Index


  • abrupt junction semiconductor p–n diode, 112
  • absorption coefficient, 73
  • acceptor binding energy, 75
  • acceptor level, 75
  • aggregation quenching, 331
  • AlGaInP LEDs
    • emission spectra, 270
    • forward intensity vs. current characteristics, 289, 290
    • output intensity vs. ambient temperature, 289, 290
    • quantum efficiency, 295
  • alloy semiconductors, 98–100
  • Alq3, 329, 332, 333
  • ambipolar, 326
  • amorphous silicon, 206
    • absorption spectrum, 239
    • carrier lifetimes, 241
    • energy band diagram, 240
    • thin‐film solar cells
      • hydrogen‐terminated film (a‐Si:H), 239–243
      • plasma‐enhanced chemical vapour deposition, 238, 239
  • anode material, OLEDs, 323–324
  • anti‐sites, 271
  • ATZL, 329, 330
  • Auger process, 272
  • Auger recombination process, 252
  • avalanche breakdown, 139
  • BAlq, 333
  • bandtails, 240
  • band theory of solids, 38–40, 100
  • band‐to‐band transitions, 186–190
  • base transport factor, 366
  • bias voltage, 115
  • bipolar junction transistor (BJT), 359–367
    • base transport factor, 366
    • collector current amplification factor, 366
    • current transfer ratio, 366
    • emitter injection efficiency, 366
    • minimising base current, 365–366
    • PNP transistor, electrical behaviour of, 367
    • structure, 361, 362
    • symbols and applications, 371–372
    • voltages and currents in, 361, 362
  • Bloch functions, 40–42
  • Bohr magneton, 28, 31, 181
  • Boltzmann approximation, 62
  • Boltzmann distribution function, 385–389
  • bosons, 30
  • bound excitons, 175, 184
  • Bragg model, 47–48, 101
  • bra‐ket notation, 26
  • Brillouin zone boundaries, 44, 45
  • Brillouin zones, 44, 45, 100
  • built‐in electric field, 87–88, 113
  • bulk crystalline silicon solar panels, 202
  • C60 see fullerenes
  • cadmium telluride (CdTe)
    • band structures of, 69, 71
    • thin‐film solar cells, 247
  • cadmium telluride (CdTe) solar cells
    • band diagram, of CdTe/CdS heterojunction, 245, 246
    • grain boundaries, 245
    • grain structure, 246
    • thin‐film, 247
    • vapour deposition, 247
  • candela (cd), 191
  • carbon (diamond), 52
    • cubic crystal structure, 67, 68
    • energy gap, 66
  • carbon nanotube, 346, 347
  • carrier concentrations, 55–65, 101, 102
    • in intrinsic semiconductor, 55, 64
    • n‐type extrinsic semiconductor, 78, 79
    • p–n junction diode, 127–134
    • PNP BJT transistor, 364
  • carrier diffusion, 102
    • and Einstein relation, 86–88
  • carrier lifetimes, 86
    • traps and, 94–98
  • carrier mobility, 80
    • organic and inorganic semiconductors, 313
  • carrier recombination time, 85
  • carrier transport, in semiconductors, 79–83
  • cathode materials, OLEDs, 324–325
  • CDBP, 333
  • CIGS solar cells
    • band diagram, 247, 248
    • scanning electron microscope cross‐section, 247, 248
  • classical electron, 2–4
  • collector current amplification factor, 366
  • colour rendering index (CRI), 293
  • colour space, 194
  • colour space chromaticity diagram, 193
  • compound semiconductors see also gallium arsenide (GaAs)
    • hexagonal structure, 67, 68
  • concentrating solar cell installations, 252–253
  • concentrator solar technology, 251–253
  • conductive polymers, 310
  • conjugated polymers, 310
    • hole conductivity, 326
    • molecular structures of, 311, 312
  • conjugated systems, 309–314
  • conjugation length, 310–311
  • copper phthalocyanine (CuPc), 325–326
  • coumarin‐based green fluorescent dopant, 334
  • CPB, 333
  • crystalline polymers, 311, 313
  • C‐545 TB, 334
  • cubic gallium nitride (GaN), band structures of, 69, 71
  • current transfer ratio, 366
  • Czochralski growth process, 232, 237
  • damping term, 81
  • Davisson–Germer experiment, 5–6
  • de Broglie equation, 5, 30
