images

CHAPTER FOUR

E-HEALTH RECORDS

The Lifeblood of E-Health Care

Joseph Tan

I. Learning Objectives

II. Introduction

III. Definition of E-Health Records

IV. Trends in EHRs

V. Purposes of EHRs

VI. E-Health Records: Benefits and Hurdles

A. Benefits of EHRs

B. Hurdles in Implementing EHRs

VII. Implementation of E-Health Records

A. Privacy Considerations in Implementing EHRs

B. Moving Ahead

VIII. Conclusion

IX. Chapter Questions

X. References

XI. E-Primary Health Care and E-Health Records Cases

Learning Objectives

  1. Understand the definition of e-health records (EHRs) in the context of e-health care system and environment
  2. Review factors contributing to adoption of EHRs
  3. Understand the purposes of EHRs
  4. Identify the benefits and hurdles in implementing EHRs
  5. Recognize privacy issues underlying the use of EHRs
  6. Understand likely future issues in EHRs

Introduction

The health care industry is very data-intensive. This characteristic of the health care business will not change even if we move successfully from the era of traditional health care to the e-health care era. Among the key pieces of information in the health care system is the patient record. The patient record is central to the work of virtually everyone associated with planning, organizing, providing, directing, receiving, and reimbursing mainstream health care services.

E-health care services will only exacerbate the intricacy of managing the flow of consumer information and patient records. E-health activities demand even more speed from transactions between e-consumers and e-providers; are likely to generate large numbers of on-line information requests and query-related activities; and lead to a huge number of products and services that will be e-marketed, with a resulting quantity and variety of on-line clinical and administrative information that goes beyond just financial transaction figures. E-patient data gathering and e-consumer information retrieval and distribution activities will most likely define a large part of the functioning of an e-health system. Convenient interfaces and the potential for global connectivity will only add to the complexity of the e-health system and its need to store and manipulate consumer information and provide it to e-stakeholders in a timely and relevant manner that includes the management of e-patient records from a single, integrated source.

A key feature of e-health, which makes it more available, accessible, affordable, and accountable than traditional health care, is the shift in focus from the delivery of physical medicine (plagued by conflicting, fragmentary, and confusing patient data) to the delivery of timely, relevant, and integrated e-health information, specifically information that empowers e-consumers to make informed choices about their own health and well-being; information that assists e-providers in integrating business processes and administrative and clinical procedures in order to ease the delivery of health products and medical services on a real-time basis; information that can break down stereotyped thinking and long-standing barriers among and between various e-stakeholders; and information that cuts across economic, geographical, cultural, and sociopolitical differences among members of virtual communities to facilitate necessary therapies and treatments, especially for the underserved.

In this chapter, we examine more thoroughly the nature and characteristics of e-health information, particularly e-health records (EHRs). Despite more than half a century of exploratory work, millions of dollars in research, and the implementation of computerized patient records systems, efforts to automate the collection, storage, and management of the data in health records have not been very successful (Tan, 2001). This lack of success has limited opportunities for effective decision making from the bedside all the way to the formulation of national health care policy and the adoption of a global e-health strategy.

In an ideal EHRs system, identical electronic patient information will not be stored redundantly. Unfortunately, at the present time, the same patient information tends to exist in many different forms and in many different locations. For example, a physician may summarize a patient's complaints in a set of notes and enter them into the physician's handheld device. This information may then be downloaded into a larger electronic data collection and stored in a specific depository or database maintained by the health maintenance organization of which the physician is a member. The same data set could also be abstracted, reformatted, reorganized, and electronically recoded for placement in a data warehouse linked to a completely separate electronic health record system, then placed on another provider network that is accessible only to physicians who are members of that network and who are authorized to use this information when consulting with the patient. Indeed, if the accumulated data from all physician consultations is not rationally organized or appropriately merged with other data sets stored in separate databases to form a linked (integrated) EHRs system, imagine the consequences for future consultations with the patient. For example, when data on one patient can be found in several databases that are not centrally networked, it is possible for a physician to order a prescription that has an undesired interactive effect with another herb or drug that has already been prescribed.

In previous chapters, we have argued that the e-health care system will thrive only with support for its infrastructural and informational needs. EHRs (the central depository for patient information updates, further data analysis, and privacy controls) represent a major resource to fulfill these needs. Implementation of reliable EHRs will provide a convenient and easy way to access timely, relevant, and accurate information. As we shall see, transformation of the traditional health care system into e-health care relies on transformation of the management of health information and health information flow. E-patient records may thus be considered the lifeblood of e-health care.

In this chapter, we will first define EHRs based on perspectives from health authorities of three major developed countries: the United States, the United Kingdom, and Canada. Next, we will examine the trends influencing the movement toward EHRs technology and review the purposes of EHRs in the context of the evolving e-health system and environment. This is followed by an exploration of the benefits and hurdles in implementing EHRs. We then conclude with a look at the future of EHRs.

Definition of E-Health Records

Over the years, the concept of EHRs has become more transparent, although it has sometimes been confused or inappropriately interchanged with many other related terms such as electronic patient records (EPRs), computer-based patient records (CPRs), automated or computerized clinical records, electronic incidental records, and electronic medical records.

In 1997, the National Academy of Sciences' Institute of Medicine (IOM) conceptualized computer-based patient records and electronic patient records as a system specifically designed to support users by providing “accessibility to complete and accurate data, alerts, reminders, clinical decision support systems, links and guides to medical knowledge, and other aids” (Institute of Medicine, 1997). In other words, EPRs represent a data integration resource that functions as a supporting asset for health care providers. The U.S. Department of Veterans Affairs (1995), on the contrary, specifically defined computer-based patient records (CPRs) as records that are stored in “the Decentralized Hospital Computer Program” or any such electronically automated system—for example, an optical disk. Based on this observation, CPRs may be considered an institution-based system, whereas EPRs are an enterprisewide system.

In another attempt to clarify the emerging jungle of confusing terminologies, the United Kingdom's National Health Service (NHS) differentiated electronic patient records from e-health records according to the timeline and nature of the data recording for an individual's health care experience. According to the NHS, EPRs are institution-based, containing the periodic records of patient experience with a single provider organization, whereas EHRs are the records of longitudinal patient experiences from birth to death, including all encounters between a patient and a health care provider. Thus, EHRs would include data from the patient and family members; from community-based health centers; from public health agencies; from all of the patient's care providers, including physicians, nurses, and other health professionals and specialists; and from any other health-related organization or agency that may have collected data about the patient's health and health status.

More recently, in Canada, the Advisory Council on Health Infostructure (ACHI) and the Office of Health and the Information Highway (OHIH)—both part of Health Canada—provided further clarification on several terms (Advisory Council on Health Infostructure, 1999; Office of Health and the Information Highway, 2001). Through a series of public documents and Canadian governmental publications, the following terms were developed and defined in a successive fashion in order to better understand EHRs from a progressively inclusive perspective. Incidental records are records of selected data on a single patient for a specific incident or episode of care. If the data were gathered electronically, the records are referred to as electronic incidental records. In contrast, patient records are records of the accumulated incidents of a single patient, covering all encounters between a patient and a specific caregiver over time. If the data were gathered electronically, the records are called electronic patient records. Finally, health records are records of all encounters of all patients with all caregivers across all health provider institutions linked to the health records system, and if the data were gathered electronically, the records are called electronic health records (EHRs).

