are measured in term of the conditional prepayment rate, CPR. As explained in the previous chapter, monthly prepayments are quoted in terms of the single monthly mortality (SMM) rate. The convention for calculating and reporting prepayment rates for auto-loan backed securities is different. Prepayments for auto loan-backed securities are measured in terms of the absolute prepayment speed, denoted by ABS.148 The ABS is the monthly prepayment expressed as a percentage of the original collateral amount. As explained in the previous chapter, the SMM (monthly CPR) expresses prepayments based on the prior month’s balance.
There is a mathematical relationship between the SMM and the ABS measures. Letting M denote the number of months after loan origination, the SMM rate can be calculated from the ABS rate using the following formula:
288
where the ABS and SMM rates are expressed in decimal form.
For example, if the ABS rate is 1.5% (i.e., 0.015) at month 14 after origination, then the SMM rate is 1.86%, as shown below:
289
The ABS rate can be calculated from the SMM rate using the following formula:
290
For example, if the SMM rate at month 9 after origination is 1.3%, then the ABS rate is:
291
Historically, when measured in terms of SMM rate, auto loans have experienced SMMs that increase as the loans season.

VII. STUDENT LOAN-BACKED SECURITIES

Student loans are made to cover college cost (undergraduate, graduate, and professional programs such as medical and law school) and tuition for a wide range of vocational and trade schools. Securities backed by student loans, popularly referred to as SLABS (student loan asset-backed securities), have similar structural features as the other asset-backed securities we discussed above.
The student loans that have been most commonly securitized are those that are made under the Federal Family Education Loan Program (FFELP). Under this program, the government makes loans to students via private lenders. The decision by private lenders to extend a loan to a student is not based on the applicant’s ability to repay the loan. If a default of a loan occurs and the loan has been properly serviced, then the government will guarantee up to 98% of the principal plus accrued interest.149
Loans that are not part of a government guarantee program are called alternative loans. These loans are basically consumer loans and the lender’s decision to extend an alternative loan will be based on the ability of the applicant to repay the loan. Alternative loans have been securitized.

A. Issuers

Congress created Fannie Mae and Freddie Mac to provide liquidity in the mortgage market by allowing these government sponsored enterprises to buy mortgage loans in the secondary market. Congress created the Student Loan Marketing Association (nicknamed “Sallie Mae”) as a government sponsored enterprise to purchase student loans in the secondary market and to securitize pools of student loans. Since its first issuance in 1995, Sallie Mae is now the major issuer of SLABS and its issues are viewed as the benchmark issues.150 Other entities that issue SLABS are either traditional corporate entities (e.g., the Money Store and PNC Bank) or non-profit organizations (Michigan Higher Education Loan Authority and the California Educational Facilities Authority). The SLABS of the latter typically are issued as tax-exempt securities and therefore trade in the municipal market. In recent years, several not-for-profit entities have changed their charter and applied for “for profit” treatment.

B. Cash Flow

Let’s first look at the cash flow for the student loans themselves. There are different types of student loans under the FFELP including subsidized and unsubsidized Stafford loans, Parental Loans for Undergraduate Students (PLUS), and Supplemental Loans to Students (SLS). These loans involve three periods with respect to the borrower’s payments—deferment period, grace period, and loan repayment period. Typically, student loans work as follows. While a student is in school, no payments are made by the student on the loan. This is the deferment period. Upon leaving school, the student is extended a grace period of usually six months when no payments on the loan must be made. After this period, payments are made on the loan by the borrower.
Student loans are floating-rate loans, exclusively indexed to the 3-month Treasury bill rate. As a result, some issuers of SLABs issue securities whose coupon rate is indexed to the 3-month Treasury bill rate. However, a large percentage of SLABS issued are indexed to LIBOR floaters.151
Prepayments typically occur due to defaults or loan consolidation. Even if there is no loss of principal faced by the investor when defaults occur, the investor is still exposed to contraction risk. This is the risk that the investor must reinvest the proceeds at a lower spread and in the case of a bond purchased at a premium, the premium will be lost. Studies have shown student loan prepayments are insensitive to the level of interest rates. Consolidations of a loan occur when the student who has loans over several years combines them into a single loan. The proceeds from the consolidation are distributed to the original lender and, in turn, distributed to the bondholders.