  • deep traps, 94, 95
  • degenerate doping, 141
  • density of states function, 58, 61–63
  • depletion approximation, 119–127
  • depletion region, p–n junction diode, 120–123
  • Dexter electron transfer, 186
  • diffusion currents, 86
  • diffusion equation, 91–94
  • diffusion length, 93
  • diode current, p–n junction diode, 113–117
  • diode equation, p–n junction diode, 127–139
  • Dirac notation, 26
  • direct‐gap semiconductors
    • absorption edge, 190
    • dipole radiation, 175
    • electron–hole pair, 175
    • parabolic conduction and valence bands, 186, 187
    • photon absorption, 204, 205
    • photon emission rate, 189
    • solar cell, 204
  • dislocations, in GaN epitaxial layer, 288
  • dispersion‐free photon, 12
  • dispersion‐free propagation, 12
  • distributed Bragg reflector (DBR), 295, 298
  • donor, 74
  • donor binding energy, 74
  • donor level, 74
  • doping, 74
  • double heterojunction Al x Ga1‐x As LEDs
    • band gaps, 278, 279
    • challenge, 285
    • current density level, 283–284
    • device structure, 279
    • electron and hole energy levels, 279, 280
    • exponential decay of excess carriers, 280, 281
    • external quantum efficiency, 279
    • recombination coefficient, 282
  • drift current, 80
  • drift velocity, 79, 82
  • effective back surface recombination velocity, 214
  • effective front surface recombination velocity, 214
  • effective mass, 48–49, 101
  • eigenstates, 19
  • Einstein relation, 88
  • electroluminescence efficiency, 313
  • electroluminescent (EL) polymer layer, 314, 315
  • electron(s)
    • behaviour, in crystalline solids (see band theory of solids)
    • magnetic dipole moment, 28
    • in one‐dimensional potential well, 18–24, 31
    • in potential well with infinite potential energy boundaries, 50–52
    • quasi‐Fermi energy, 88, 89
    • transmission and reflection at potential energy step, 24–25
  • electron‐blocking layers, 326
  • electron–hole pair (EHP), 55
    • generation rate vs. depth, 223
    • lattice vibration/phonon, 73
    • non‐radiative recombination, 271
    • photon absorption, 73
    • recombination, 73–74, 83, 86
  • electron injection layer (EIL), 326
  • electron transport layer (ETL), 328–330
  • electron‐volt, 3
  • emitter, 362
  • emitter injection efficiency, 366
  • energy band filling, 52–53
  • energy barrier, 113
  • energy flow per unit area, 169
  • equilibrium and non‐equilibrium dynamics, 83–86
  • escape cone, LED, 273
  • excitons, 174–176
    • in an organic semiconductor, 184
    • bound, 175, 184
    • energy levels, 174, 175
    • ground state energy, 174
    • inorganic semiconductor behaviour, 175
    • ionisation/binding energy, 174
    • molecular exciton, 175–176, 184–186
    • thermalisation, 175
  • expectation values, 26, 31
  • extrinsic semiconductors, 74–79
  • eye sensitivity function, 191, 192
  • Fermi–Dirac distribution function, 57, 61
  • Fermi energy, 101
    • and holes, 53–55
  • fermions, 30
  • Fick's first law, 86
  • field ionisation, 139
  • fill factor, 212
  • flat‐band voltage, 316
  • flip‐chip mounting, 296
  • fluorescence, 185
  • fluorescent dopants, 334–335
  • Förster resonance energy transfer, 185
  • forward‐biased LED p–n junction, 267, 268
  • fullerenes
    • LUMO level, 346
    • molecular structures, 345, 346
  • GaAs1‐xPx light‐emitting diodes
    • nitrogen doping, 278
    • visible light emission, 277
  • GaInAs/GaAs LED, observed luminescence, 272
  • gallium arsenide (GaAs), 52
    • band structures of, 69, 70
    • carrier concentration vs. temperature, 66, 67
    • energy gaps, 67
    • LED, 276
    • liquid‐phase epitaxy technique, 276
    • optical outcoupling, 273–274
    • surface recombination, 272
  • gallium phosphide (GaP), band structures of, 69, 71
  • Ga1‐x InxN LEDs, 286–294