Interestingly, the ACHI-OHIH perspective echoes the IOM report in its contention that a number of core characteristics will help ensure EHRs' usability, functionality, and operability:

  • List clearly a patient's clinical problems and associated current health status
  • Support daily assessment of patient care outcomes through well-coordinated recordings of the patient's health status and functional level
  • Provide a clinical rationale, documenting clinical decisions
  • Link with local as well as remote databases and other patient or clinical records to provide a longitudinal care history
  • Ensure patient confidentiality, privacy, and security of information collected, stored, manipulated, and disseminated
  • Structure the stored data using a standardized or well-defined classification that supports direct data entry by health practitioners
  • Guide the clinical problem-solving process through the use of decision support tools
  • Assist in the management and evaluation of the quality and costs of care
  • Permit timely access, selective retrieval and formatting, and flexibility for future expansion

For EHRs to fulfill these functions, Andrew and Dick (1995a, 1995b) note, five components are needed: a clinical data dictionary, a clinical data repository, flexible input capabilities, ergonomic data presentations, and automated decision support. A clinical data dictionary is a centralized repository of clinical information describing the content of the database, organized into files containing a range of clinical variables embedded and organized into predefined fields. A clinical data repository refers to the electronic database that holds the clinical data and the clinical data dictionary. Flexible input capabilities refers to the number of input devices and approaches that can be used to enter data. For example, data could be entered automatically via networked sources, directly by users, or indirectly through intermediaries such as third party agencies, including different clinicians and users. Ergonomic data presentations refers to user-friendly displays of output data, perhaps using multimedia or other graphical approaches. Automated decision support is the use of specialized decision-aiding software and tools to link necessary data and models in order to improve or expedite clinical, administrative, and managerial decisions.

Andrew and Dick (1995b) also argue that because it is more difficult to reach a consensus among care providers on issues relating to definition and policies, the development of the technical infrastructure of EHRs is not as challenging a problem as the ones resulting from sociocultural and political barriers. In any case, no existing system of EHRs contains all of the functions and characteristics identified by the IOM and ACHI-OHIH authoritative reports.

What is the significance of EHRs in e-health care? To address this question adequately, we must review the trends and purposes that drive the adoption and use of EHRs in the traditional health care era versus the coming e-health care era.

Trends in EHRs

Among the oldest surviving examples of medical data recording are papyri from ancient Egypt containing details of surgery and prescriptions. Those involved in the art and science of healing and treatment have always needed to pass on the details of successful procedures or medications either in writing or through an oral tradition. As medicine has evolved, this need has continued along two avenues: the need for structured data in order to derive conclusions (that is, use of objective measures and quantitative means) and the need for narrative data (that is, application of more interpretive and qualitative approaches). In Doctors' Stories, Kathryn Montgomery Hunter (1993) notes the need to value and listen to the patient's side of the story. She suggests that when physicians have a working knowledge of life histories and a sense of medical narrative that can accommodate the experience of illness, they are better able to provide good medical care, especially for those they cannot quickly cure. On the other hand, a structured approach such as the creation and use of EHRs can ensure that all the necessary information to arrive at sound medical decisions is at hand. Many factors influence the movement toward EHRs, including changes in the health care delivery system, sociocultural and political forces, and technological developments.

Increasing numbers of health care consumers are expressing a desire to play a more active role in the maintenance of their health. EHRs can potentially provide every individual with access to a comprehensive personal health profile. The shift toward providing more convenient, affordable, and comprehensive health services online has partly increased reliance on a wider range of health care professionals (for example, nurse practitioners, physiotherapists, and other alternative medical professionals) and locations (for example, hospitals and other acute care settings, outpatient clinics, ambulatory care settings, group residences, and other community-based care settings). EHRs provide a means of sharing information across this increasing range of practitioners and settings, thereby supporting the highest quality of care possible. In addition, increasing emphasis on public accountability and ethical practices will likely require EHRs to provide information in nonidentifiable or aggregate form for researchers, governments, administrators, investigators, and policymakers.

We have seen that the vision of the e-health care system of developed as well as developing countries is to provide borderless, seamless, accessible, and accurate health care that is free from red tape, redundancy, and duplication. Arguably, the union of technology and health will provide a transformational avenue to improve the quality, efficiency, accessibility, and effectiveness of health care delivery. As indicated at the beginning of this discussion, one means of accomplishing this is through universally accessible, lifelong EHRs that allow data to be shared among different health care providers in a safe, secure, and integrated fashion.

Put simply, EHRs should replace all other fragmentary data repositories found throughout our traditional health care system, in order to eliminate redundancies, anomalies, and errors in record updates. Another approach is the use of virtual medical patient records, in which data from all the different sources are merely linked electronically as and when needed. This would allow integration of patient information from all sources, including data from many ancillary health information systems used for enhancing patient care. In countries such as Canada and the United Kingdom, such an approach has already been accepted as a priority, as evidenced by the number of EHRs initiatives under way.

The lack of consensus on universal health care in the United States slows down progress toward EHRs. However, intensive efforts on the part of government research agencies such as the National Science Foundation, the National Institute of Health, and the Centers for Disease Control and Prevention; corporate and private funding agencies such as the Robert WoodJohnson Foundation and the Blue Cross Blue Shield Foundation; and many others—for example, the Institute of Medicine—have moved e-health care toward the development of standards, integrated network infrastructures, and linked databases to address some of the challenges with respect to implementing more accessible, affordable, and accountable health care. We can therefore expect that in the not-too-distant future, integrated EHRs or a hybrid form of EHRs with linked virtual patient record technology will become a reality.

Purposes of EHRs

EHRs technology serves many purposes. These include, for example, using EHRs as the basis to build a lifelong historical and legal account; to support medical education, clinical research, documentation, and communications; to enhance the efficiency and effectiveness of health professionals; to facilitate e-health work design and development; to describe and document preventive measures; to identify deviations from expected trends; and to anticipate future health problems and actions. In this section, we will focus on some of the more important uses of EHRs.

EHRs can serve to maintain an ongoing account of the e-clinical care provided by e-physicians. While the main part of their clinical use and value will be realized at the time of individual e-consultations (as part of building an ongoing patient-doctor relationship), EHRs will also aid e-clinicians to provide high-quality care over time, because they will contain prompts, reminders, and recognitions of uncertainties and dilemmas, as well as monitor objective measures such as height, weight, blood pressure, and sugar level. The retrospective data gathered in EHRs can also be transformed into review of past protocols to formulate future cases. Increasingly, e-clinicians need to study the factors influencing their clinical and management decisions and outcomes, to justify the use of e-technologies and e-health modalities. Because e-clinicians are seen as accountable both to e-patients and to the wider medical profession, the use of EHRs not only implies medicolegal responsibility but also the ethics of good e-clinical practice. Medical residents and students wanting to learn or teachers needing to assess student competence can make good use of EHRs in tele-education. The tools used for retrospective data collection in EHRs can be further enhanced, allowing the data to be used in e-clinical research.

Moreover, e-clinical care involves sharing responsibility among e-health care practitioners. Inevitably, parts of the EHRs must be shared. To do this effectively, EHRs must provide relevant views of patient data; in this way, overall quality of patient care is increased. The mobility of EHRs underscores the ways in which e-health can be portable and flexible; EHRs will move with e-patients to promote efficient, effective, and continuing care. On-line documentation of previous encounters will be easily available for e-consultations and reviews. Mainstream CPRs are often limited in availability because they are largely institution-based. Fortunately, EHRs can transcend CPRs, providing coordination among e-caregivers who practice in various locations at diverse brick-and-mortar institutions. The use of EHRs and e-medicine does not rule out the possibility of sending a patient to a physical facility for intensive care or treatment. With EHRs, however, a variety of e-caregivers, working within different professional contexts, can deal with a range of needs of the same patient (or different ones) at different times and places. Imagine, for instance, how a family in great distress feels when a family member is being cared for by over thirty social, medical, and other agencies, none of which have any formal means of communication with one another. This extreme example demonstrates not only the need for an integrated, well-ordered, and appropriately designed EHRs system but also the need to transform traditional health care services and delivery: the e-health paradigm shift.

In addition, many repetitive processes can be automated through the use of EHRs, including e-scheduling, e-prescription orders, e-billing, and e-claims, as well as automated analysis and reporting. Automating these processes will not only improve the efficiency of many related e-patient care processes and systems but also lead to more time for e-clinical services.

The ability to structure and view information and to locate and record such information at various levels of detail will mean that information can be retained in the record without overwhelming the e-clinician. For example, a blood test result that was scanned and evaluated as “normal” during a consultation may later need to be viewed in greater detail. The convenient interfaces supporting a common clinician or pharmacist patient data view in EHRs will lead to further reductions in medical procedural errors and medication errors. E-patients will also be able to view the data gathered in their EHRs and have some control over the release of any part of their records to specific clinicians.