VIII. SBA LOAN-BACKED SECURITIES

The Small Business Administration (SBA) is an agency of the U.S. government empowered to guarantee loans made by approved SBA lenders to qualified borrowers. The loans are backed by the full faith and credit of the government. Most SBA loans are variable-rate loans where the reference rate is the prime rate. The rate on the loan is reset monthly on the first of the month or quarterly on the first of January, April, July, and October. SBA regulations specify the maximum coupon allowable in the secondary market. Newly originated loans have maturities between 5 and 25 years.
The Small Business Secondary Market Improvement Act passed in 1984 permitted the pooling of SBA loans. When pooled, the underlying loans must have similar terms and features. The maturities typically used for pooling loans are 7, 10, 15, 20, and 25 years. Loans without caps are not pooled with loans that have caps.
Most variable-rate SBA loans make monthly payments consisting of interest and principal repayment. The amount of the monthly payment for an individual loan is determined as follows. Given the coupon formula of the prime rate plus the loan’s quoted margin, the interest rate is determined for each loan. Given the interest rate, a level payment amortization schedule is determined. It is this level payment that is paid for the next month until the coupon rate is reset.
The monthly cash flow that the investor in an SBA-backed security receives consists of
• the coupon interest based on the coupon rate set for the period
• the scheduled principal repayment (i.e., scheduled amortization)
• prepayments
Prepayments for SBA-backed securities are measured in terms of CPR. Voluntary prepayments can be made by the borrower without any penalty. There are several factors contributing to the prepayment speed of a pool of SBA loans. A factor affecting prepayments is the maturity date of the loan. It has been found that the fastest speeds on SBA loans and pools occur for shorter maturities.152 The purpose of the loan also affects prepayments. There are loans for working capital purposes and loans to finance real estate construction or acquisition. It has been observed that SBA pools with maturities of 10 years or less made for working capital purposes tend to prepay at the fastest speed. In contrast, loans backed by real estate that are long maturities tend to prepay at a slow speed.

IX. CREDIT CARD RECEIVABLE-BACKED SECURITIES

When a purchase is made on a credit card, the issuer of the credit card (the lender) extends credit to the cardholder (the borrower). Credit cards are issued by banks (e.g., Visa and MasterCard), retailers (e.g., Sears and Target Corporation), and travel and entertainment companies (e.g., American Express). At the time of purchase, the cardholder is agreeing to repay the amount borrowed (i.e., the cost of the item purchased) plus any applicable finance charges. The amount that the cardholder has agreed to pay the issuer of the credit card is a receivable from the perspective of the issuer of the credit card. Credit card receivables are used as collateral for the issuance of an asset-backed security.

A. Cash Flow

For a pool of credit card receivables, the cash flow consists of finance charges collected, fees, and principal. Finance charges collected represent the periodic interest the credit card borrower is charged based on the unpaid balance after the grace period. Fees include late payment fees and any annual membership fees.
Interest to security holders is paid periodically (e.g, monthly, quarterly, or semiannually). The interest rate may be fixed or floating—roughly half of the securities are floaters. The floating rate is uncapped.
A credit card receivable-backed security is a nonamortizing security. For a specified period of time, the lockout period or revolving period, the principal payments made by credit card borrowers comprising the pool are retained by the trustee and reinvested in additional receivables to maintain the size of the pool. The lockout period can vary from 18 months to 10 years. So, during the lockout period, the cash flow that is paid out to security holders is based on finance charges collected and fees. After the lockout period, the principal is no longer reinvested but paid to investors, the principal-amortization period and the various types of structures are described next.