    • forward intensity vs. current characteristics, 289, 290
    • output intensity vs. ambient temperature, 289, 290
  • generation/recombination currents, 143–145
  • germanium (Ge), 52
    • absorption coefficients, 206
    • band structures of, 69, 70
    • carrier concentration vs. temperature, 66, 67
    • cubic crystal structure, 67, 68
    • energy gaps, 67
    • tandem single‐crystal solar cell, 249
  • graded composition strain‐accommodation layer, 251
  • green‐emitting GaP:N devices, 278
  • group velocity, 11, 383–384
  • heavy holes, 72
  • heterojunctions, 156–157
    • in solar cells and LEDs, 157
  • high‐efficiency multi‐junction solar cells, 247–251
  • highest occupied molecular orbital (HOMO), 318
  • high‐power lighting‐grade white LED, 297, 298
  • hole‐conducting triarylamines, 327
  • hole‐electron pair, 173
  • hole injection layer (HIL), 325–326
  • holes
    • heavy, 72
    • light, 72
    • quasi‐Fermi energy, 88, 89
    • steady‐state diffusion equation for, 92
    • sub‐bands for, 72
  • hole transport layer (HTL), 326–328
  • host–guest energy transfer process, 331, 332
  • human visual system, 190–191
  • hybridised sp3 configuration, 309
  • hydrogen‐terminated film (a‐Si:H)
    • absorption spectrum, 239
    • atomic structure, 239
    • density of electron states, 240
    • doping, 241
    • solar cells, 241–243
    • Staebler–Wronski effect, 241
  • ideality factor, 144, 145
  • III–V semiconductors see also semiconductor(s)
    • zincblende structure, 67, 68
  • II–VI semiconductors see also semiconductor(s)
    • energy gaps, 67
    • zincblende structure, 67, 68
  • imines, 329, 330
  • impact ionisation, 139
  • indirect‐gap semiconductors see also germanium (Ge); silicon (Si)
  • inorganic LEDs, 267
  • insulators, energy band filling, 53
  • interface traps, 94
  • interference pattern, 4, 5
  • intermediate temperature condition, 76
  • intersystem crossing (ISC), 331
  • intrinsic semiconductors, 119
    • carrier concentrations, 55, 64
    • spatial dependence of energy bands, 80, 81
  • isoelectronic defect, 278
  • isophorone‐based red emitter, 334, 335
  • joint density of states function, 188
  • joint dispersion relation, 188
  • junction capacitance, 158–159
  • junction field‐effect transistor (JFET), 359
    • advantage, 370
    • characteristic curves, 368, 369
    • linear region, 369, 370
    • modelling, 370
    • n‐channel, 368, 369, 372
    • operating principle, 367–368
    • p‐channel, 371, 372
    • symbols and applications, 371–372
    • voltage‐controlled resistor behaviour, 370
  • Kronig–Penney model, 42–47, 101
  • lambertian source, 275
  • large‐molecule organic materials, 309
  • lens‐free light‐emitting diodes, 275, 276
  • light absorption, 204–207
  • light emission
    • physics of, 167–169
    • visible, 167
  • light‐emitting diodes (LEDs), 112
    • AlGaInP, 285–286
    • applications, 267
    • current blocking layer, 272
    • development of, 266
    • double heterojunction Al x Ga1‐x As, 278–285
    • efficiency of, 267
    • electron and hole currents, 272
    • emission spectrum, 269–271
    • external quantum efficiencies, 298, 299
    • GaAs1‐xPx, 277–278
    • Ga1‐x InxN, 286–294
    • infrared, 167
    • inhomogeneous broadening, 271
    • intensity vs. emission angle, radiation pattern of, 275, 276
    • LED die, 268, 269
    • lens‐free, 275, 276
    • lighting applications, 298
    • non‐radiative recombination, 271–272
    • operation and device structures, 267–269
    • optical outcoupling, 272–275
    • output characteristics, 275
    • packaging, 268
    • structures for enhanced outcoupling and high lumen output, 294–299
    • transparent epoxy polymer lens, 275
    • UV‐emitting, 167
    • visible, 298–299
    • visible light emission, 167
