References

  1. 1 Golub, G.H. and Van Loan, C.F (2013) Matrix Computations (4th Ed.), Johns Hopkins University Press, Baltimore.
  2. 2 Horn, R.A. and Johnson, C.R. (2013) Matrix Analysis (2nd Ed.), Cambridge Univ. Press, New York.
  3. 3 Hannah, J. (1996) A geometric approach to determinants, The American Mathematical Monthly, vol. 103, n. 5, pp. 401–409.
  4. 4 Brandwood, D.H. (1983) A complex gradient operator and its application in adaptive array theory, IEE Proceedings vol. 130, N. 1, Feb. 1983, pp. 11–16.
  5. 5 Kung, S.Y. (1998) VLSI array processors. Englewood Cliffs, NJ, Prentice Hall.
  6. 6 Kay, S.M. (1993) Fundamentals of statistical signal processing: Estimation Theory (vol. 1), Prentice Hall Ed.
  7. 7 Scharf, L.L. (1991) Statistical signal processing: detection, estimation, and time series analysis, Addison‐Wesley Pub.
  8. 8 Rahaman, M. and Ahsanullah, M. (1973) A note on the expected values of power of a matrix, The Canadian Journal of Statistics, vol. 1, n. 1, pp. 123–125.
  9. 9 Graham, A. (1981) Kronecker product and matrix calculus, John Wiley & Sons, Ltd.
  10. 10 David, H.A. and Nagaraja, H.N. (2003) Order Statistics, John Wiley & Sons, Ltd.
  11. 11 Papoulis, A. and Pillai, S.U. (2002) Probability, random variables, and stochastic processes, McGraw‐Hill Education.
  12. 12 Oppenheim, A.V., Willsky, A.S. and Nawab, S.H. (1983) Signals and systems (vol.2). Englewood Cliffs, NJ: Prentice Hall.
  13. 13 Proakis, J.G. and Manolakis, D.G. (1988) Introduction to digital signal processing, Prentice Hall Ed.
  14. 14 Oppenheim, A.V. and Schafer, R.W. (2010) Discrete‐time signal processing, Pearson Higher Education.
  15. 15 Schreier, P.J. and Scharf, L.L. (2010) Statistical signal processing of complex‐valued data, Cambridge Univ.Press.
  16. 16 Boyd, S. and Vandenberghe, L. (2004) Convex Optimization, Cambridge University Press Ed. (http://stanford.edu/boyd/cvxbook).
  17. 17 Porat, B. and Friedlander, B. (1986) Computation of the exact Information Matrix of Gaussian time series with stationary random components, IEEE Trans. Acoustic Speech and Signal Processing, vol.ASSP‐34, pp. 118–130, Feb. 1986.
  18. 18 Westwater, E.R. (1978) The accuracy of water vapor and cloud liquid determination by dual‐frequency ground‐based microwave radiometry. Radio Science, 13(4): pp. 677–685.
  19. 19 DeVore, R.A. and Temlyakov, V.N. (1996) Some remarks on greedy algorithms, Advances in Computational Mathematics, vol. 5, pp. 173–187.
  20. 20 Eldar, Y.C. and Kutyniok, G. (2012) Compressed Sensing: Theory and Applications, Cambridge Univ.Press.
  21. 21 Pillai, S.U., Suel, T. and Cha, S. (2005) The Perron‐Frobenius theorem and some of its applications, IEEE Signal Processing Magazine, vol. 62, pp. 62–75.
  22. 22 Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D. and New, M. (2008) European daily high‐resolution gridded data set of surface temperature and precipitation for 1950– 2006, Journal of Geophysical Research: Atmospheres, vol. 113 n. D20, pp. 1–12.
  23. 23 Argo Project: www.argo.ucsd.edu
  24. 24 Marvasti, F. (Ed.) (2001) Nonuniform sampling: theory and practice, Springer Science, New York.
  25. 25 Fienberg, S.E. (2006) When did Bayesian inference become “Bayesian”?, Bayesian Analysis. vol. 1,n. 1, pp. 1–40.