Furthermore, effective EHRs could access individual values for the purpose of generating trends through a graphic display. Many serial measurements are made in all fields of medicine. Trends in serial measurements (for example, hourly blood gases, blood pressures, and hemoglobin levels) are difficult to ascertain without graphical representations. The ability to display serial measurements and relate them to normal or expected levels in a diagrammatic display is yet another advantage of EHRs. EHRs can also provide information to help e-managers allocate resources effectively, communicate with e-clinicians throughout the network system, share best practices and evidence-based medicine approaches, and minimize waste in the e-care system.

Moreover, it is anticipated that there is an increasing need to demonstrate e-clinical competence by drawing attention to preventive measures, possibly recording these items in a separate part of the EHRs system. Screening procedures are often performed because of an e-clinician's order rather than at the request of the e-patient. Prompting mechanisms from within the EHRs structure can greatly enhance the likelihood of these procedures being appropriately scheduled. The paper trail often used in mainstream health care systems has not been very successful, so EHRs can have a competitive advantage. As we have indicated, EHRs have the potential to reduce the risks of adverse medication interactions by capturing information on all current prescriptions and therapies, including data from complementary and alternative medical practitioners. EHRs will also aid in storing and retrieving data relating to future health care needs. Although local systems can anticipate future health requirements through improved structuring of past data entry, when physical medical files are transferred from one site to another, the urgent need to draw attention to medical actions that require monitoring at a future date often falls through the cracks. EHRs avoid this problem by storing all information virtually and ubiquitously.

E-Health Records: Benefits and Hurdles

Over the years, public and private hospitals as well as consolidated health provider institutions have invested millions of dollars in computerized health records systems that are mostly institution-based, automated, incidental, and clinical or a mix of clinical and administrative records. Largely due to increasing investments into vertically and horizontally integrated delivery systems (IDSs), we expect the market for EHRs to grow over time, not only for use in e-health systems but also to replace inadequate computerized patient record systems in traditional systems (Tan, 2001).

Benefits of EHRs

EHRs allow data to be used in many ways. As I have noted, EHRs can provide descriptive, graphical, and statistical analyses of e-clinical data through the use of standard statistical software packages. In addition, electronically stored data can be rearranged and sliced and diced in different ways to support ongoing quality assessment. This same information can also be used to provide e-physicians and e-patients with quantitative analyses of the risks of various conditions and suggested treatments. These are just a few of the many reasons that EHRs will proliferate as a technology, especially in the coming years with the advent of e-health.

Many patient records are still manually written on paper. EHRs will reduce the use of paper by combining records of e-clinical encounters and administrative records of the e-patient care process in a single integrated repository. In addition, EHRs will allow e-clinicians to conveniently access e-patient information anywhere and at any time. E-clinicians will not need to find a paper chart and will not be limited by geographical locations or time differences except when paper records are meant to serve as a backup system. Electronic retrieval of patient information is a central element of health care reform legislation and many reengineering efforts in the private sector. However, only a small percentage of physicians, hospitals, and even IDSs today have successfully implemented some form of EHRs, because of the complexity, costs, demand on administrative resources, and need for technical maintenance expertise. Nonetheless, the demand for electronic data by e-insurers, e-consumers, e-vendors, networked communities, and other e-stakeholders within the e-health care system will definitely grow over time. E-physicians and e-caregivers who make the changeover now will be ready and more able to serve e-consumers because they will be able to more easily measure outcomes, quality, and cost-effectiveness of future e-health services. Thus, switching to EHRs also provides a comparative advantage.

More significantly, EHRs also provide evidence that quality care and cost management need not be mutually exclusive. Networked electronic health records can be maintained at a fraction of the costs of manual record systems and can bring about a realization of the enormous value of shared protocols as quality tools and e-care drivers reduce time and increase processing efficiencies. Automated systems in conjunction with EHRs can help e-physicians investigate outliers in data or uncommon trends. Automated systems can be used to “flag” redundant testings and keep track of standard items relevant to a particular e-patient's condition. Alarms can also be set to alert the end user when two noncompatible drugs are prescribed. The IOM report indicates that, depending on the type and nature of data collected, electronic data system capabilities can facilitate both administrative and clinical decisions in numerous ways by organizing and ordering medical and patient records. Examples include rapid searching through single or multiple records; sorting information into one record or aggregating information across multiple records; organizing and aggregating information across patients by hospital, patient care unit, and department; and allowing easy abstraction of information throughout patient e-consultations or episodes of care.

In contrast to CPRs, users can expect EHRs to be more than just a place to store data. EHRs can provide at least five new kinds of tools: mechanisms for focusing attention, for patient-specific consultation, for information management, for data analysis, and for implementing quality assurance and cost management policies (see Barton and Schoenbaum, 1990; Tan and Bhatkhande, 2001). EHRs systems can also be a resource for guiding policies and practice by providing analysis of past e-clinical experience within an e-health provider setting. Furthermore, EHRs can help educate practitioners and keep them updated on new information by supplying easily accessible bibliographic information or other linked resources (for example, vendor information) relating to specific illnesses as needed.

Administratively, EHRs can assist in achieving higher-quality service at lower cost by providing improved access to necessary financial and e-clinical information. For any e-health care system, implementation of EHRs will be key and perhaps even mandatory because of the sheer number of e-care providers, e-patients, and other e-stakeholders that have a need for the information embedded in EHRs. Indeed, the larger the e-health network, the greater will be the impact of EHRs. If EHRs are used as an enterprisewide system to facilitate information flow between all e-health providers and e-consumers, their impact in areas such as reducing health care costs; decreasing misuse, abuse, and underuse of Medicaid and Medicare or national health services; and avoiding duplication, errors, and unnecessary repetition in data collection will contribute to a more available, accessible, equitable, affordable, and portable e-health care system. This is the unique vision and goals of an e-health care system supported with the appropriate EHRs and infrastructures: a system devoid of data redundancies and inconsistencies that can serve both the clinical and the administrative needs of connected e-stakeholders.

Hurdles in Implementing EHRs

A survey of 571 health care information managers on implementing electronic databases to house and manage patient information on-line revealed impediments to the diffusion of computer-based patient records (Bergman, 1993). Results of this survey are tabulated in Table 4.1. These hurdles would not be too different in an e-health care context.

As shown in Table 4.1, lack of funding; lack of technological know-how; lack of strong governmental leadership; lack of standards; resistance from health care practitioners (including physicians, nurses, and administrators); fear of breaches of security, violation of privacy, and compromised confidentiality of patient data; and lack of workable policies and procedures to protect patient data are among the key reasons underlying the lag in EHRs implementation. E-health executives and managers need to play an active and leading role in advocating for EHRs, while nurses and physicians need to be convinced that EHRs will not diminish their roles in the caregiving process. Support of e-stakeholders is key to success, including the government, e-vendors, e-purchasers, qualified and well-known physicians and other e-practitioners, as well as e-health consumer advocates and activists.

TABLE 4.1. BARRIERS TO IMPLEMENTING ELECTRONIC DATABASES

Barrier Percentage Agreeing Barrier That Barrier Exists
Hospitals lack funds and therefore are unable to make the first step in implementing an electronic patient record system. 23%
Technology is still lacking. 22%
Government has failed to set reporting standards, making installation of an electronic patient record system difficult and making it less usable. 20%
Clinicians are basically uninterested, and the reason for their resistance is usually that they are afraid to have their work documented for competitive reasons—that is, for fear of losing patients or clients. 13%
Hospitals are not committed, so hospital administrators choose to spend their time and focus on other projects or tasks. 10%
There are far too many regulations, either about security codes and passwords or about standardized vocabulary. 9%
Nonsupportive hospital policies—for instance, lack of policies on key issues such as privacy and medicolegal liability—make implementation of electronic records databases difficult. 4%

Source: Adapted from Bergman, 1993.

