References

[1]Ford J. Chaos: Solving the unsolvable, predicting the unpredictable, in chaotic dynamic and fractal. New York, Academic Press, 1986.

[2]Lorenz EN. Deterministic nonperiodic flows. J Atmos Sci 1963, 20, 130–41.

[3]Li TY, Yorke JA. Period three implies chaos. Am Math Mon 1975, 82(10), 985–92.

[4]May R. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–67.

[5]Feigenbaum MJ. Quantitative universality for a class of non-linear transformations. J Stat Phys 1978, 19(1), 25–52.

[6]Feigenbaum MJ. The universal metric properties of non-linear transformations. J Stat Phys 1979, 21(6), 669–706.

[7]Takens F. “Detecting strange attractors in turbulence” in Dynamical systems and turhulence, Warwick, 1980, Lecture Notes in Mathematics, vol. 898. D. A. Rand and L. S. Young, Eds. Berlin, Springer, 1981, 366–81.

[8]Glass L, Guevara MR, Shrier A, Perez R. Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica D 1983, 7, 89–101.

[9]Grassberger P. Toward a quantitative theory of self-generated complexity. Int J Theor Phys 1986, 25(9), 907–38.

[10]Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett 1990, 64(8), 821–4.

[11]Pecora LM, Carroll TL. Driving systems with chaotic signals. Phys Rev A 1991, 44(4), 2374–83.

[12]Ott E, Grebogi C, Yorke JA. Controlling chaos. Phys Rev Lett 1990, 64(11), 1196–9.

[13]Ding J. Puzzles of the wise men-a brief history of chaos and fractals. Beijing, Higher Education Press, 2013.

[14]Liang ML, Wang ZK. Talks about chaos and balance. Dalian, Dalian University of Technology Press, 2008.

[15]Matsumoto T, Chua LO, Tanaka S. Simplest chaotic nonautonomous circuit. Phys Rev A 1984, 30, 1155–7.

[16]Chen GR, Ueta T. Yet another chaotic attractor. Int J Bifurcation Chaos 1999, 9(7), 1465–6.

[17]Wu CW, Chua LO. A unified framework for synchronization and control of dynamical systems. Int J Bifurcation Chaos 1994, 4(4), 979–98.

[18]Fang JQ. Controlling chaos and developing high and new technology. Beijing, Atomic Energy Press, 2002.

[19]Cuomo KM, Oppenheim AV, Strogatz SH. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans Circuits Syst II 1993, 40(10), 626–33.

[20]Carroll TL, Pecora LM. Cascading synchronized chaotic systems. Physica D 1993, 67(1), 126–40.

[21]Kocarev L, Parlitz U. General synchronization with application to communication. Phys Rev Lett 1995, 74(25), 5028–31.

[22]Kapitaniak T, Chua LO. Hyperchaotic attractors of unidirectionally-coupled Chua’s circuits. Int J Bifurcation Chaos 1994, 4(2), 477–82.

[23]Pyragas K, Tamasevicius A. Experimental control of chaos by delayed self-controlling feedback. Phys Lett A 1993, 180(1–2), 99–102.

[24]Huberman BA, Lumer E. Dynamics of adaptive systems. IEEE Trans CAS-I 1990, 37(4), 547–50.

[25]John JK, Amritkar RE. Synchronization of unstable orbits using adaptive control. Phys Rev E 1994, 49(6), 4843–8.

[26]Yang T, Chua LO. Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication. IEEE Trans CAS-I 1997, 44(10), 976–88.

[27]Yang T, Chua LO. Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication. Int J Bifurcation Chaos 1997, 7(3), 645–64.

[28]Mainieri R, Rehacek J. Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett 1999, 82(15), 3042–5.

[29]Du HY, Zeng QS, Wang CH. Function projective synchronization of different chaotic systems with uncertain parameters. Phys Lett A 2008, 372, 5402–10.