    • wafer bonding technique, 251, 284
  • light‐emitting material (LEM) processes, 330–332
  • light holes, 72
  • liquid‐phase epitaxy (LPE) technique, 276
  • lithium–quinolate complexes, 326
  • Lorentz force, 3
  • lowest unoccupied molecular orbital (LUMO), 318
  • low‐level injection, 84
  • lumen (lm), 191
  • luminance, 191
  • luminescence types, 166
  • luminous efficacy, 191
  • luminous efficiency, 191, 192
  • luminous flux, 191
  • luminous intensity, 191
  • majority carriers, 76
  • metallurgical grade (MG) silicon, 231
  • metal–semiconductor (MS) diode see Schottky diode
  • metal–semiconductor junctions, 145–156
  • metals, energy band filling, 53
  • microcrystalline silicon, 244
  • minority carrier recombination time delay, 157–158
  • minority carriers, 76
  • MOCVD growth technique, 292
  • molecular doping, 331
  • molecular exciton, 175–176, 184–186
  • molecular orbitals, 184
  • momentum space lattice, 152
  • monochromatic light sources, 193
  • multicrystalline silicon, 230
    • grain boundaries, 233
    • market share, 232
  • multi‐junction solar cells, 228, 250, 251
  • multiple quantum well LED, 291
  • nitride alloy semiconductor systems, 290, 291
  • non‐radiative recombination events, 74
  • NPN BJT transistor
  • n‐type semiconductor
    • metal–semiconductor contact, 145, 146
    • surface traps, 96
  • number of states in a band, 50–52, 101
  • ohmic contact, 146, 155, 156
  • optical outcoupling, in LED performance, 272–275
  • orbital angular momentum, 29
  • organic electronics, 308
  • organic light‐emitting diodes (OLEDs), 308 see also light‐emitting diodes (LEDs)
    • cathode materials, 324–325
    • electron injection layer, 326
    • electron transport layer, 328–330
    • fluorescent dopants, 334–335
    • hole injection layer, 325–326
    • hole transport layer, 326–328
    • host materials, 332–333
    • ITO anode material, 323–324
    • LiF/Al cathodes, 324
    • light‐emitting material processes, 330–332
    • package, 324, 325
    • phosphorescent and thermally activated delayed fluorescence dopants, 335–340
    • polymer, 314–319
    • small‐molecule, 320–323
  • organic solar cells
    • bulk heterojunction, 342–344
    • challenge, 340
    • materials, 344–349
    • planar heterojunction, 340, 341
    • single‐layer, 340, 341
  • organometallic molecules, 335, 336
  • oxadiazoles, 329
  • passivated emitter and rear contact (PERC) solar cell, 224–225see also solar cells
  • Pauli exclusion principle, 29–31, 180
  • periodic potential energy, 39
  • perovskite solar cells
    • material, 346, 347
    • Spiro‐MeOTAD hole transport layer, 348, 349
    • structure, 348
  • perylene molecule, 335, 336
  • phase velocity, 11
  • phenylazomethines, 327, 328
  • phonons, 30
  • phosphorescence, 185
  • phosphorescent emitters, 335, 336, 338
  • photodiodes, 203, 204
  • photoelectric effect, 7–9
  • photoluminescence efficiency, 313
  • photometric units, 190–194
  • photon absorption, 340
    • for direct‐gap semiconductor, 204
    • hole‐electron pair creation, 173
    • in silicon, 73
  • photon emission rate, 173, 187–189see also light emission
  • photons, 8
  • physical constants, 377
  • pinch‐off voltage, 369
  • p–i–n structure, 241
  • planar heterojunction organic solar cells, 340, 341
  • Planck's constant, 5
  • p–n junction diode
    • abrupt junction diode, 112
    • alternating current and transient behaviour, 157–159
    • band model, 113, 114, 116, 117
    • built‐in electric field, 113
    • carrier generation and recombination, 143–145
    • components, 112
    • contact potential, 114, 117–119
    • currents, 114, 115
    • depletion approximation, 119–127
    • diode current, 113–117
    • diode current vs. applied voltage, 117
    • diode equation, 127–139
    • with external voltage source, 115