The one factor in Bergman's computer-based patient records survey that does not apply well in the evolving e-health era is technological lag. New advances in medical sciences and computing technologies have eliminated this deficiency. The mainstream health care system in general and the acute care or hospital system in particular have been very slow in applying new and emerging technologies to solve the problems of cost and quality of services. In contrast, many other industries and businesses (for example, the automobile industry or the banking industry) have been much more aggressive in transferring technological developments and applications from classrooms and research laboratories into the real world of practice. Given the enormous technological advances and developments since the time Bergman's survey was conducted, lack of adequate technology should not continue to be a major obstacle. Perhaps the greatest technological challenge is not the hardware or software, but the user interface. Effective interface design is critical to the acceptance of EHRs among health care professionals.

On the government side, the IOM report notes that some initial concrete steps should be considered at the national level, including the following:

  • Development of national standards for documenting and sharing e-patient information
  • Establishment of national standards for protecting the privacy and confidentiality of e-patient information
  • Development of community health information networks
  • Evaluation of the usefulness and cost-effectiveness of all requests for e-provider data by regulators and insurers

The development and establishment of national standards require the setting up of a high-level council of stakeholders from across all major e-health care sectors, including representation from government, universities, various e-practitioner groups, e-consumer groups, e-health insurers, and other e-stakeholders (for example, employers). A standards approval process should be put in place, with mechanisms to debate, approve, disseminate, and publicize the work of the council. The U.S. government, the largest employer and the highest payer for health care, is in the best position to play a leading role in championing the development and establishment of such standards. Initial costs of this sort of project, which must cut across institutional boundaries, break down sociopolitical and cultural differences, and inspire active participation from many e-stakeholders and third parties, will be immense, but the long-term benefits for many different users will more than offset the costs. The development and deployment of new and improved technologies for EHRs first require the generation and determination of standards for medical terms and data forms. A standard vocabulary, generally accepted coding for medical information, and consistent communication formats are all needed to advance the practice of e-medicine and e-health.

Privacy, confidentiality, security, and legal implications of the use of EHRs will continue to be a major hurdle in successful EHRs implementation. It has been argued that EHRs in fact offer more security than paper-based records because an audit trail can track who accesses electronically stored records and who makes changes, if any, to the stored data. Users of EHRs systems will presumably be required to use identity cards, keys, or passwords that are changed periodically in order to access any record. For electronic patient records to be accepted by stakeholders, patient information must be protected so that people are not penalized or harmed because of their medical status. The establishment of privacy protection for patients and clinicians should be not only the responsibility of the government but also part of the culture and obligation of every e-health care provider. This will require formal sanctions for violation of confidentiality rules as well as informal sanctions in the form of consistent, meaningful disapproval of idle gossip or carelessness regarding patient information. All interested parties should be involved in deciding how information should be collected and disseminated so that privacy is preserved and protected. New technologies should continue to be explored in order to further enhance the security of information that has already been collected and stored electronically. In the long run, it may make sense for the government to transform itself to an e-government, providing the e-health industry with a model for maintaining consumer anonymity through coded unique identifiers in accumulating EHRs. However, some experts caution that too many security measures may become an unnecessary burden to users.

In an e-health care environment, there are several ways to address the confidentiality issue. One secure messaging and information storage company provides cryptographic solutions for securing corporate digital assets and protecting all forms of digital information, including e-mail, text, spreadsheets, audio, and video. Other options include secured identity verification, passwords, and more. These issues will be discussed in greater detail later in this book (Chapters Six and Fourteen).

Implementation of E-Health Records

The process of moving from a paper-based health record system to EHRs is multifaceted. The literature is packed with examples of the trials and tribulations of implementing health care information systems in countries such as the United Kingdom, Australia, Canada, and the United States. This section briefly covers the main concepts and issues involved in the creation and implementation of EHRs.

The development of EHRs can be divided into two major phases: (1) creation of electronic health records themselves, and (2) preparation of users and tools to allow convenient access to the records (Office of Health and the Information Highway, 2001). Figure 4.1 shows a model of EHRs that is advocated in the OHIH document. It portrays EHRs as comprising three components: interoperable databases, information access, and e-stakeholders.

The first component, the interoperable databases, consists of data about standards, procedures, and policies (data format, rules, and regulations); data about e-health care providers (data capture mechanisms); and linked databases that store data, including patient demographics, e-provider identifiers, clinical and administrative health information (data storage). The information access component refers to the user-friendly interface; the different tools available for making EHRs useful, such as decision support, analytical tools, and learning tools; and a security layer to ensure the protection of the electronic health records. The e-stakeholders consist of e-patients or e-consumers; the general public; e-health professionals, including e-health administrators and e-caregivers; e-health policymakers and researchers; and third-party e-payers, including employers and e-health insurers.

FIGURE 4.1. CONCEPTUALIZATION OF ELECTRONIC HEALTH RECORDS

images

Much work and debate has been invested in the creation of EHRs. One challenge is the data format of EHRs, which requires defining a standard set of codes to describe medical concepts that can be shared by all e-stakeholders. Two examples of standardized sets of codes are the diagnostic related groups (DRGs) and the international classification of diseases (ICD-10).

Once a patient enters the e-health care system through contact with an e-care provider, the desired information from all subsequent interactions should be identified or captured in some standardized way through direct entry, voice entry, or other means, such as filling in on-line forms. Paper records used in the past have been portable, easy to move physically from one location to another, and information—for example, narrative clinical summaries—has been relatively unstructured. These paper records are thus an informal medium, in which the few models used to interpret the information are within the knowledge base of most professional readers. Not only has the paper chart been considered “the one place where everything can be found” (Tonnesen, LeMaistre, and Tucker, 1999), but it has traditionally been the backup, especially in health models of incremental EHRs implementation. In contrast, an electronic health record should be structured and restricted to sets of codes. One commonly used standard of coding system is the ICD-9-CM (World Health Organization, 1977).

Once the codes are defined, classification hierarchies are needed to define more complex medical ideas or concepts. Often the translation from paper records to EHRs is a source of error, because interpretations of written data can differ from one person to another. Furthermore, coding of data can vary from one site to another. Hence, coding languages and standards need to be shared among the users of the system. Following the data capture and coding process, the collected information, with appropriate identifiers, needs to be stored in accessible data warehouses or databases.

The technology infrastructure (the provisions that allow e-stakeholders access within the e-health care network to stored information) refers generally to a combination of software, hardware, and personal support mechanisms to empower users in accessing the e-health records. Implementation issues include the protection of data, the use of integrated software and hardware support systems, administrative and financial resource allocation, the integration of interoperable systems, and finally, the endorsement and acceptance of e-stakeholders. As an example, an infrastructure can use health decision support systems and learning and analytical tools, combined with an effective user interface, to expand the uses of the stored data from routine administration and accounting to exploration and mining of epidemiological trends; trends in health care cost utilization; clinical guidelines and algorithms; interactive decision support areas useful for analyzing patient-specific data; medication tracking; patient history inquiries; and other investigative processes pertaining to shared or integrated care (Szende, 2001; Tan, 2001). As well, EHRs, if implemented appropriately, can permit analysis of e-health care system performance-based measures, including e-health system outcome, efficacy, and impact evaluation.

Because of its implications for all of the functions just described, it is evident that the effective design of the technology infrastructure for EHRs must involve all e-stakeholders, including e-health care providers, e-payers, e-vendors, and e-consumers: sharing ideas among all parties involved will determine what information is needed from the system, in what standardized format, and in what manner the information will be used (Tan with Sheps, 1998). As has been noted time and again, e-stakeholder endorsement and support is of paramount importance to the success of EHRs. Stakeholder buy-in can be facilitated by a user-friendly and flexible multimedia interface. Research in the design of automated computer systems that can interpret natural language in the complex domain of medicine is likely to enhance the capabilities of user interfaces with EHRs. Touchscreen paging technology currently allows users to read pages of documents displayed on computer screens as if they were reading a book. When this technology is applied to an EHRs system, e-caregivers will be able to read e-patient information without a keyboard. Advances in voice recognition software will permit speaking into the system rather than typing in commands or entering data via keyboards.