  26. 26 Edwards, A.W. (1974) The history of likelihood, Int. Statistical Review, vol. 42, no. 1, pp. 9–15
  27. 27 Stigler, S.M. (2007) The epic story of maximum likelihood, Statistical Science vol. 22, n. 4, pp. 598–620.
  28. 28 Robert, C.R. and Casella, G. (2013) Monte Carlo statistical methods, Springer Ed., 1999 (2nd Ed., 2013).
  29. 29 Hyvärinen, A., Juha, K. and Erkki, O. (2004) Independent component analysis. vol.46, John Wiley & Sons, Ltd.
  30. 30 Strobach, P. (1986) Pure order recursive least squares ladder algorithms, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 4, pp. 880–897.
  31. 31 Huber, P.J. (2011) Robust statistics, Springer Berlin Heidelberg Ed.
  32. 32 Zoubir, A.M., Koivunen, V., Chakhchoukh, Y. and Muma, M. (2012) Robust estimation in signal processing: a tutorial‐style treatment of fundamental concepts, IEEE Signal Processing Magazine, vol. 29, no. 4, pp. 61–80.
  33. 33 Lehmann, E.L. (1986) Testing statistical hypothesis (2nd ed.), John Wiley & Sons, Ltd.
  34. 34 Lindsey, W.C. and Simon, M.K. (1978) Phase‐locked loops & their application, IEEE Communications Society, IEEE Press.
  35. 35 Meyr, H., Moeneclaey, M. and Fechtel, S.A. (1997) Digital Communication Receivers, Synchronization, Channel Estimation, and Signal Processing, John Wiley & Sons, Ltd.
  36. 36 Simeone, O., Spagnolini, U., Bar‐Ness, Y. and Strogatz, S.H. (2008) Distributed synchronization in wireless networks, IEEE Signal Processing Magazine, vol. 25, n. 5, pp. 81–97.
  37. 37 Van Trees, H.L. (2001) Detection Estimation and Modulation Theory, part 1, John Wiley & Sons, Ltd.
  38. 38 Cramér, H. (1946) A contribution to the theory of statistical estimation, Aktuariestidskrift, pp. 458–463, 1946.
  39. 39 Rao, C.R. (1945) Information and accuracy attainable in the estimation of statistical parameters, Bulletin of the Calcutta Mathematical Society, vol. 37, no. 3, pp. 81–91.
  40. 40 Stein, M., Mezghani, A. and Nossek, J.A. (2014) A Lower Bound for the Fisher Information Measure, IEEE Signal Processing Letters, vol. 21, no. 7, pp. 796–799.
  41. 41 Scott, D.W. (1992) Multivariate density estimation: theory, practice and visualization, John Wiley & Sons, Ltd.
  42. 42 Weinstein, E. and Weiss, A.J. (1988) A general class of lower bounds in parameter estimation, IEEE Trans. Inform.Th., vol. 34, n. 2, pp. 338–342.
  43. 43 Noam, Y. and Messer, H. (2009) Notes on the tightness of the Hybrid Cramér‐Rao lower bound, IEEE Trans. Signal Proc. vol. 57, n. 6, pp. 2074–2085.
  44. 44 Rife, D. and Boorstyn, R. (1974) Single tone parameter estimation from discrete‐time observations, IEEE Transactions on Information Theory, vol. 20, no. 5, pp. 591–598.
  45. 45 MacLachlan, G. and Krishnan, T. (1997) The EM algorithm and extensions, John Wiley & Sons, Inc., New York.
  46. 46 Feder, M. and Weinstein, E. (1988) Parameter estimation of superimposed signals using the EM algorithm, IEEE Transactions on Acoustic Speech and Signal Processing, vol. ASSP‐34, pp. 477–489.
  47. 47 Fessler, J.A. and Hero, A.O. (1994) Space‐alternating generalized EM algorithm, IEEE Transactions on Signal Processing, vol. SP‐42, pp. 4664–4677.
  48. 48 Friedlander, B. (1982) Lattice filters for adaptive processing, Proceedings of the IEEE, vol. 70, no. 8, pp. 829–867.