B. Payment Structure

There are three different amortization structures that have been used in credit card receivable-backed security deals: (1) passthrough structure, (2) controlled-amortization structure, and (3) bullet-payment structure. The latter two are the more common. One source reports that 80% of the deals are bullet structures and the balance are controlled amortization structures.153
In a passthrough structure, the principal cash flows from the credit card accounts are paid to the security holders on a pro rata basis. In a controlled-amortization structure, a scheduled principal amount is established, similar to the principal window for a PAC bond. The scheduled principal amount is sufficiently low so that the obligation can be satisfied even under certain stress scenarios, where cash flow is decreased due to defaults or slower repayment by borrowers. The security holder is paid the lesser of the scheduled principal amount and the pro rata amount. In a bullet-payment structure, the security holder receives the entire amount in one distribution. Since there is no assurance that the entire amount can be paid in one lump sum, the procedure is for the trustee to place principal monthly into an account that generates sufficient interest to make periodic interest payments and accumulate the principal to be repaid. These deposits are made in the months shortly before the scheduled bullet payment. This type of structure is also often called a soft bullet because the maturity is technically not guaranteed, but is almost always satisfied. The time period over which the principal is accumulated is called the accumulation period.

C. Performance of the Portfolio of Receivables

There are several concepts that must be understood in order to assess the performance of the portfolio of receivables and the ability of the issuer to meet its interest obligation and repay principal as scheduled.
We begin with the concept of the gross portfolio yield. This yield includes finance charges collected and fees. Charge-offs represent the accounts charged off as uncollectible. Net portfolio yield is equal to gross portfolio yield minus charge-offs. The net portfolio yield is important because it is from this yield that the bondholders will be paid. So, for example, if the average yield (WAC) that must be paid to the various tranches in the structure is 5% and the net portfolio yield for the month is only 4.5%, there is the risk that the bondholder obligations will not be satisfied.
Delinquencies are the percentages of receivables that are past due for a specified number of months, usually 30, 60, and 90 days. They are considered an indicator of potential future charge-offs.
The monthly payment rate (MPR) expresses the monthly payment (which includes finance charges, fees, and any principal repayment) of a credit card receivable portfolio as a percentage of credit card debt outstanding in the previous month. For example, suppose a $500 million credit card receivable portfolio in January realized $50 million of payments in February. The MPR would then be 10% ($50 million divided by $500 million).
There are two reasons why the MPR is important. First, if the MPR reaches an extremely low level, there is a chance that there will be extension risk with respect to the principal payments on the bonds. Second, if the MPR is very low, then there is a chance that there will not be sufficient cash flows to pay off principal. This is one of the events that could trigger early amortization of the principal (described below).
At issuance, portfolio yield, charge-offs, delinquency, and MPR information are provided in the prospectus. Information about portfolio performance is then available from Bloomberg, the rating agencies, and dealers.

D. Early Amortization Triggers

There are provisions in credit card receivable-backed securities that require early amortization of the principal if certain events occur. Such provisions, which as mentioned earlier in this chapter are referred to as early amortization or rapid amortization provisions, are included to safeguard the credit quality of the issue. The only way that the principal cash flows can be altered is by the triggering of the early amortization provision.
Typically, early amortization allows for the rapid return of principal in the event that the 3-month average excess spread earned on the receivables falls to zero or less. When early amortization occurs, the credit card tranches are retired sequentially (i.e., first the AAA bond then the AA rated bond, etc.). This is accomplished by paying the principal payments made by the credit card borrowers to the investors instead of using them to purchase more receivables. The length of time until the return of principal is largely a function of the monthly payment rate. For example, suppose that a AAA tranche is 82% of the overall deal. If the monthly payment rate is 11% then the AAA tranche would return principal over a 7.5-month period (82%/11%). An 18% monthly payment rate would return principal over a 4.5-month period (82%/18%).

X. COLLATERALIZED DEBT OBLIGATIONS

A collateralized debt obligation (CDO) is a security backed by a diversified pool of one or more of the following types of debt obligations:
• U.S. domestic high-yield corporate bonds
• structured financial products (i.e., mortgage-backed and asset-backed securities)
• emerging market bonds
• bank loans
• special situation loans and distressed debt
When the underlying pool of debt obligations are bond-type instruments (high-yield corporate, structured financial products, and emerging market bonds), a CDO is referred to as a collateralized bond obligation (CBO). When the underlying pool of debt obligations are bank loans, a CDO is referred to as a collateralized loan obligation (CLO).