The actual implementation of EHRs requires clearly defined objectives; a responsive, logical technology infrastructure; and e-stakeholder participation and site testing. Methods of implementation are also an important consideration. Introduction of EHRs can be either “revolutionary” or “evolutionary” (Office of Health and the Information Highway, 2001; Tan with Sheps, 1998). Revolutionary approaches imply that system implementation occurs over a relatively short period of time, perhaps with the use of prototyping or rapid prototyping techniques. Evolutionary implementation involves incremental and systematic assimilation of various aspects of EHRs over time. The structured methods and traditional systems development life-cycle (SDLC) approaches underlie most of the evolutionary approaches (see Tan, 2001). In 1991, the Kaiser Permanente Rocky Mountain Division in Colorado envisioned and projected the full implementation of such a system in twenty-seven months; it actually took over five years. EHR system implementation is therefore not a trivial task to perform even for a large organization. The United Kingdom's National Health Service has adopted the incremental approach. Over a ten-year period, NHS's mandate is that “the implementation must proceed at a reasonable pace in relation to the flow of resources and the sheer scale and complexity of the technical, cultural and management challenges that will be faced” (Office of Health and the Information Highway, 2001).

In the revolutionary approach, it is possible to have an Internet-based EHR or a virtual integrated medical record system, discussed earlier, that could have been implemented within a relatively short period of time. In fact, several scientists believe that such an approach would be most logical as advancing technology allows data coded in different formats to be integrated virtually via a common platform just for retrieval and usage as per needed basis. Once the virtual system is logged out, these data are not stored or archived independently of the sources from which they were retrieved. In other words, issues of legality and privacy can be conveniently circumvented. While this approach has a lot of appeal and seems to overcome many of the shortcomings of the evolutionary approach, it nevertheless requires extensive collaboration among many stakeholders (federal, state, and local governments, HMOs, hospitals, third party payers such as insurance, employers and patients) which will be difficult, if not impossible, to achieve. However, several small-scale pilot projects that are community-based or hospital-based have been known to work quite amicably. We see this as another step towards future trends in e-health record keeping technology.

Implementation of EHRs can be bewilderingly complex. Managing the flow of information to and from EHRs is complex, particularly in the context of an evolving e-health care system, because of the frequency of information exchange and questions about who among the multitude of e-stakeholders has authority and priority to make changes to the stored information. With individual institutions, federal health agencies, statewide or provincial and regional governments, and private-sector organizations involved, custodianship of information, policing of information misuse, and linkage of separate databases will surely be problematic. Therefore, the initiative for EHRs should be coordinated at the national level, and the system should be standardized for common understanding among all stakeholders.

Finally, as I have already mentioned, strong support from e-stakeholders is key to the implementation success of EHRs. Large capital and resource investments are required, and without e-stakeholder endorsement, any development of EHRs will fail. E-stakeholders therefore must be convinced of the overall benefits of EHRs. Data sharing, e-provider liability, the growing numbers of medically informed e-patients through the Internet, and building the perception that EHRs are aimed at minimizing e-provider administrative chores, giving them more time to focus on patient care, are issues that need to be addressed. The public will need to see an improvement in patient care if EHRs, and more generally e-health care systems, are to thrive. Managers of virtual health networks, venture capitalists, and e-health investors will need to see cost-effectiveness and reasonable returns for such large investments. The full projected benefits of EHRs in terms of efficiency and cost-effectiveness have not yet been fully realized in any system thus far. Over time, with full implementation of EHRs, we can expect further innovations and advances in e-technologies to change the nature, scope, and usefulness of EHRs on a more global scale.

Privacy Considerations in Implementing EHRs

The improvement of public health and the quality of individuals' lives through the adoption of EHRs requires the acquisition, use, and storage of extensive health-related information over a long period of time. The electronic accumulation and exchange of personal data promises significant public health benefits but also entails significant issues of individual privacy. Breaches of privacy could lead to discrimination against individuals in employment, insurance, and government programs, as well as many other detrimental consequences, such as identity theft. A number of studies show that individuals concerned about privacy invasions may avoid clinical or public health tests, treatments, or research.

An e-health care environment has an even greater need than a traditional care environment to recognize the importance of establishing the appropriate balance between an individual's right to privacy and the many benefits of improved access to and use of health information by authorized e-health service providers. The stringent requirements for privacy in this environment are due to the massive amount of data that could be placed simultaneously in the wrong hands if access authorization becomes misused, and because of the ease with which the data are to be shared among multiple stakeholders, it would also not be easy sometimes to know precisely the source of initial or subsequent misuses. Regardless of the care environment, privacy requirements are among the most important factors that will influence or impede the pace at which EHRs will be implemented regionally, nationally, and globally. According to the Advisory Council on Health Infostructure of Health Canada, electronic health records, when implemented and used with particular care, can actually enhance privacy protection as well as improve patient care, enable tele-health care, empower citizens by allowing them greater control of their own health records, and serve as the foundation for an ever-improving information and evidence-based health system: “We believe that the level of privacy protection has the potential to be higher than today's paper-based world” (Advisory Council on Health Infostructure, 1999). Currently, the ACHI comprises a health information executive from each province—that is, someone who reports directly to the Minister of Health.

In both Canada and the United States, federal, provincial, and territorial jurisdictions each take different approaches to information privacy, and the level of information protection is not consistent throughout the country. Thus, a 1999 report by the ACHI called Canadian Health Infoway: Paths to Better Health recommended that federal, provincial, and territorial jurisdictions harmonize their legislation for privacy protection, taking into account international best practices (Advisory Council on Health Infostructure, 1999). In the United States, the Health Insurance Portability and Accountability Act of 1996, which will also be discussed in Chapters Eight and Fourteen, governs privacy protection for e-health records. Fair information practices and privacy-enhancing technologies must be implemented throughout the health sector. In addition to giving people control over their own health records, this would involve strict and explicit controls on access to health records, making these records available to e-health care professionals, researchers, and other e-stakeholders on a strictly need-to-know basis.

Some important questions on privacy issues related to EHRs are as follows:

  • What information should be included in EHRs?
  • Who should have authorized access to EHRs?
  • Which information in EHRs should be shared with other providers, and under what circumstances?
  • How would a patient be able to access his or her own data that are stored in EHRs?
  • In what instances could the information in EHRs be used for secondary purposes (for example, research or administration)?
  • When should consent from the patient be required for use of information in his or her EHR?

Privacy legislation and privacy codes are designed to provide individuals with the means to protect their personal information and control its use. Privacy legislation and codes provide individual control over the collection, use, disclosure, retention, and disposal of health information by collecting organizations. In Canada, the Privacy Act imposes restrictions on the collection, use, or disclosure of personal information by federal departments and specified federal agencies; protects the privacy of individuals with respect to personal information about themselves held by a government institution; and provides individuals with the right of access to that information. More specifically, the Canadian federal government adopted the Personal Information Protection and Electronic Documents Act (formerly known as Bill C-6) in order to initiate harmonized and consistent privacy policy and legislation among provinces and territories. This act establishes rules that govern the collection, use, and disclosure of personal information in a manner that recognizes the right of individuals to privacy and the need of organizations to collect, use, or disclose personal information for purposes that a reasonable person would consider appropriate.

Table 4.2 outlines the ten privacy principles identified by the Canadian Standards Association and Canadian legislation (the Personal Information Protection and Electronic Documents Act), providing comprehensive insight into the requirements that will be placed on EHRs.

TABLE 4.2. HEALTH INFORMATION PRIVACY PRINCIPLES

images

images

images

Briefly, these principles include accountability, identifying purpose, consent, limiting collection, limiting use, disclosure, and retention, accuracy, safeguards, openness, individual access, and challenging compliance. This list indicates what will be required for the structuring of the information records generally and the protection of personal health information in EHRs specifically. For example, the principles of appropriate health record governance, the management of consent, use on a need-to-know basis, and individual access to the record will all require changes in the way business is currently conducted, especially if EHRs are to be shared among different e-stakeholders.

Thus, federal, provincial, and territorial governments in both the United States and Canada will need to develop consistent legislation and guidelines that will protect the personal health information of all individuals and that will prohibit all secondary commercial use of such information.