[30]Park JH. Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J Comput Appl Math 2008, 213, 288–93.

[31]Angeli AD, Genesio R, Tesi A. Dead-beat chaos synchronization in discrete time system. IEEE Trans CAS-I 1995, 42(1), 54–6.

[32]Vasegh N, Khellat F. Takagi-Sugeno fuzzy modeling and chaos control of partial differential systems. Chaos 2013, 23(4), 042101.

[33]Shieh CS, Hung RT. Hybrid control for synchronizing a chaotic system. Appl Math Model 2011, 35(8), 3751–8.

[34]Sun KH, Mou J, Zhou JL. Synchronization control and its application for the unified chaotic system based on chaos observer. IET Control Theory Appl 2008, 25(4), 794–8.

[35]Sun KH, Zhang TS. Synchronization control method of hyperchaotic systems by multi variables driving and error feedback. J Cent South Univ (Science and Technology) 2005, 36(4), 653–7.

[36]Kennedy M, Kolumbon G. Special issue on noncoherent chaotic communication. IEEE Trans CAS-I 2000, 47(12), 1661–732.

[37]Kocarev L, Maggio G, Ogorzalerk M. Special issue on applications of chaos in modern communication systems. IEEE Trans CAS-I 2001, 48(12), 1385–527.

[38]Hasler M, Mazzini G. Special issue on applications of nonlinear dynamics to electronic and information engineering. Proc IEEE 2002, 90(5), 631–40.

[39]Wang XY. Synchronization of chaotic system and its application in secure communication. Beijing, Science Press, 2012.

[40]Yin Y. Experimental demonstration of chaotic synchronization in the modified Chua’s Oscillators. Int J Bifurcation Chaos 1997, 7(6), 1401–10.

[41]Dedieu HD, Kennedy MP, Hasler M. Chaos shift-keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans CAS-II 1993, 40(10), 634–42.

[42]Yang T, Chua LO. Secure communication via chaotic parameter modulation. IEEE Trans CAS-I 1996, 43(9), 817–9.

[43]Batini GH, McGillem CD. A chaotic direct sequence spread spectrum communication system. IEEE Trans Commun 1994, 42(2, 3, 4), 1524–7.

[44]Itoh M. Spread spectrum communication via chaos. Int J Bifurcation Chaos 1999, 9(1), 155–213.

[45]Cuomo KM, Oppenheim AV. Circuit implementation of synchronized chaos with application to communications. Phys Rev Lett 1993, 71, 65–8.

[46]Kennedy MP, Kolumban G. Digital communications using chaos. CRC PRESS’99, 1–24.

[47]Kolumban G, Kis G, Jako Z, Kennedy MP. FM-DCSK: A robust modulation scheme for chaotic communications. IEICE Trans Fundam 1998, E81–A, 1798–1802.

[48]Xu WK, Wang L, Kolumban G. A novel differential chaos shift keying modulation scheme. Int J Bifurcation Chaos 2011, 21(3), 799–814.

[49]Mathews R. On the derivation of a chaotic encryption algorithm. Cryptrologia 1989, 29–42.

[50]Baptista MS. Cryptography with chaos. Phys Lett A 1998, 240, 50–4.

[51]Wong WK. A fast chaotic cryptographic with dynamic look-up table. Phys Lett A 2002, 298(4), 238–42.

[52]Wong WK, Ho SW, Yung CK. A chaotic cryptography scheme for generating short ciphertext. Phys Lett A 2003, 310, 67–73.

[53]Akgul A, Calgan H, Koyuncu I, Pehlivan I, Istanbullu A. Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dynamics 2016, 84(2): 481–495.

[54]Utami D, Suwastio H, Sumadjudin BB. FPGA implementation of digital chaotic cryptography. Lect Notes Comput Sci 2002, 25(10), 239–47.