A. Structure of a CDO

In a CDO structure, there is an asset manager responsible for managing the portfolio of debt obligations. There are restrictions imposed (i.e., restrictive covenants) as to what the asset manager may do and certain tests that must be satisfied for the tranches in the CDO to maintain the credit rating assigned at the time of issuance and determine how and when tranches are repaid principal.
The funds to purchase the underlying assets (i.e., the bonds and loans) are obtained from the issuance of debt obligations (i.e., tranches) and include one or more senior tranches, one or more mezzanine tranches, and a subordinate/equity tranche. There will be a rating sought for all but the subordinate/equity tranche. For the senior tranches, at least an A rating is typically sought. For the mezzanine tranches, a rating of BBB but no less than B is sought. As explained below, since the subordinate/equity tranche receives the residual cash flow, no rating is sought for this tranche.
The ability of the asset manager to make the interest payments to the tranches and payoff the tranches as they mature depends on the performance of the underlying assets. The proceeds to meet the obligations to the CDO tranches (interest and principal repayment) can come from (1) coupon interest payments of the underlying assets, (2) maturing assets in the underlying pool, and (3) sale of assets in the underlying pool.
In a typical structure, one or more of the tranches is a floating-rate security. With the exception of deals backed by bank loans which pay a floating rate, the asset manager invests in fixed-rate bonds. Now that presents a problem—paying tranche investors a floating rate and investing in assets with a fixed rate. To deal with this problem, the asset manager uses derivative instruments to be able to convert fixed-rate payments from the assets into floating-rate payments. In particular, interest rate swaps are used. This derivative instrument allows a market participant to swap fixed-rate payments for floating-rate payments or vice versa. Because of the mismatch between the nature of the cash flows of the debt obligations in which the asset manager invests and the floating-rate liability of any of the tranches, the asset manager must use an interest rate swap. A rating agency will require the use of swaps to eliminate this mismatch.
EXHIBIT 3 CDO Family Tree
292

B. Family of CDOs

The family of CDOs is shown in Exhibit 3. While each CDO shown in the exhibit will be discussed in more detail below, we will provide an overview here.
The first breakdown in the CDO family is between cash CDOs and synthetic CDOs. A cash CDO is backed by a pool of cash market debt instruments. We described the range of debt obligations earlier. These were the original types of CDOs issued. A synthetic CDO is a CDO where the investor has the economic exposure to a pool of debt instrument but this exposure is realized via a credit derivative instrument rather than the purchase of the cash market instruments. We will discuss the basic elements of a synthetic CDO later.
Both a cash CDO and a synthetic CDO are further divided based on the motivation of the sponsor. The motivation leads to balance sheet and arbitrage CDOs. As explained below, in a balance sheet CDO, the motivation of the sponsor is to remove assets from its balance sheet. In an arbitrage CDO, the motivation of the sponsor is to capture a spread between the return that it is possible to realize on the collateral backing the CDO and the cost of borrowing funds to purchase the collateral (i.e., the interest rate paid on the obligations issued).
Cash CDOs that are arbitrage transactions are further divided in cash flow and market value CDOs depending on the primary source of the proceeds from the underlying asset used to satisfy the obligation to the tranches. In a cash flow CDO, the primary source is the interest and maturing principal from the underlying assets. In a market value CDO, the proceeds to meet the obligations depends heavily on the total return generated from the portfolio. While cash CDOs that are balance sheet motivated transactions can also be cash flow or market value CDOs, only cash flow CDOs have been issued.