  49. 49 Lev‐Ari, H. and Kailath, T. (1984) Lattice filter parameterization and modeling of non‐stationary processes, IEEE Trans. Information Th., vol. 30, no. 1, pp. 2–16.
  50. 50 Kalman, R.E. and Bucy, R.S. (1961) New results in linear filtering and prediction theory. ASME. J. Basic Eng. vol. 83, n. 1, pp. 95–108.
  51. 51 Anderson, B.D.O. and Moore, J.B. (1979) Optimal filtering, Prentice Hall Ed.
  52. 52 P. Stoica and R. L. Moses, Spectral Analysis of Signals, Prentice Hall, 2005.
  53. 53 Tsatsanis, M.K., Giannakis, G.B. and Zhou, G. (1996) Estimation and equalization of fading channels with random coefficients, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1093–1096, Atlanta (USA).
  54. 54 Lindbom, L. (1993) Simplified Kalman estimation of fading mobile radio channels: high performance at LMS computational load, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 352–355 vol. 3, Minneapolis (USA).
  55. 55 Fliege, N.J. (1994) Multirate digital signal processing, John Wiley & Sons, Ltd.
  56. 56 Whittle, P. (1953) Analysis of multiple stationary time series, J. Roy. Stat. Soc., vol. 15, pp. 125–139.
  57. 57 Proakis, J.G., Salehi, M., Zhou, N. and Li, X. (1994) Communication systems engineering. Prentice Hall Ed.
  58. 58 Stüber, G.L. (2011) Principles of mobile communication. Springer Ed.
  59. 59 Widrow, B. and Stearns, S.D. (1985) Adaptive signal processing, Prentice Hall Ed., New Jersey.
  60. 60 Sayed, A.H. (2003) Fundamentals of Adaptive Filtering. Wiley‐IEEE Press.
  61. 61 Jaffer, A.G. (1998) Maximum likelihood direction finding of stochastic sources: A separable solution, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (New York. NY), pp. 2893–2896.
  62. 62 Stoica, P. and Nehorai, A. (1989) MUSIC, maximum likelihood, and Cramér‐Rao bound, IEEE Transactions on Acoustics, Speech, Signal Processing vol. 37, pp. 720–741.
  63. 63 Stoica, P. and Nehorai, A. (1990) Performance Study of Conditional and Unconditional Direction‐of‐Arrival Estimation, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, n. 10.
  64. 64 Besler, Y. and Makovski, A. (1986) Exact maximum likelihood parameter estimation of superimposed exponential signals in noise, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP‐34, pp. 1081–1089.
  65. 65 Schmidt, R.0. (1979) Multiple emitter location and signal parameter estimation, in Proceedings of the RADC Spectral Estimation Workshop, Rome, NY, pp. 243–258.
  66. 66 Pisarenko, V.F. (1973) The retrieval of harmonics from a covariance function, Geophysical Journal International vol.33, n.3, pp. 347–366.
  67. 67 Stoica P. and Sharman, K.C. (1990) Novel eigenanalysis method for direction estimation Proceedings of the IEE‐F, vol. 137, pp. 19–26.
  68. 68 Roy, R. and Kailath, T. (1989) ESPRIT – Estimation of signal parameters via rotation invariance techniques, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 17, no. 7.
  69. 69 Anderson, T.W. (1963) Asymptotic theory for principal component analysis, Ann. Math. Stat, vol. 34, pp. 122–148.
  70. 70 Akaike, H. (1974) A new look at the statistical model identification, IEEE Trans. Autom. Control, vol. AC‐19, pp. 716–723.
  71. 71 Rissanen, J. (1978) Modeling by shortest data description, Automatica, vol. 14, pp. 465–471.
  72. 72 Joham, M., Utschick, W. and Nossek, J.A. (2005) Linear transmit processing in MIMO communications systems, IEEE Trans. Signal Processing, vol. 53, n. 8, pp. 2700–2712.
  73. 73 Fischer, R.F.H. (2002) Precoding and signal shaping for digital transmission, John Wiley & Sons, Ltd.