[55]Sun KH, Sprott JC. Periodically forced chaotic system with signum nonlinearity. Int J Bifurcation Chaos 2010, 20(5), 1499–507.

[56]Sun KH, Sprott JC. Dynamics of a simplified Lorenz system. Int J Bifurcation Chaos 2009, 19(4), 1357–66.

[57]Gottwald GA, Melbourne I. A new test for chaos in deterministic systems. Proc R Soc Med 2004, 460, 603–11.

[58]Gottwald GA, Melbourne I. Testing for chaos in deterministic systems with noise. Physica D 2005, 212, 100–10.

[59]Sun KH, Liu X, Zhu CX. The 0–1 test algorithm for chaos and its applications. Chin Phys B 2010, 19(11), 110510.

[60]Horgan J. From complexity to perplexity. Sci Am 1995, 272(6), 104–9.

[61]Lempel A, Ziv J. On the complexity of finite sequence. IEEE Trans 1976, IT-22, 75–9.

[62]Pincus SM. Approximate entropy (ApEn) as a complexity measure. Chaos 1995, 5(1), 110–17.

[63]Sun KH, Tan GQ, Sheng LY. Complexity analysis of TD-ERCS discrete chaotic pseudo-random sequences. Acta Phys Sin 2008, 57(6), 3359–68.

[64]Chen WT, Zhuang J, Yu WX, Wang ZZ. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med Eng Phys 2009, 31(1), 61–8.

[65]Sun KH, He SB, Yin LZ, A Di-Li⋅Duo Li-Kun. Application of FuzzyEn algorithm to the analysis of complexity of chaotic sequence. Acta Phys Sin 2012, 61(13), 130507.

[66]Larrondo HA, González CM, Martin MT, Plastino A, Rosso OA. Intensive statistical complexity measure of pseudorandom number generators. Phys A Stat Mech Appl 2005, 356, 133–8.

[67]Sun KH, He SB, Sheng LY. Complexity analysis of chaotic sequence based on the intensive statistical complexity algorithm. Acta Phys Sin 2011, 60(2), 020505

[68]Rajeev KA, Subba JR, Ramakrishna Ramaswamy. Information-entropic analysis of chaotic time series: Determination of time-delays and dynamical coupling. Chaos Solitons Fractals 2002, 14(4), 633–41.

[69]Malihe S, Serajeddin K, Reza B. Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med 2009, 47(3), 263–74.

[70]Abdulnasir Y, Mehmet A, Mustafa P. Application of adaptive neuro-fuzzy inference system for vigilance level estimation by using wavelet-entropy feature extraction. Expert Syst Appl 2009, 36(4), 7390–9.

[71]Chen F, Xu JH, Gu FJ. Dynamic process of information transmission complexity in human brains. Biol Cybern 2000, 83 (4), 355–66.

[72]Shen EH, Cai ZJ, Gu FJ. Mathematical foundation of a new complexity measure. Appl Math Mech 2005, 26(9), 1188–96.

[73]Cai ZJ, Sun J. Modified C0 complexity and applications. Journal of Fudan University (Natural Science), 2008, 47(6), 791–96

[74]Sun KH, He SB, He Y, Yin LZ. Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm. Acta Phys Sin 2013, 62(1), 010501.

[75]Sun KH, He SB, Zhu CX, He Y. Analysis of chaotic complexity characteristics based on C0 algorithm. Acta Electronica Sin 2013, 41(9), 1765–71

[76]Hénon M. A two-dimensional mapping with a strange attractor. Commun Math Phys 1976, 50, 291–312.

[77]Sheng LY, Sun KH, Li CB. Study of a discrete chaotic system based on tangent-delay for elliptic reflecting cavity and its properties. Acta Phys Sin 2004, 53(9), 2871–6.

[78]Duffing G. Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz. Braunschweig, Vieweg, 1918.

[79]van der Pol B. On relaxation-oscillations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sciences Series 1926, 7(2), 978–92.