C. Cash CDOs

In this section, we take a closer look at cash CDOs. Before we look at cash flow and market value CDOs, we will look at the type of cash CDO based on the sponsor motivation: arbitrage and balance sheet transactions. As can be seen in Exhibit 3, cash CDOs are categorized based on the motivation of the sponsor of the transaction. In an arbitrage transaction, the motivation of the sponsor is to earn the spread between the yield offered on the debt obligations in the underlying pool and the payments made to the various tranches in the structure. In a balance sheet transaction, the motivation of the sponsor is to remove debt instruments (primarily loans) from its balance sheet. Sponsors of balance sheet transactions are typically financial institutions such as banks seeking to reduce their capital requirements by removing loans due to their higher risk-based capital requirements. Our focus in this section is on arbitrage transactions because such transactions are the largest part of the cash CDO sector.
Tranche Par Value Coupon rate
Senior$80,000,000LIBOR + 70 basis points
Mezzanine10,000,00010-year Treasury rate plus 200 basis points
Subordinate/Equity10,000,000
1. Cash CDO Arbitrage Transactions The key as to whether or not it is economic to create an arbitrage CDO is whether or not a structure can be created that offers a competitive return for the subordinate/equity tranche.
To understand how the subordinate/equity tranche generates cash flows, consider the following basic $100 million CDO structure with the coupon rate to be offered at the time of issuance as shown below:
Suppose that the collateral consists of bonds that all mature in 10 years and the coupon rate for every bond is the 10-year Treasury rate plus 400 basis points. The asset manager enters into an interest rate swap agreement with another party with a notional amount of $80 million in which it agrees to do the following:
• pay a fixed rate each year equal to the 10-year Treasury rate plus 100 basis points
• receive LIBOR
The interest rate agreement is simply an agreement to periodically exchange interest payments. The payments are benchmarked off of a notional amount. This amount is not exchanged between the two parties. Rather it is used simply to determine the dollar interest payment of each party. This is all we need to know about an interest rate swap in order to understand the economics of an arbitrage transaction. Keep in mind, the goal is to show how the subordinate/equity tranche can be expected to generate a return.
Let’s assume that the 10-year Treasury rate at the time the CDO is issued is 7%. Now we can walk through the cash flows for each year. Look first at the collateral. The collateral will pay interest each year (assuming no defaults) equal to the 10-year Treasury rate of 7% plus 400 basis points. So the interest will be:
Interest from collateral: 11% × $100,000,000 = $11,000,000
Now let’s determine the interest that must be paid to the senior and mezzanine tranches. For the senior tranche, the interest payment will be:
Interest to senior tranche: $80,000,000 × (LIBOR + 70 bp)
The coupon rate for the mezzanine tranche is 7% plus 200 basis points. So, the coupon rate is 9% and the interest is:
Interest to mezzanine tranche: 9% × $10,000,000 = $900, 000
Finally, let’s look at the interest rate swap. In this agreement, the asset manager is agreeing to pay some party (we’ll call this party the “swap counterparty”) each year 7% (the 10-year Treasury rate) plus 100 basis points, or 8%. But 8% of what? As explained above, in an interest rate swap payments are based on a notional amount. In our illustration, the notional amount is $80 million. The reason the asset manager selected the $80 million was because this is the amount of principal for the senior tranche which receives a floating rate. So, the asset manager pays to the swap counterparty:
Interest to swap counterparty: 8% × $80,000,000 = $6,400,000
The interest payment received from the swap counterparty is LIBOR based on a notional amount of $80 million. That is,
Interest from swap counterparty: $80,000,000 × LIBOR
Now we can put this all together. Let’s look at the interest coming into the CDO:
Interest from collateral . . . . . . . . . . . . . . . . . . . .$11,000,000
Interest from swap counterparty . . . . . . . . . . . .$80,000,000 × LIBOR
Total interest received . . . . . . . . . . . . . . . . . . . .$11,000,000 + $80,000,000 × LIBOR
The interest to be paid out to the senior and mezzanine tranches and to the swap counterparty include:
Interest to senior tranche . . . . . . . . . . . . . . . .$80,000,000 × (LIBOR + 70 bp)
Interest to mezzanine tranche . . . . . . . . . . . .$900,000
Interest to swap counterparty . . . . . . . . . . . .$6,400,000
Total interest paid . . . . . . . . . . . . . . . . . . . . .$7,300,000 + $80,000,000 × (LIBOR + 70 bp)
Netting the interest payments coming in and going out we have:
Total interest received . . . . . . . . . . . . .$11,000,000 + $80,000,000 × LIBOR
Total interest paid . . . . . . . . . . . . .$ 7,300,000 + $80,000,000 × (LIBOR + 70 bp)
Net interest . . . . . . . . . . . . . . . . . . . . . .$ 3,700,000 - $80,000,000 × (70 bp)
Since 70 bp times $80 million is $560,000, the net interest remaining is $3,140,000 (= $3,700,000 − $560,000). From this amount any fees (including the asset management fee) must be paid. The balance is then the amount available to pay the subordinate/equity tranche. Suppose that these fees are $634,000. Then the cash flow available to the subordinate/equity tranche for the year is $2.5 million. Since the tranche has a par value of $10 million and is assumed to be sold at par, this means that the annual return is 25%.