Moving Ahead

In order to move ahead with EHRs, top health leaders and executives in most developed countries agreed that instead of going for an integrated single EHRs system that would link a country from coast to coast, an incremental, evolutionary approach should be adopted. In this type of approach, the idea is to implement smaller shared systems such as e-laboratory systems (laboratory testing data are critical in supporting quality patient care). The next step could then be, for example, implementation of e-prescription systems, to ensure better pharmaceutical services for e-providers and e-consumers. After this, implementation could move on to e-radiological systems and EHRs.

Partnerships among key e-stakeholders (e-doctors, e-paramedics, governments, e-consumers, e-vendors, and corporate leaders) will provide the breakthroughs that result in successful EHRs implementation. As well, it will be important to get the information technology standards right so that compatibility problem are minimized.

The Institute of Medicine (1997) committee identifies five objectives for future health record systems. Extending these objectives to an e-health care environment, we note the following:

  • EHRs must support e-patient care and improve its quality.
  • EHRs must enhance the productivity of e-health care professionals and reduce the administrative burden and labor costs associated with e-health care delivery and financing.
  • EHRs must support e-clinical and e-health services research.
  • EHRs must be able to accommodate future developments in e-health care technology, policy, management, and finance.
  • The importance of e-patient confidentiality must be emphasized, and confidentiality must be maintained while all the other objectives are being met.

In the future, EHRs will enable new functions through decision support tools, links to other databases, and reliable transmission of detailed information across substantial distances. To meet the needs of practitioners, EHRs will be linked to knowledge bases, clinical decision support systems, statistical software packages, and video or picture graphics. For example, in a virtual hospital setting, departments such as e-laboratory, e-nursing, and e-radiology will be able to automatically transfer data into centralized EHRs that are linked to national bibliographic resources such as MEDLINE to access digital radiological databases. In the larger e-health care environment, EHRs will be linked with e-networks of provider institutions, third-party payers, and other health care entities. All stakeholder needs should be taken into account, for if EHRs do not deliver an end product that the end users or e-stakeholders want, all of the investments—including money, the many personnel hours of technicians and programmers, and ongoing efforts to coordinate the project—will have gone to waste.

With new advances in technology, society has also become increasingly mobile. EHRs provide a means to keep track of medical histories regardless of location or modality of e-health service. As part of this technological evolution, interfaces between users and e-network systems are becoming more user-friendly through new concepts such as smart cards, smart cars, and smart houses. A smart card can retain a patient's vital medical information so that it can be easily retrieved by swiping the card through a reader after entering the necessary security information. The technology also permits mobile health care computing, so that products, medical treatments, or alternative medical therapies can be purchased wherever there is a card reader. Smart cars will direct their operators to the nearest emergency room or available clinician, using global positioning system technology and automated directories installed in the vehicles. Alternatively, a smart car could be designed to provide e-health services directly to the driver in an emergency or even for non-emergency needs. Smart houses allow monitoring of health variables (for example, blood pressure or sugar level) of homebound patients via remote sensors, satellite-operated cameras, or other smart e-technologies (for example, fiber optics wired into the house). A case illustration of a smart house for e-home care is provided in Chapter Nine.

Conclusion

Advances in information and communication technologies have the potential to transform the current health care system. EHRs are the lifeblood of e-health care and the key to promoting quality patient care and decision support. Although many barriers stand in the way of implementation of EHRs, including financial constraints; the complexity of the e-health system; resistance to change; and privacy, confidentiality, security, and access issues, EHRs are still the foundation of the future e-health care system.

Electronic patient record systems offer opportunities to improve patient care and reduce administrative and clinical costs by improving and streamlining the e-health care delivery process. Increasingly, e-stakeholders are realizing the potential of these systems and, as a result, are starting to voice their need for integrated EHRs. The extent to which e-health leaders, the government, and private investors will invest in EHRs, as well as which applications they will choose, will depend on the establishment of standardized vocabulary, availability of funds, improved e-security technologies, and other factors. Using EHRs means reengineering the work process—that is, changing the ways that e-clinicians process orders and test results and document patient care. It is hoped that the proliferation of EHRs will translate into healthier patients and more informed e-consumers.

Chapter Questions

  1. Describe the benefits of EHRs. Suggest some steps toward building ideal EHRs as discussed in this chapter.
  2. What do you envision in the future of EHRs? What do you think of virtual medical records as an alternative model?
  3. Who would be primarily responsible for successful implementation of integrated EHRs in an e-health care system?
  4. What are the major hurdles in implementing EHRs?
  5. Imagine that integrated EHRs exist in a network from which you are able to access data that has been collected by e-practitioners about you. What would be your reaction if you discovered that not only were the data contained in the network plagued with errors, but also a good amount of the information provided about you in the network was sensitive and private? How would you go about ensuring that the information about you that was captured and stored in EHRs was reliably accurate and that the appropriate information was encrypted to protect your privacy and the confidentiality of your information?

References

Advisory Council on Health Infostructure. (1999). Canadian health infoway: Paths to better health. Final Report. Ottawa: Health Canada.

Andrew, W., & Dick, R. (1995a). Applied information technology. A clinical perspective feature focus: The computer-based patient record: Part 1. Computers in Nursing, 13(2), 80–84.

Andrew, W., & Dick, R. (1995b). Applied information technology. A clinical perspective feature focus: The computer-based patient record: Part 2. Computers in Nursing, 13(3), 118–122.

Barton, M., & Schoenbaum, S. (1990). Improving influenza vaccination performance in an HMO setting. American Journal of Public Health, 80, 534–536.

Bergman, R. (1993). The long march toward progress. Journal of Hospitals and Health Networks, 67(18), 42–46.

Hunter, K. M. (1993). Doctors' stories: The narrative structure of medical knowledge. Princeton, NJ: Princeton University Press.

Institute of Medicine. (1997). Computer-based patient records. Report no. 55. Washington, DC: National Academy Press.

Office of Health and the Information Highway. (2001). Toward electronic health records. Report no. 5-53. Ottawa: Health Canada.

Szende, A. (2001). A lifelong ehealth record. Canadian Healthcare Manager, 55(6).

Tan, J. (2001). Health management information systems: Methods and practical applications. (2nd ed.). Sudbury, MA: Jones & Bartlett.

Tan, J., & Bhatkhande, A. (2001). Evolving standards for integrating tomorrow's health care system: Toward a service process model. In J. Tan, Health management information systems: Methods and practical applications. (2nd ed., pp. 77–101). Sudbury, MA: Jones & Bartlett.

Tan, J., with Sheps, S. (1998). Health decision support systems. Sudbury, MA: Jones & Bartlett.

Tonnesen, A. S., LeMaistre, A., & Tucker, D. (1999). Electronic medical record implementation: Barriers encountered during implementation. Proceedings of the AMIA Symposium (pp. 624–626). Washington, DC: American Medical Informatics Association.

U.S. Department of Veterans Affairs. (1995, July). Veterans Health Administration manual, M-I operations: Part 1. Medical administrative activities. Publication 5.03. Washingon, DC: Author.

World Health Organization. (1977). Manual of the international statistical classification of diseases, injuries and causes of death. Publication ICD-9. Geneva, Switzerland: Author.

E-Primary Health Care and E-Health Records Cases

Penny Grubb

The primary care environment differs around the world. In some places, such as the United Kingdom, the general practitioner is the dedicated gatekeeper for all health services; other places, such as mainland Europe, offer comprehensive self-referral schemes. The means of funding, public or private, is one of the key drivers of how and where primary care is delivered. With new funding streams targeted at e-health initiatives, this in itself can make a difference. Thus, aspects of e-health provision can tip traditional balances, breaking barriers and initiating change in ways never before predicted.

A patient who directly pays a significant proportion of the cost of expensive treatment expects certain standards, including what might be termed frills: nicely appointed consulting rooms, hotel-standard service, no waiting time, and more. This reality drives health providers toward certain new technologies, placing a premium on being seen to be at the forefront, in order not to lose patients and therefore income. Wholly state-subsidized primary care, in which there are scant resources for frills, is at the other end of the scale. Patients have limited choice about where they go, and there is little direct financial motivation to please patients as though they were hotel guests. Thus, odd dichotomies come to light as the general context of health care changes. The extremes are very good and very bad: run-down public clinics at one end of the spectrum may provide state-of-the-art clinical expertise, while superbly appointed private clinics may keep costs down by skimping on specialist coverage. Both can lead to good and bad health care for different reasons.