[80]Rössler OE. An equation for continuous chaos. Phys Lett A 1976, 57(5), 397–8.

[81]Zhong GQ, Tang KS. Circuitry implementation and synchronization of Chen’s attractor. Int J Bifurcation Chaos 2002, 12(6), 1423–7.

[82]Lü JH, Chen GR. A new chaotic attractor coined. Int J Bifurcation Chaos 2002, 12(3), 659–61.

[83]Vanĕ^ček A,Čelikovský S. Control systems: From linear analysis to synthesis of chaos. London, Pretice-Hall, 1996.

[84]Lü JH, Chen GR, Cheng DZ, Čelikovský S. Bridge the gap between the Lorenz system and the Chen system. Int J Bifurcation Chaos 2002, 12(12), 2917–26.

[85]Lü JH, Zhou TS, Chen GR, Zhang SC. The compound structure of Chen’s attractor. Int J Bifurcation Chaos 2002, 12(4), 855–8.

[86]Zhang ZQ, Park J H; Shao HY. Adaptive synchronization of uncertain unified chaotic systems via novel feedback controls. Nonlinear Dyn 2015, 81(1–2), 695–706.

[87]Cheng CJ. Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication. Appl Math Comput 2012, 219(5), 2698–712.

[88]Sun KH, Yang JL, Ding JF, Sheng LY. Circuit design and implementation of Lorenz chaotic system with one parameter. Acta Phys Sin 2010, 59(12), 8385–92.

[89]Sprott JC. A proposed standard for the publication of new chaotic systems. Int J Bifurcation Chaos 2011, 21(9), 2391–4.

[90]Saltzman B. Finite amplitude free connection as an initial value problem-I. J Atmos Sci 1962 19, 329–41.

[91]Rössler OE. An equation for hyperchaos. Phys Lett A 1979, 71(2–3), 155–7.

[92]Li Y, Chen G, Tang KS. Generating hyperchaos via state feedback control. Int J Bifurcation Chaos 2005, 15(10), 3367–75.

[93]Zgliczynski P. Symbolic dynamics for the Rössler folded towel map. Banach Center Publ 1999, 47(1), 253–8.

[94]Carroll TL, Pecora LM. Synchronization chaotic circuits. IEEE Trans CAS-I 1991, 38(4), 453–6.

[95]Fang JQ. Control and synchronization of chaos in nonlinear systems and its application prospect (I). Prog Phys 1996, 16(1), 1–74.

[96]Fang JQ. Control and synchronization of chaos in nonlinear systems and its application prospect (II). Prog Phys 1996, 16(2), 137–201.

[97]Sun KH. Chaos synchronization control theory and its application in information encryption. Central South University, 2005.

[98]He R, Vaidya PG. Analysis and synthesis of synchronous periodic and chaotic systems. Phys Rev A 1992, 46(12), 7387–92.

[99]Zhou CS, Lai CH. Analysis of spurious synchronization with positive conditional Lyapunov exponents in computer simulations. Physica D 2000, 135(1–2), 1–23.

[100]Sun KH, Shang F, Zhong K, Sheng Z. Synchronous control between unified chaotic system and its modified system based on intermittent feedback. J Electron Inf Technol 2009, 31(1), 71–4.

[101]Ma J, Liao GH, Mo XH. Hyperchaos synchronization and control using intermittent feedback. Acta Phys Sin 2005, 54(12), 5585–90.

[102]Guan XP, Fang ZP, Chen CL, Hua CC. Chaos control and its application in secure communication. Beijing, National Defence Industry Press, 2002.

[103]Zhou P. Observers for a class of 3D continuous chaotic systems. Acta Phys Sin 2003, 52(5), 1108–11.

[104]Yang XS. On observability of 3D continuous-time autonomous chaotic systems based on scalar output measurement. Int J Bifurcation Chaos 2002, 12(5), 1159–62.