  74. 74 Salz, J. (1973) Optimum mean square decision feedback equalization Bell Lab Syst. Tech. Journal, vol. 52, n. 8, pp. 1341–1373.
  75. 75 Al‐Dhahir, H. and Cioffi, J.M. (1995) MMSE decision feedback equalizers: finite‐length results, IEEE Trans. Information Theory, vol. 41, n. 4, pp. 961–975.
  76. 76 Kaleh, G.K. (1995) Channel equalization for block transmission systems, IEEE Journal on Select. Areas on Comm., vol. 13, n. 1, pp. 110–121.
  77. 77 Bracewell, R.N. (2000) The Fourier transform and its applications (3rd ed.), McGraw‐Hill.
  78. 78 Gonzales, R.C. and Woods, R.E. (2007) Digital image processing (3rd ed.), Prentice Hall, NJ.
  79. 79 McClellan, J.H. (1973) The design of two‐dimensional digital filters by transformations, Proc. 7th Annual Princeton Conf. Information Science and System, pp. 247–251.
  80. 80 Jain, A.K. (1989) Fundamentals of Digital Image Processing, Prentice Hall Ed.
  81. 81 Aubert, G. and Kornprobst, P. (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations (2nd ed.), Springer Ed., 2006.
  82. 82 Claerbout, J.F. (1985) Imaging the earth’s interior, Blackwell Sci. (http://sepwww.stanford.edu).
  83. 83 Goodman, J.W. (1996) Introduction to Fourier Optics, McGraw‐Hill Ed.
  84. 84 Kak, A.C. and Slaney, M. (2001) Principles of Computerized Tomographic Imaging (Classics in Applied Mathematics).
  85. 85 Allison, W. (2006) Fundamental of Physics for Probing and Imaging, Oxford University Press Inc., New York.
  86. 86 Alexander, L. and Klug, H.A. (1948) Basic aspects of X‐ray absorption, Analyt. Chem., vol. 20, pp. 886–889.
  87. 87 Borfeld, T., Bürkelbach, J., Boesecke, R. and Schlegel, W. (1990) Methods of image reconstruction from projections applied to conformation radiotherapy, Physics in Medicine and Biology, vol. 35, n. 10, pp. 1423–1434.
  88. 88 Kenneth, L. and Carson, R. (1984) EM reconstruction algorithms for emission and transmission tomography, J. Comput. Assist. Tomogr. vol. 8, n. 2, pp. 306–16.
  89. 89 Bracewell, R. (2003) Fourier analysis and imaging, Prentice Hall.
  90. 90 Shepp, L.A. and Vardi, Y. (1982) Maximum Likelihood Reconstruction for Emission Tomography, IEEE Trans. on Medical Imaging, vol. 1, no. 2, pp. 113–122.
  91. 91 Coates, M., Hero III, A.O., Nowak, R. and Yu, B. (2002) Internet tomography, IEEE Signal Processing Magazine, vol. 19, n. 3, pp. 47–65.
  92. 92 Nicoli, M., Rampa, V. and Spagnolini, U. (2002) Hidden Markov Model for multidimensional wavefront tracking, IEEE Trans on Geoscience and Remote Sens., vol. 40, n. 3, pp. 561–662.
  93. 93 Mengali, U. and D’Andrea, A.N. (1997) Synchronization Techniques for Digital Receivers, Plenum Press Ed.
  94. 94 Meyr, H. and Ascheid, G. (1990) Synchronization in Digital Communications: Phase‐, frequency‐locked loops and amplitude control (vol.1), John Wiley & Sons, Ltd.
  95. 95 Li, J. and Wu, R. (1998) An efficient algorithm for time delay estimation, IEEE Trans. Signal Processing, vol. 46, n. 8, pp. 2231–2235.
  96. 96 Jacovitti, G. and Scarano, G. (1993) Discrete‐time techniques for time delay estimation, IEEE Trans. Signal Processing, vol. 41, pp. 525–533.