Obviously, some simplifying assumptions have been made. For example, it is assumed that there are no defaults. It is assumed that all of the issues purchased by the asset manager are noncallable and therefore the coupon rate would not decline because issues are called. Moreover, as explained below, after some period the asset manager must begin repaying principal to the senior and mezzanine tranches. Consequently, the interest rate swap must be structured to take this into account since the entire amount of the senior tranche is not outstanding for the life of the collateral. Despite the simplifying assumptions, the illustration does demonstrate the basic economics of an arbitrage transaction, the need for the use of an interest rate swap, and how the subordinate/equity tranche will realize a return.
2. Cash Flow CDO Structure In a cash flow CDO, the objective of the asset manager is to generate cash flow (primarily from interest earned and proceeds from bonds that have matured, have been called, or have amortized) to repay investors in the senior and mezzanine tranches. Because the cash flows from the structure are designed to accomplish the objective for each tranche, restrictions are imposed on the asset managers. The conditions for disposing of issues held are specified and are usually driven by credit risk considerations. Also, in assembling the portfolio, the asset manager must meet certain requirements set forth by the rating agency or agencies that rate the deal.
There are three relevant periods. The first is the ramp up period. This is the period that follows the closing date of the transaction where the manager begins investing the proceeds from the sale of the debt obligations issued. This period is usually less than one year. The reinvestment period or revolving period is where principal proceeds are reinvested and is usually for five or more years. In the final period, the portfolio assets are sold and the debt holders are paid off as described below.
a. Distribution of Income Income is derived from interest income from the underlying assets and capital appreciation. The income is then used as follows. Payments are first made to the trustee and administrators and then to the asset manager.154 Once these fees are paid, then the senior tranches are paid their interest. At this point, before any other payments are made, there are certain tests that must be passed.
These tests are called coverage tests and will be discussed later. If the coverage tests are passed then interest is paid to the mezzanine tranches. Once the mezzanine tranches are paid, interest is paid to the subordinate/equity tranche.
In contrast, if the coverage tests are not passed then there are payments that are made so as to protect the senior tranches. The remaining income after paying the fees and senior tranche interest is used to redeem the senior tranches (i.e., pay off principal) until the coverage tests are brought into compliance. If the senior tranches are paid off fully because the coverage tests are not brought into compliance, then any remaining income is used to redeem the mezzanine tranches. Any remaining income is then used to redeem the subordinate/equity tranche.
b. Distribution of Principal Cash Flow The principal cash flow is distributed as follows after the payment of the fees to the trustees, administrators, and asset manager. If there is a shortfall in interest paid to the senior tranches, principal proceeds are used to make up the shortfall. Assuming that the coverage tests are satisfied, during the reinvestment period the principal is reinvested. After the reinvestment period or if the coverage tests are failed, the principal cash flow is used to pay down the senior tranches until the coverage tests are satisfied. If all the senior tranches are paid down, then the mezzanine tranches are paid off and then the subordinate/equity tranche is paid off.
c. Restrictions on Management The asset manager in both a cash flow CDO and a market value CDO (discussed next) actively manage the portfolio. The difference is in the degree of active management. In a cash flow CDO, the asset manager initially structures and then rebalances the portfolio so that interest from the pool of assets plus repaid principal is sufficient to meet the obligations of the tranches. In contrast, the asset manager in a market value CDO seeks to generate trading profits to satisfy a portion of the obligations to the tranches.
The asset manager for both types of CDOs must monitor the collateral to ensure that certain tests imposed by the rating agencies are being met. For cash flow CDOs there are two types of tests: quality tests and coverage tests.
In rating a transaction, the rating agencies are concerned with the diversity of the assets. There are tests that relate to the diversity of the assets. These tests are called quality tests. An asset manager may not undertake a trade that will result in the violation of any of the quality tests. Quality tests include (1) a minimum asset diversity score,155 (2) a minimum weighted average rating, and (3) maturity restrictions.
There are tests to ensure that the performance of the collateral is sufficient to make payments to the various tranches. These tests are called coverage tests. There are two types of quality tests: par value tests and interest coverage ratio. Recall that if the coverage tests are violated, then income from the collateral is diverted to pay down the senior tranches.
3. Market Value CDO As with a cash flow CDO, in a market value CDO there are debt tranches and a subordinate/equity tranche. However, because in a market value CDO the asset manager must sell assets in the underlying pool in order to generate proceeds for interest and repayment of maturing tranches, there is a careful monitoring of the assets and their price volatility. This is done by the frequent marking to market of the assets.
Because a market value CDO relies on the activities of the asset manager to generate capital appreciation and enhanced return to meet the obligations of the tranches in the structure, greater flexibility is granted to the asset manager with respect to some activities compared to a cash flow CDO. For example, while in a cash flow CDO the capital structure is fixed, in a market value CDO the asset manager is permitted to utilize additional leverage after the closing of the transaction.