[105]Xu DL, Li ZG. Controlled projective synchronization in nonpartially-linear chaotic systems. Int J Bifurcation Chaos 2002, 12(6), 1395–402.

[106]Li GH. Modified projective synchronization of chaotic system. Chaos Solitons & Fractals 2007, 32 (5), 1786–90.

[107]Cafagna D, Grassi G. Observer-based projective synchronization of fractional systems via a scalar signal: Application to hyperchaotic Rössler systems. Nonlinear Dyn 2012, 68(1–2), 117–28.

[108]Farivar F, Nekoui MA, Shoorehdeli MA, Teshnehlab M. Modified projective synchronization of chaotic dissipative gyroscope systems via backstepping control. Indian J Phys 2012, 86(10), 901–6.

[109]Wang SB, Wang XY, Zhou YF. A memristor-based complex Lorenz system and its modified projective synchronization. Entropy 2015, 17(11), 7628–44.

[110]Kim DW, Chang PH, Kim SH. A new chaotic attractor and its robust function projective synchronization. Nonlinear Dyn 2013, 73(3), 1883–93.

[111]Liu J, Liu ST, Sprott JC. Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters. Nonlinear Dyn 2016, 83(1–2), 1109–21.

[112]Santo B. Chaos synchronization and cryptography for secure communications. New York, Hershey, 2010.

[113]Cuomo KM, Oppengeim AV, Strogatz SH. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans CAS-II 1993, 140(10), 626–33.

[114]Mianovic V, Zaghloul ME. Improved masking algorithm for chaotic communication systems. Electron Lett 1996, 32(1), 11–12.

[115]Carroll TC, Heagy JF, Pecora LM. Transforming signals with chaotic synchronization. Phys Rev E 1996, 54(5), 4676–80.

[116]Parlitz U, Chua LO, Kocarev L, Halle KS, Shang A. Transmission of digital signals by chaotic synchronization. Int J Bifurcation Chaos 1992, 2(2), 973–7.

[117]Kolumban G, Kennedy MP, Jako Z, Kis G. Chaotic communications with correlator receivers: Theory and performance limits. Proc IEEE 2002, 90(5), 711–32.

[118]Kolnmban G, Kis G, Kennedy MP, Já Z. FM-DCSK: A new and robust solution to chaos communications. In: Proceedings of International Symposium Nonlinear Theory and Its Applications, Hawaii, 1997, 117–20.

[119]Galias Z, Maggio GM. Quadrature chaos-shift keying: Theory and performance analysis. IEEE Trans CAS-I 2001, 48(12), 1510–19.

[120]Kennedy MP, Kolumbán G. Digital communications using chaos. Signal Process 2000, 80(7), 1307–20.

[121]Rulkov NF, Sushchik MM, Tsimring LS, et al. Digital communication using chaotic-pulse-position modulation. IEEE Trans CAS-I 2001, 48(12), 1436–44.

[122]Heidari-Bateni G, McGillem CD. A chaotic direct-sequence spread-spectrum communication system. IEEE Trans Commun 1994, 42(2/3/4), 1524–7.

[123]Sun KH, Zhou JL, Mou J. Design and performance analysis of multi-user chaotic sequence spread-spectrum communication system. J Electron Inf Technol 2007, 29(10), 2436–40.

[124]Liao XF, Xiao D, Chen Y, Xiang T. Principle of chaos cryptography and its application. Beijing, Science Press, 2009.

[125]Li CB, He B. Chaotic encryption algorithm and hash function construction research. Beijing, Publishing House of Electronic Industry, 2011.

[126]Su M, Wen WY, Zhang Y S Security evaluation of bilateral-diffusion based image encryption algorithm. Nonlinear Dyn 2014, 77(1–2), 243–6

[127]Dong C. Color image encryption using one-time keys and coupled chaotic systems. Signal Process Image Commun 2014, 29(5), 628–40.