    • forward bias, application of, 115, 116
    • reverse bias, application of, 116, 117
    • reverse breakdown, 139–141
    • transition region, 113
  • PNP BJT transistor
    • carrier concentration, 364
    • electrical behaviour of, 367
    • symbols, 371, 372
    • voltages and currents in, 362
  • poly(3‐hexylthiophene) (P3HT)
    • absorption spectra, 345
    • molecular structures, 344, 345
  • polyacetylene structure, 310
  • polycrystalline silicon, 244
  • polyethylene molecular structure, 309
  • polymer OLED see also light‐emitting diodes (LEDs)
    • electroluminescent (EL) polymer layer, 314, 315
    • flat‐band condition, 316, 317
    • ITO challenges, 318
    • operating characteristics, 318, 319
    • performance, 319
    • structure, 314, 315
  • poly para‐phenylene vinylene (PPV)
    • absorption and emission of, 313, 314
    • derivative forming silicon‐substituted soluble polymer, 313
  • porphyrinic metal complex, 325
  • potential well, heterojunction, 156, 157
  • Poynting vector, 169
  • probability amplitude, 12
  • probability density, 12
  • π sub‐bands, 310
  • quantum box, 29
  • quantum efficiency, 279
  • quantum mechanics
    • Davisson–Germer experiment, 5–6
    • photoelectric effect, 7–9
    • Schrödinger equation, 14–18, 31
    • Stern–Gerlach experiment, 26–29
    • two slit electron experiment, 4–6
    • wavefunction, 12–13
    • wave packets and uncertainty, 10–12
  • quantum states, for quantum well, 29
  • quantum well LED, 284
  • quasi‐Fermi energies, 88–91
  • quasi‐Fermi levels, for forward‐biased junction, 132, 133
  • quasiparticles, 30
  • quaternary semiconductor alloys, 100
  • quinacridone‐based DMQA, 334
  • quinolines, 329
  • radiation intensity, 169
  • radiative energy transfer, 186
  • radiative recombination, 268
  • rapid thermal annealing, 244–245
  • reciprocal space lattice, 59, 60, 150, 152
  • recombination coefficient, 282
  • red fluorescent dopants, 334, 335
  • reduced zone scheme, 48
  • reflection coefficient, 25
  • reverse‐biased photodiode characteristics, 360, 361
  • reverse‐biased p–n junction, 360
  • reverse ISC (RISC), 337, 339
  • reverse saturation current, 116, 117
  • Richardson–Dushman equation, for thermionic emission, 154
  • saturated polymers, 309
  • σ bonds, 309
  • scattering time, 79, 81, 82
  • Schottky diode, 158, 159
    • current–voltage relationship, 154
    • depletion approximation, 148
    • formation, 147, 148
  • Schottky effect, 147
  • Schrödinger equation, 14–18, 31
  • screen printing method, 234, 235
  • secondary spin quantum number, 28
  • self‐compensation mechanism, 245
  • semiconductor(s)
    • band diagrams, 67–72
    • band gap of, 55
    • carrier transport in, 79–83
    • conduction and valence band, 53
    • direct and indirect gap, 72–74
    • energy band filling, 53
    • extrinsic, 74–79
    • material properties, 391
    • materials, 65–67
    • room temperature, 53, 54
  • semimetal, 66
  • separation of variables, 58
  • shallow traps, 94
  • sheet resistance, 236
  • Shockley–Queisser limit, 226
  • Shockley–Read–Hall (SRH) recombination, 94
  • Siemens process, 231
  • silicon (Si)
    • absorption coefficients, 206
    • aluminium atom substitution, 75
    • band structures of, 69
    • carrier concentration vs. temperature, 66, 67
    • cubic crystal structure, 67, 68
    • ohmic contacts, 155
    • phosphorus atom substitution, 74
    • silicon ribbon technology, 237
    • valence band, 54
  • silicon solar cells
    • advanced production methods, 237, 238
    • finishing process, 233–237
    • pattern of conductors, 236
    • wafer preparation, 230–233
  • simple harmonic radiator, 169–170
  • single atom, energy levels of, 39
  • single‐layer organic solar cells, 340, 341
  • singlet states, 181
  • small‐molecule materials, OLED