D. Synthetic CDOs

A synthetic CDO is so named because the CDO does not actually own the underlying assets on which it has risk exposure. That is, in a synthetic CDO the CDO debt holders absorb the economic risks, but not the legal ownership, of a pool of assets.
 
1. Key Elements of a Synthetic CDO In a synthetic CDO there is credit risk exposure to a portfolio of assets, call the reference asset. The reference asset serves as the basis for a contingent payment as will be explained later. The reference asset can be a bond market index such as a high-yield bond index or a mortgage index. Or, the reference asset can be a portfolio of corporate loans that is owned by a bank.
The credit risk associated with the reference asset is divided into two sections: (1) senior section and (2) junior section. In a typical synthetic CDO structure, the senior section is about 90% and the junior section is about 10%. (We’ll see what we mean by 90% and 10% shortly.) The losses that are realized from the reference are first realized by the junior section up to a notional amount and then after that full loss is realized, the senior section begins realizing losses.
For example, let’s suppose that the reference asset is a high-yield corporate bond index. An amount of credit risk exposure in terms of market value must be determined. Suppose that it is $500 million. The $500 million is referred to as the notional amount. Suppose further that the credit risk associated with the $500 million credit exposure is divided into a $450 million senior section and $50 million junior section. The $450 million is the notional amount for the senior section and the $50 million is the notional amount for the junior section. The first $50 million of loss to the reference asset due to a credit event (explained later) is absorbed by the junior section. Only after the junior section absorbs the first $50 million in loss will the senior section realize any loss.
You may wonder why we refer to senior and junior “sections” rather than senior and junior “note holders.” The reason is that in a synthetic CDO structure, no debt obligations are issued to fund the senior section. However, for the junior section, debt obligations are issued. In our illustration, $50 million of junior notes are issued. They are issued in the same way as in a cash CDO structure. That is, there is typically several tranches of junior notes issued by the special purpose vehicle (SPV). There will be the most senior tranche of the junior notes and there will be the subordinate/equity tranche.
The proceeds received from the issuance of the junior notes are then invested by the asset manager. However, the investments are restricted to high quality debt instruments. This includes government securities, federal agency debentures, and corporate, mortgage-backed, and asset-backed securities rated triple A.
Now we introduce the key to a synthetic CDO—a credit derivative instrument. An interest rate derivative is used by an investor to protect against interest rate risk. (We actually illustrated the use of one type of interest rate derivative, an interest rate swap, earlier when we demonstrated the economics of an arbitrage CDO transaction.) A credit derivative, as the name indicates, is used to protect against credit risk. The type of credit derivative used in a synthetic CDO is a credit default swap. Here we discuss the essential elements of a credit default swap, just enough to understand its role in a synthetic CDO.
A credit default swap is conceptually similar to an insurance policy. There is a “protection buyer” who purchases protection against credit risk on the reference asset. In a synthetic CDO, the insurance buyer is the asset manager. The protection buyer (the asset manager in a synthetic CDO) pays a periodic fee (like an insurance premium) and receives, in return, payment from the protection seller in the event of a “credit event” affecting any asset included in the reference asset. Who is the seller of the protection seller? It is the SPV on behalf of the junior note holders.