[128]Yang YX, Lin XD. Coding cryptology. Beijing, People’s Posts and Telecommunications Publishing House, 1992.

[129]Roland S. Use of chaotic dynamical systems in cryptography. J Franklin Inst 2001, 338(4), 429–41.

[130]Li P, Zhang W, Li Z. FPGA implementation of a coupled-map-lattice-based cryptosystem. Int J Circuit Theor Appl 2010, 38(1), 85–98.

[131]Wang FL. A new pseudo-random number generator and application to a digital secure communication scheme based on compound symbolic chaos. Acta Phys Sin 2011, 60(11), 110517.

[132]Hu YH, Luo J, Su H. A new method for improving the limited precision effect of chaotic sequences. Syst Simul 2012, 24 (11), 2349–52.

[133]Wang XS. A chaotic sequence encryption method. Chin J Comput 2002, (4), 351–6.

[134]Liu WH, Sun, KH, Zhu CX. A fast image encryption algorithm based on chaotic map. Optics and Lasers in Engineering 2016, 84: 26–36.

[135]Wang L. A novel chaos-based pseudo-random number generator. Acta Phys Sin 2006, 55(8), 3964–8.

[136]Wang XY, Bao XM. A novel block cryptosystem based on the coupled chaotic map lattice. Nonlinear Dyn 2013, 72(4), 707–15.

[137]Sheng LY, Wen J, Cao LL, Xiao YY. Differential cryptanalysis of TD-ERCS chaos. Acta Phys Sin 2007, 56(1), 78–83.

[138]Sheng LY, Xiao YY, Sheng Z. A universal algorithm for transforming chaotic sequences into uniform pseudo-random sequences. Acta Phys Sin 2008, 57(7), 4007–13

[139]McLauchlan L, Mehruebeoglu M. DWT and DCT embedded watermarking using Chaos theory. Conference on Mathematics of Data/Image Coding, Compression, and Encryption with Applications XII, San Diego, CA, 2010, 8.

[140]Millerioux G. Crypyanalysis of hybrid cryptosystems. Int J Bifurcation Chaos 2013, 23(10), 1350173.

[141]Gangadhar C, Rao KD. Hyperchaos based image encryption. Int J Bifurcation Chaos 2009, 19(11), 3833–9.

[142]Cao GH. Image scrambling algorithm based on chaotic weighted sampling theory and sorting transformation. J Beijing Univ Aeronaut Astronaut 2013, 39(1), 67–72

[143]Li HJ, Zhang JS. Embedding adaptive arithmetic coder in chaos-based cryptography. Chin Phys B 2010, 19(5), 050508.

[144]Rahman SMM, Hossain MA, Mouftah H. Chaos-cryptography based privacy preservation technique for video surveillance. Multimedia Syst 2012, 18(2), 145–55.

[145]Vidal G, Baptista MS, Mancini H. Fundamentals of a classical chaos-based Cryptosystem with some quantum cryptography features. Int J Bifurcation Chaos 2012, 22(10), 1250243.

[146]Fouda JSAE, Effa JY, Sabat SL, Ali M. A fast chaotic block cipher for image encryption. Commun Nonlinear Sci Numer Simul 2014, 19(3), 578–88.

[147]Wang YM, Liu JW. Security of communication network-theory and technology. Xi’an, Xi’an Electronic and Science University Press, 2000.

[148]Zhang FX, Zheng YJ. Communication secure technology. Beijing, National Defence Industry Press, 2003.

[149]Feng DG. Research status and development trend of domestic and foreign cryptography. J Commun 2002, 23(5), 18–26.

[150]American National Standards Institute, Triple Data Encryption Algorithm Modes of Operation, ANSI standard X9.52, 1998.

[151]Kocarev L. Chaos-based cryptography: A brief overview. IEEE Circuit Syst Mag 2001, 1(3), 6–21.