  97. 97 Knapp, C.H. and Carter, G.C. (1976) The generalized correlation method for estimation of time of delay, IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 24, pp. 320–327.
  98. 98 Bienati, N. and Spagnolini, U. (2001) Multidimensional wavefront estimation from differential delays, IEEE Trans. Geoscience and Remote Sensing, vol. 39, n. 3, pp. 655–664.
  99. 99 Spagnolini, U. (1999) Nonparametric narrowband wavefront estimation from wavefront gradients, IEEE Trans Signal Processing, vol. 47, n. 11, pp. 3116–3121.
  100. 100 de Boor, C. (1978) A practical guide to splines, Springer‐Verlag, New York.
  101. 101 Van Trees, H.L. (2004) Detection, Estimation, and Modulation Theory, Optimum Array Processing, John Wiley & Sons, Ltd.
  102. 102 Haykin, S. (1985) Array signal processing, Prentice Hall Ed.
  103. 103 Spagnolini, U. (2004) A simplified model to evaluate the probability of error in DS‐CDMA systems with adaptive antenna arrays, IEEE Trans. Wireless Comm., vol. 3, n. 2, pp. 578–587.
  104. 104 Weiss, A.J. and Friedlander, B. (1993) On the Cramér‐Rao bound for direction finding of correlated signals, IEEE Trans. Signal Process., vol. SP‐41, pp. 495–499.
  105. 105 Langendoen, K. and Niels, R. (2003) Distributed localization in wireless sensor networks: a quantitative comparison, Computer Networks, vol. 43, pp. 499–518.
  106. 106 Soatti, G., Nicoli, M., Savazzi, S. and Spagnolini, U. (2017) Consensus‐based Algorithms for Distributed Network‐State Estimation and Localization, IEEE Trans. on Signal and Information Proc. over Networks, vol. PP, no. 99.
  107. 107 Funiak, S., Guestrin, C., Paskin, M. and Sukthankar, R. (2006) Distributed localization of networked cameras. In Proceedings 5th Int. Conf. on Information Processing in Sensor Networks, pp. 34–42. ACM.
  108. 108 Ihler, A.T., Fisher, J.W., Moses, R.L. and Willsky, A.S. (2005) Nonparametric belief propagation for self‐localization of sensor networks, IEEE Journal on Selected Areas in Communications, vol. 23, n. 4, pp. 809–819.
  109. 109 Wymeersch, H., Lien, J. and Win, M.Z. (2009) Cooperative localization in wireless networks, Proceedings of the IEEE, vol. 97, n. 2, pp. 427–450.
  110. 110 Wei, R., Beard, R.W. and Atkins, E.M. (2005) A survey of consensus problems in multi‐agent coordination, Proceedings of the 2005 American Control Conference, vol. 3, pp. 1859–1864.
  111. 111 Olfati‐Saber,R., Fax, J.A. and Murray, R.M. (2007) Consensus and Cooperation in Networked Multi‐Agent Systems, Proceedings of the IEEE, vol. 95, n. 1, pp. 215–233.
  112. 112 Bolognino, A. and Spagnolini, U. (2014) Consensus based distributed estimation with local‐accuracy exchange in dense wireless systems, IEEE International Conference on Communications (ICC 2014), pp. 4620–4625, Sydney 10‐14 June 2014.
  113. 113 Bolognino, A. and Spagnolini, U. (2014) Cooperative estimation for under‐determined linear systems, 48th Annual Conference on Information Sciences and Systems (CISS‐2014), pp. 1–5, Princeton 19‐21 March 2014.
  114. 114 Gallison, P. (2003) Einstein’s clocks, Poincaré’s maps: empires of time, W. W. Norton & Company, Inc.
  115. 115 Strogatz, S. (2003) Sync: the emerging science of spontaneous order, Hyperion.
  116. 116 Winfree, A. T. (1967) Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16, pp. 15–42.
  117. 117 Kuramoto, Y. (1984) Chemical oscillations, waves and turbulence, Spinger, Berlin.