In the United Kingdom, there is a push toward more integration of public and private health care at all levels, but many obstacles are being encountered. Partnerships are obstructed by the lack of quantitative data on comparative cost-effectiveness and on quality of care provided. In addition, cultural suspicion and even hostility between the sectors exist in many quarters.

In health care, not every eventuality can be predicted. This bedevils contracts between the public and private sector and can, for example, lead to clinical decision making on the basis of avoiding possible litigation rather than meeting genuine clinical needs. If the ultimate aim is good health care for all, there is room for all forms of primary care. The divisions that affect primary care are rooted in the history and traditions of the medical professions, as are the different types and contexts of care. E-technologies have a huge potential to smooth differences, to stretch resources, and to increase both effectiveness and efficiency. In doing so, they are likely to change the face of primary care.

Harnessing Information and Managing Knowledge

A great driver in any field is information, and the information explosion in health care has been as wide-ranging as in any context. However, information, by and in itself, is insufficient. Information overload can be as dangerous as information scarcity. Information must become knowledge, and it needs to be managed. Advances are continually made in both generalist and specialist medicine. As an illustration of the problem that this abundance of information creates, consider the following case: A primary health care clinician may justifiably wish to keep abreast of the latest developments in gastroenterology, given that roughly 15 percent of the patients he or she sees will have symptoms in this area. In a single year in the early 1990s, approximately 50,000 papers were published in this field. A clinician would need to read a paper every ten minutes or so, twenty-four hours a day, 365 days a year, to keep current. The technologies that facilitate such rapid advances must also allow the health care professional to access and harness the key research findings.

Gaps in knowledge are inevitable and still need to be addressed. All sorts of factors affect a primary health care clinician's knowledge and ability to provide effective care. For example, a study in Italy showed different levels of awareness relating to the age and experience of general practitioners (GPs). Younger GPs made greater use of scientific journals, while older GPs showed superior on-the-ground care skills, based on experience (Pavia, Foresta, Carbone, and Angelillo, 2003). One-size-fits-all knowledge management systems will not solve the problems.

Knowledge management skills have been essential in the changing face of primary care. No generalist can hold in his or her head sufficient knowledge to adequately service the diverse and shifting population that the twenty-first century lands on a provider's doorstep. In part as a response to this, primary care teams comprising doctors, nurses, and other appropriate therapists have developed. “The function of the team is to support and develop [the] therapeutic relationship between the patient and the professional” (Calman, 1994). This requires the development of new skills in teamwork and communication. Once again, the potential of the e-health context makes this possible.

The U.K. government has made it a statutory duty for primary health care groups to watch for ways to improve quality in their health care delivery (U.K. Secretary of State for Health, 1997), which means that they must keep current on research results. Keeping current would be impossible without the aid of e-systems such as regularly updated on-line research databases containing reviews and appraisals from trusted sources. In the United Kingdom, the National Institute for Clinical Excellence provides such a database.

Greater harnessing of information and knowledge within a team means that vastly greater amounts of sensitive medical data and information are available to many more people than were available a relatively short time ago. Thus, security and confidentiality are no longer as easy as remembering to lock the filing cabinet and keeping the key safe. E-technologies allow greater and more effective use but also potential for misuse of information, leading to the need for further technological aids to address information security and integrity requirements. The importance of continuing education both in monitoring and in improving skills and knowledge in the primary health care profession is well known. However, in some contexts, such as rural settings, literature is scarce and access to primary care may be difficult to come by. In these situations, caregivers rely even more on e-systems for access to up-to-date information (Murray, 1995). E-decision support systems, e-medicine, and e-home care become the obvious way forward (see Chapters Eight, Nine, and Ten).

A Greater Ability to Audit

Technology provides a means to harness information, analyze vast amounts of data with relative ease, and generate new knowledge. It permits ever more sophisticated audits of all areas of primary care. As in other areas of e-health, the potential for good is vast, and the ingenuity of people in contriving to get it wrong is impressive. Historically, audits of primary care in the United Kingdom were a financial necessity. A general practitioner was state-funded according to the number of patients on his or her books or the number attending routine clinics.

Now that information can be collected and analyzed quickly and accurately, there is a move to set targets and monitor progress toward their achievement. While this appears to be a force for good, it can lead to achievement of targets' taking precedence over patient care. For example, in the United Kingdom, the government set primary care teams the so-called 24/48 target: by 2004, all patients should be able to see a primary care professional (including nurses and other nonphysicians) within twenty-four hours, and a general practitioner physician within forty-eight hours. In setting the target, no allowance was made for the patients who, for a variety of reasons, book appointments in advance. This led to some primary care centers not allowing advance appointments, furthering their progress toward achieving the government target, and thus accessing funding, but causing great inconvenience to patients. No difference in the speed with which patients accessed primary care services resulted (McSmith, 2003).

Managing Chronic Disease in Primary Care

More appropriate audits could lead to more efficient and effective use of resources. Take diabetes care, for example. Primary care providers are often the routine caregivers for people with conditions such as diabetes. They run regular clinics and check patients' status and progress. A local clinic run by people the patients can get to know is more relaxing for the patients. Clinical tests are done in a more comfortable environment; patients are less likely to be stressed by unfamiliar surroundings, less likely to cheat on their tests, and more likely to attend. This leads to better overall health and management of the condition. Thus, resource use is more effective and overall expenditures are lower.

Still, if primary care practitioners in this local clinic have insufficient skill or knowledge, they may make inappropriate referrals to specialists: either too many routine cases referred, using scarce specialist resource unnecessarily, or cases not referred until too late to prevent serious problems—for example, amputation. Specialist clinics tend to insist on more referrals than necessary, on the assumption that it is better to be safe than sorry. Too few or too many referrals both lead to overload on specialist resources and thus lower standards of care.

Where E-Health Comes In

Using e-technologies, routine tests done in the primary care setting can be tracked automatically, both to see that these are being done and to track patient progress. The specialist can determine the template of care for the primary care team to follow. The primary care team's more intimate personal knowledge of patients can also be fed into the care templates.

Diabetes is a chronic condition that can be controlled but not cured. Good control is key in preventing serious complications such as blindness and amputation and in maintaining the patient's quality of life. Good control means maintaining blood sugar, blood pressure, and other relevant indicators at levels as near to normal as possible all the time. Maintaining normal levels on average is not enough. It is the peaks and troughs that cause the damage. The care of people with diabetes could be revolutionized by the use of e-primary care, as I will explain.

In the traditional primary care scenario, both routine testing and patient education are problem areas. Patients come to a primary care clinic every few weeks for tests. Satisfactory results may be recorded time after time, while a patient develops severe neurological complications and serious circulatory disorders. This may occur because the patient prepares for the clinic, consciously or subconsciously, by altering his or her diet for the preceding few days. This problem is also apparent when patients do home tests and bring their results to the clinic. They learn to massage the figures they write on the charts to give the doctor the “right” results.

The education problem is clear. People cheat on results to avoid a lecture on lifestyle, at the expense of their own long-term health. For years, patients have been given diet sheets and lifestyle advice, which have been improved over time. Tests now are far more sophisticated than they used to be. Despite this, the problem persists.

E-primary care in this context can both address the problem of misleading results and improve the efficacy of patient education. Home testing kits can gauge and store results electronically without the patient's intervention, and results can be sent electronically to the clinic. Automatic analysis of results provides a means to monitor the condition as changes occur rather than looking at what has already passed. Tests done in the home setting, when correctly recorded, give a more accurate reflection of the patient's health because they lack the element of “special occasion” that can have effects such as raising blood pressure.

The e-health context provides the means to obtain a far more complete and accurate picture of the progress of a patient's condition than that achieved through traditional means. E-health enables providers and patients to receive early warning of potential complications. Thus, intervention can be more timely, and advice on lifestyle can be more immediate and thus more effective. In this context, the barrier between primary and specialist clinics blurs as information and knowledge become ubiquitously available. The “virtual patient,” in the guise of comprehensive and accurate test results, can be automatically transferred and analyzed.