[152]Dachselt F, Kelber K, Schwartz W. Discrete-time chaotic encryption system-part III: Cryptographical analysis. IEEE Trans CAS-I 1998, 45(9), 1–19.

[153]Yang T, Yang LB, Yang CM. Cryptanalyzing chaos secure communication using return maps. Phys Lett A 1998, 245(6), 495–510.

[154]Zhou LH, Peng ZW, Feng ZJ, Zhong TX. Security property of chaotic encryption systems. J Shanghai Jiaotong Univ 2001, 35(1), 133–8.

[155]Syyid Umar. The adaptive communication environment: “ACE”. Hughes network systems, 1998.

[156]Bhargava B, Shi CG, Wang SY. MPEG video encryption algorithms. Multimedia Tool Appl 2004, 24(1), 57–79.

[157]Zeng W, Lei S. Efficient frequency domain selective scrambling of digital video. IEEE Trans Multimedia 2003, 5(1), 118–29.

[158]Liu Z, Li X, Dong ZY. Enhancing security of frequency domain video encryption. Proceedings of ACM Multimedia, New York, USA, Poster Session, 2004, 304–7.

[159]Liu G, Ikenaga T, Goto S, Baba T. A selective video encryption scheme for MPEG compression standard. IEICE Trans Fundam Electron Commun Comput Sci 2006, E89–A(1), 194–202.

[160]Shang F, Sun K H, Cai YQ. A new efficient MPEG video encryption system based on chaotic maps. Proceedings-1st International Congress on Image and Signal Processing, CISP, 2008, v 3, 12–16, Haikou.

[161]Hilfer R. Applications of fractional calculus in physics. New Jersey, World Scientific, 2001.

[162]Mandelbort BB. The fractal geometry of nature. New York, Freeman, 1983.

[163]Hartley TT, Lorenzo CF, Qammer HK. Chaos in a fractional order Chua’s system. IEEE Trans Circuits Syst- 1995, 42(8), 485–90.

[164]Arena P, Caponetto R, Fortuna L, Porto D. Chaos in fractional order Duffing system. Proceedings of the European Conference on Circuit Theory and Design. (ECCTD, 97), Budapest. Hungary, September 1997, 1258–72.

[165]Ge ZM, Ou CY. Chaos in a fractional order modified Duffing system. Chaos Solitons Fractals 2007, 34(2), 262–91.

[166]Ahmad WM, Sprott JC. Chaos in fractional-order autonomous nonlinear system. Chaos Solitons Fractals 2003, 16(2), 339–51.

[167]Li CG, Chen GR. Chaos and hyperchaos in the fractional-order Rössler equations. Phys A: Stat Mech Appl 2004, 341(1–4), 55–61.

[168]Podlubny I. Fractional differential equations. New York, Academic Press, 1999.

[169]Li CP, Deng WH. Remarks on fractional derivatives. Appl Math Comput 2007, 187(2), 777–84.

[170]Charef A, Sun HH. Fractal system as represented by singularity function. IEEE Trans Autom Control 1992, 37(9), 1465–70.

[171]Kai D. An algorithm for the numerical solution of differential equations of fractional order. Electron Trans Numer Anal 1998, 5(Mar.), 612–7.

[172]Kai D, Ford NJ, Freed AD. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 2002, 29(1–4), 3–22.

[173]Kai D, Ford NJ. Analysis of fractional differential equations. J Math Anal Appl 2002, 265(2), 229–48.

[174]Ahmad W. Hyperchaos in fractional order nonlinear systems. Chaos Solitons Fractals 2005, 26(5), 1459–65.

[175]Arman KB, Kia F, Naser P, Henry L. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Commun Nonlinear Sci Numer Simul 2009, 14(3), 863–79.

[176]Bohannan GW, Hurst SK, Spangler L. Electrical component with fractional order impedance. 2006, No. PCT/US2006/008821.