    • requirements, 321
    • vapour deposition methods, 320
  • small‐molecule OLED
    • band diagram, 322, 323
    • operation, 322–323
    • organic molecules used for, 320
    • structure, 321
  • small‐molecule organic materials, 309
  • solar cells
    • absorption coefficient, 190
    • band diagram, 202, 203
    • crystalline silicon, 208
    • design and analysis, 207–213
    • efficiency, 225–230
    • electron–hole pairs (EHPs), 202
    • generation rate vs. depth, 220–224
    • high‐efficiency multi‐junction, 247–251
    • I–V characteristic, 203, 204
    • open circuit voltage, 211
    • operating point, 212
    • short‐circuit current, 211
    • space applications, 247, 248
    • surface recombination reduction, 224–225
    • terrestrial, 207
    • thin, 214–220
    • total solar cell current, 210, 211
  • solar‐grade silicon, 231
  • solar radiation spectrum, 207
  • spectrum splitting, 243
  • spin, 26–29
  • spin g factor, 28
  • spin states, for two electron system, 181, 182
  • spin up and down, 28
  • Spiro‐MeOTAD hole transport layer, for perovskite solar cells, 348, 349
  • split‐off bands, 72
  • Staebler–Wronski effect, 241
  • stationary states, 19, 170–171
  • steady‐state diffusion equation for holes, 92
  • steady‐state (time‐independent) situations, 15–18
  • stereospecific bonds, 309
  • Stern–Gerlach experiment, 26–29
  • storage delay time, 158
  • string ribbon growth method, 237, 238
  • sub‐bands for holes, 72
  • surface passivation, 224
  • surface recombination, 272
    • reduction, 224–225
    • velocity, 96, 102
  • surface texturing/roughening, 295
  • surface traps, 94, 96
  • synchrotron radiation source, 170
  • tandem solar cells
    • graded composition strain‐accommodation layer, 251
    • structure on glass substrate, 244
    • tunnelling between InGaP and GaAs cells, 250
  • ternary semiconductor alloys, 100
  • terrestrial solar cells, 207 see also solar cells
  • thermally activated delayed fluorescence (TADF), 337, 339
  • thermionic emission, 149
    • Richardson–Dushman equation for, 154
  • thin‐film solar cells see also solar cells
    • amorphous silicon, 238–245
    • CdTe solar cells, 247
    • telluride/selenide/sulphide, 245–247
  • thin solar cells, 214–220see also solar cells
  • time‐independent Schrödinger equation, 15
  • tin (Sn), energy gap, 66
  • TPBI, 329, 330
  • TPQ, 329, 330
  • transistor, 360 see also bipolar junction transistor (BJT); junction field‐effect transistor (JFET)
  • transmission coefficient, 25
  • trap‐assisted carrier recombination, 94
  • traps, 94–96, 102
  • triarylamines, 327
  • trichromatic illumination, 194
  • triple‐junction solar cell structure, 249
  • triplet harvesting, 331
  • triplet states
    • of helium, 181
    • of two‐electron systems, 181–184
  • tunnel diodes, 141–143
    • current–voltage characteristics, 142
    • depletion width, 141, 142
  • tunnelling breakdown, 140, 141
  • tunnelling of electrons, p–n junction diode, 140–141
  • two‐electron atoms, 176
    • antisymmetric wave function, 179, 180
    • helium atoms, 181, 183
    • potential energy, 177
    • quantum numbers, 178, 179
    • spin wave functions, 180
    • symmetric wave function, 179
    • wave function, 178
  • two slit electron experiment, 4–6
  • uncertainty principle, 11, 31, 379–381
  • vapour deposition, 247
  • varactor diode, 159
  • wafer bonding technique, 251, 284
  • wavefunction, 12–13
    • normalised, 13
  • wavenumber, 5
  • wave packets and uncertainty, 10–12
  • wave‐particle duality, 9
  • wire saw process, 232
  • workfunction, 7
  • wurtzite gallium nitride (GaN), band structures of, 69, 72
  • Zener breakdown, 141
  • Zener diode, 141
  • zinc selenide (ZnSe), energy gaps, 67
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.117.182.179