  118. 118 Lindsey, W.C., Ghazvinian, F., Hagmann, W.C. and Desseouky, K. (1985) Network synchronization, Proc. of the IEEE, vol. 73, no. 10, pp. 1445–1467.
  119. 119 Hong, Y.‐W. and Scaglione, A. (2005) A scalable synchronization protocol for large scale sensor networks and its applications, IEEE Journal on Selected Areas in Communications, vol. 23, no. 5, pp. 1085–1099.
  120. 120 Leng, M. and Wu, Y.C. (2011) Distributed Clock Synchronization for Wireless Sensor Networks Using Belief Propagation, IEEE Trans. on Signal Processing, vol. 59, n. 11, pp. 5404–5414.
  121. 121 Mills, D.L. (1991) Internet time synchronization: the Network Time Protocol, IEEE Trans. Communications, vol. 39 n. 10, pp. 1482–1493.
  122. 122 Diestel, R. (2005) Graph Theory ‐ Graduate Texts in Mathematics vol.173, Springer‐Verlag, 3rd ed.
  123. 123 Biggs, N. (1993) Algebraic Graph Theory, 2nd ed., Cambridge Univ. Press.
  124. 124 Lehmann, E.L. (1959) Testing Statistical Hypotheses, John Wiley & Sons, Inc., New York.
  125. 125 Davenport, W.B. and Root, W.L. (1958) An introduction to the theory of random signals and noise, McGraw‐Hill.
  126. 126 Middleton, D. (1960) An introduction to statistical communication theory, McGraw‐Hill.
  127. 127 Fukunaga, K. (1972) Introduction to Statistical Pattern Recognition, Academic Press.
  128. 128 Van Trees, H.L. (2001) Detection, Estimation, and Modulation theory: radar‐sonar signal processing and Gaussian signals in noise, vol.3, John Wiley & Sons, Ltd.
  129. 129 Fukunaga, K. (1990) Introduction to statistical pattern recognition (2nd ed.), Academic Press.
  130. 130 Samuel, A.L. (1959) Some studies in machine learning using the game of checkers, IBM Journal of Res. and Develop. pp. 210–229, vol. 3, no. 3.
  131. 131 Jain, A.K., Murty, M.N. and Flynn, P.J. (1999) Data Clustering: a review, ACM Computing Survey, pp. 264–323, vol. 31, n. 3.
  132. 132 Kay, S. (1998) Fundamentals of Statistical Signal Processing: detection theory, Prentice Hall Inc.
  133. 133 Fisher, R.A. (1936) The use of multiple measurements in taxonomic problems, Ann. Eugenic., pp. 111–132, vol. 7.
  134. 134 McLachlan, G. and Basford, K. (1998) Mixture models: inference and application to clustering, Marcel Dekker.
  135. 135 Anderson, T.W. and Bahadur, R.R. (1962) Classification into two multivariate normal distributions with different covariance matrices, The Annals of Mathematical Statistics, vol. 33, no. 2, pp. 420–431
  136. 136 Bishop, C.M. (2006) Pattern recognition and machine learning, Springer Ed.
  137. 137 Cortes, C. and Vapnik, V. (1995) Support‐vector networks, Machine learning, vol. 20, no. 3, pp. 273–297.
  138. 138 Osuna, E., Freund, R. and Girosi, F. (1997) Support vector machines: training and applications, Massachusetts Institute of Technology.
  139. 139 Xu, H., Caramanis, C. and Mannor, S. (2009) Robustness and regularization of support vector machines, Journal of Machine Learning Research, vol. 10 (Jul), pp. 1485–1510.
  140. 140 Wang, L. (2005) Support vector machines: theory and applications, Springer Science & Business Media.
  141. 141 MacQueen, J. (1967) Some Methods for classification and analysis of multivariate observations, Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, Univ. of California Press, vol.1, pp. 281–297, Berkeley.
  142. 142 Tan, P.N., Steinbach, M., and Kumar, V. (2006) Introduction to data mining. Pearson Education, 2006
  143. 143 Figueiredo, M.A.T. and Jain, A.K. (2002) Unsupervised learning of finite mixture models, in IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 381–396.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.119.125.7