[177]Wang FQ, Liu CX. Study on the critical chaotic system with fractional order and circuit experiment. Acta Phys Sin 2006, 55(8), 3922–7

[178]Liu CX. A hyperchaotic system and its fractional-order circuit simulation. Acta Phys Sin 2007, 56(12), 6865–73.

[179]Chen XR, Liu CX, Wang FQ. Study on the fractional-order Liu chaotic system with circuit experiment and its control. Acta Phys Sin 2008, 57(3), 1416–22.

[180]Zhu CX, Zou Y. Summary of research on fractional-order control. Control Decis 2009, 24(2), 161–9.

[181]Liu SD, Shi SY, Liu SS. Bridge between weather and climate: Fractional derivatives. Meteor Sci Technol 2007, 35(1), 15–19.

[182]Zhao CN, Li YS, Lu T.Analysis and design of fractional-order system. Beijing, National Defense Industry Press, 2011.

[183]Adomian G. A new approach to nonlinear partial differential equations. J Math Anal Appl 1984, 102(2), 420–34.

[184]Cafagna D, Grassi G. Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. Int J Bifurcation Chaos 2008, 18(18), 1845–63.

[185]Cafagna D, Grassi G. Hyperchaos in the fractional-order Rössler system with lowest-order. Int J Bifurcation Chaos 2009, 19(1), 338–47.

[186]Sun KH, Wang X, Sprott JC. Bifurcations and chaos in fractional-order simplified Lorenz system. Int J Bifurcation Chaos 2010, 20(4), 1208–19.

[187]He SB, Sun KH, Wang HH. Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis. Acta Phys Sin 2014, 63(3), 030502.

[188]Sun KH, Yang JL, Qiu SS. Study of Simulation approaches for fractional-order chaotic systems. J Syst Simul 2011, 23(11), 2361–5, 2370.

[189]Chen GR, Lü JH. Dynamic analysis, control and synchronization of lorenz family. Beijing, Science Press, 2006.

[190]Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D 1985, 16(3), 285–317.

[191]Sun KH, Ren J, Qiu SS. Chaotic dynamic characteristics of fractional-order unified system. J South China Univ Technol (Natural Science Edition) 2008, 36(8), 6–10.

[192]Sun KH, Sprott JC. Bifurcations of fractional-order diffusionless Lorenz system. Electron J Theor Phys 2009, 6(22), 123–34.

[193]Pomeau Y, Manneville P. Intermittent transition to turbulence in dissipative dynamical systems. Commun Math Phys 1980, 74(2), 189–97.

[194]Sprott JC. Chaos and time-series analysis. New York, Oxford University Press, 2003.

[195]Yorke JA, Yorke ED. Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model. J Stat Phys 1979, 21(3), 263–77.

[196]Yang JL. Research on circuit design and implementation of simplified Lorenz system. Central South University, 2011.

[197]Sprott JC. Some simple chaotic Jerk functions. Am J Phys 1997, 65(6), 537–43.

[198]Zuo T, Sun KH, Ai XX, Wang HH. High-order grid multi-scroll chaotic attractors generated by the second generation current conveyor circuit. IEEE Trans Circuits Syst-II 2014, 61(10), 818–22.

[199]Merah L, Ali-Pacha A, Said N H, Mamat M. Design and FPGA implementation of Lorenz chaotic system for information security issues. Appl Math Sci 2013, 7(5), 237–46.

[200]Xu X, Yu S, Xu L. Chaotic digital image encryption and its hardware implementation based on DSP technology. Electron Sci Technol 2011, 24(3), 1–5.

[201]Yu SM. Chaotic systems and chaotic circuits: Principle, design and its application in communications. Xi’an, Xi’an Electronic and Science University Press, 2011.

[202]Wang HH, Sun KH, He SB. Characteristic analysis and DSP realization of fractional-order simplified Lorenz system based on Adomain decomposition method. Int J Bifurcation Chaos 2015, 25(6), 155008.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.118.12.232