As with an interest rate swap, a credit default swap has a notional amount. The notional amount will be equal to the senior section, $450 million in our example.
Let’s clarify this by continuing with our earlier illustration and look at the return to the junior note holder in the structure. The junior note holders are getting payments that come from two sources:
1. the income from the high quality securities purchased with the funds from the issuance of the junior debt obligations and
2. the insurance premium (premium from the credit default swap) paid by the asset manager to the SPV
Effectively, the junior note holders are receiving the return on a portfolio of high-quality assets subsidized by the insurance premium (i.e., the payment from the credit default swap). However, this ignores the obligation of the junior note holders with respect to the credit default swap. If there is a credit event (discussed below) that requires the junior note holders to make a payment to the protection buyer, then this reduces the return to the junior note holders. As noted earlier, the effect on a particular tranche of the junior section depends on its priority. That is, the subordinate/equity tranche is affected first before the most senior tranche and the other tranches superior to the subordinate/equity tranche is affected.
So what becomes critical for the junior note holders’ return is when it must make a payment. In credit derivatives, a payoff by the protection seller occurs when there is a credit event. Credit events are defined in the credit derivative documentation. On a debt instrument a credit event generally includes: bankruptcy, failure to pay when due, cross default/cross acceleration, repudiation, and restructuring. This credit event applies to any of the assets within the reference asset. For example, if a high-yield corporate bond index is the reference asset and Company X is in the index, a credit event with respect to Company X results in a payment to the protection buyer. If a designated portfolio of bank loans to corporations is the reference asset and Corporation Y’s loan is included, then a credit event with respect to Corporation Y results in a payment to the protection buyer.
How much must be paid by the protection seller (the junior tranches in our illustration) to the protection buyer (the asset manager)? Should a credit event occur, there is an intent that the protection buyer be made whole: The protection buyer should be paid the difference between par and the “fair value” of the securities. How this is determined is set forth in the credit derivative agreement.
What is the motivation for the creation of synthetic CDOs? There exist two types: synthetic balance sheet CDOs and synthetic arbitrage CDOs. In the case of a synthetic balance sheet CDO, by embedding a credit default swap within a CDO structure, a bank can shed the credit risk of a portfolio of bank loans without having to notify any borrowers that they are selling the loans to another party, a requirement in some countries. No consent is needed from borrowers to transfer the credit risk of the loans, as is effectively done in a credit default swap. This is the reason synthetic balance sheet CDOs were initially set up to accommodate European bank balance sheet deals.
For a synthetic arbitrage CDO, there are several economic advantages of using a synthetic CDO structure rather than a cash CDO structure. First, it is not necessary to obtain funding for the senior section, thus making it easier to do a CDO transaction.156 Second, the ramp-up period is shorter than for a cash CDO structure since only the high-quality assets need be assembled, not all of the assets contained in the reference asset. Finally, there are opportunities in the market to be able to effectively acquire the assets included in the reference asset via a credit default swap at a cheaper cost than buying the assets directly.157 It because of these three advantages that issuance of synthetic CDO structures has increased dramatically since 2001 and is expected to continue to increase relative to cash CDO structures.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.144.28.80