Results, combinations of results, and specific vagaries of individual patients can potentially be tracked automatically. Automatic alerts can then be raised if a person needs specialist intervention or checking. The specialist clinic can take fewer routine cases with confidence, thus leaving specialist resources free for those genuinely in need. Automatic systems can learn from past situations as medical outcomes are fed back to them. This will spread in the future into home monitoring, in which automatic systems will check results and their integrity and thus ease the load on even the routine primary care clinics.

Early studies on e-home care for diabetics show encouraging results (Dansky, Bowles, and Palmer, 2003). However, for more sophisticated e-systems, the trust of primary health care professionals will be essential. A system that is not trusted will not be used, even when it has been shown to be clinically effective (Grubb and Takang, 2003).

The deployment of e-systems in the care of conditions like diabetes could lead to vast benefits. For example, a small percentage decrease in the number of amputations or the incidence of blindness translates into enormous quality of life benefits as well as huge cost savings. Even routine data exchange has been shown to make a difference (Grubb and Dixon, 1993). E-medicine and e-care systems such as those exchanging data between primary care and specialist clinics may have the potential to eventually bypass primary care altogether because specialists now can treat patients directly with or without the need of a referral. However, e-technologies are a long way from replacing the primary health care professional. Harnessing data and making them useful through information and knowledge management applied in teamwork and audit contexts may lead to better health care but cannot substitute for the relationship between a patient and a primary care provider. No e-medicine or robotic system will ever provide satisfactory service for the patient whose regular trip to the diabetes clinic is primarily for human contact.

The primary health care physician, faced with unusual symptoms and without recourse to the battery of tests and equipment of the specialist clinical setting, routinely makes difficult clinical decisions. We are a long way from technology that will bring the tests on-line to all primary care settings, let alone to the homes of individual patients; thus, the experience and expertise of primary care professionals remains essential.

Challenges in E-Health Records

The early days of primary care e-systems were as fraught with excitement and problems as the pioneering days of any other field. There were fully networked GP clinics in the early 1960s, but within a few years, they were struggling with hugely expensive maintenance charges, while newer systems were cheaper, faster, and more reliable and offered greater functionality. Moving decades' worth of stored medical information to take advantage of newer technologies was a costly business, often unreliable and sometimes impossible. Some practices, after making this costly leap, found themselves in the same position a decade further on. What was cutting edge when bought had become hopelessly slow and archaic, and swapping systems was costly and complex.

The 1990s saw the first serious investment in research on electronic medical records (Beale, 1994; Beale and Lloyd, 1995; Camplin, 1994; Ingram and others, 1995; Dixon, Grubb, and Lloyd, 2000a, 2000b)1 and showed that the issue of fitting people inside their electronic health records was a far more complex business than it had first appeared to be. This issue accounted for many early failures. An interesting comparison is the computerization of people's tax records. This major task was relatively easy compared to electronic health records. Essentially, electronic records were created, and people's tax personas were fitted to them. The computerization of Inland Revenue records in the United Kingdom brought inconsistencies to light that led to changes in the tax laws. No such leeway is available to builders of medical records, since there is no law that can be changed in order to determine the way a person breaks a bone or develops a disease.

Many things had to be taken into account in the medical record, including, but by no means restricted to the following:

  • The need for the data to be kept, without loss of integrity, for long periods of time, maybe in excess of one hundred years. We cannot envisage the technologies that will underpin twenty-second century e-health systems. Thus, trying to ensure long-term integrity of the information by requiring compatibility with a particular database or file format is inappropriate. It is not the format of the data (such as specifying alphanumeric characters to a maximum length) that is relevant, but the architecture of the record itself, including the type and characteristics of data entities and relationships to be captured.
  • The correct identification of a patient. This issue has two sides. First, who is the patient? Second, which are the correct records? Unique patient identifiers have been proposed as a solution, but the area is fraught with technical, cultural, and political difficulties. Research suggests that patients in primary care see both the potential benefits and the pitfalls of unique patient identifiers (Bomba, 2003).

A young girl died in a London hospital in the 1990s as a direct result of reliance on name as the means of identifying the correct electronic record. On her second visit to the hospital, the record of her previous visit was not found, and ignorance of previously done tests led to misdiagnosis of what turned out to be fatal meningitis. The girl's name had been keyed in on one occasion with the middle initial and on the other without it. This case illustrates that the identification issue is not just an academic problem; lives may depend on solving it effectively.

In some cases when quick clinical decisions are needed—for example, when a patient is unconscious after an accident—the patient's name and other details may not be known. There have been many suggestions for solutions, including the following:

  • Smart cards. Work has been done on the use of health care smart cards, but the issue of what information should be coded on the card remains a matter of contention. Such cards are also vulnerable to loss or misuse.
  • National and international identity databases. On paper, such schemes may solve technical problems, but they are fraught with practical difficulties, including misuse. Any potential for medical data to fall into the wrong hands is problematic. There is already controversy over how much data should be accessible to insurance companies.
  • Retinal prints or fingerprints. These can provide reliable identification, but only when matched against some central record; thus, they solve only the identity side of the equation, not the records side.
  • DNA. In some circumstances—for example, following a serious accident—fingerprinting may not be possible. DNA will always be available. However, the problems of matching are the same as for fingerprints or retinal prints.

It may be that one day roadside testing of blood or DNA will provide emergency personnel with necessary medical information such as existing conditions, allergies, and drugs in the patient's system. If that becomes possible, identification of the patient will become clinically irrelevant, but it will still be an issue for other reasons—for example, determination of the patient's religious convictions or who pays for treatment. For now, medical record architecture needs to allow all forms of identification—name and demographics; fingerprints; retinal prints; photographs; and other key data—and must not preclude the addition of future means of identification that have not yet been conceived. Work done in the European Union–funded Electronic Healthcare Record Support Action project led to the production of software that shows the depth to which the medical record architecture must be defined in order to provide long-term integrity, flexibility, and portability (Dixon, Grubb, Gosland, and Lloyd, 2000).

Impacts of E-Health on Primary Care

Primary care has always been the repository of large amounts of clinical data. Information is now becoming available in all sorts of new ways, bringing both problems and benefits. Trends and patterns can be identified through automatic analysis of primary care records. Screening becomes easier and more accurate, leading to better standards of care but also to concerns about overscreening, which can result in unnecessary worry and concern or even unnecessary surgery.

Primary care is not an exact science, but technological factors can sometimes make it appear so. For example,

  • An e-system can give misleadingly authoritative results even if it has, among other possibilities, incorrectly set parameters.
  • E-systems tend toward pseudoexactness and bald statements. There is a huge difference between “You might have cancer” and “The signs you are exhibiting are the same as those of a subpopulation, a small percentage of whom will go on to develop a condition that may lead, in a small percentage of cases, to cancer.” A primary health care professional can select the right slant, based on knowledge of the patient. An e-system may give entirely the wrong signals because it cannot tailor the message.
  • E-systems can give inappropriate weight to information. Inadequate lab procedures, for example, can lead to false positive or negative results, but these are nonetheless given a certain gravitas by appearing as a set of computerized results, the neatness of the printout somehow counteracting the careless technique of a lab technician having a bad day. As an illustration, a computer program will state an amount as 9.45678 mg. Impressive accuracy? Probably not. The program may be running on hardware incapable of accuracy beyond two decimal points.

The above illustrations of problems with e-health systems are, in our opinion, out-weighed by the huge potential advantages. The problems can be serious because they affect people's health and well-being, but they are an indication of the immaturity of the health informatics and medical informatics fields and will inevitably be overcome.

Health Informatics and Medical Informatics

Early e-primary care systems were inadequate for several reasons:

  • Neither hardware nor software was reliable enough.
  • Systems built by information technology professionals did not meet clinical needs.
  • Systems built by health care professionals did not have technical integrity.

These issues led eventually to the development of the new disciplines of health informatics and medical informatics, in which professionals with a foot in both the medical and the technical camps could build robust systems that met clinical needs.

E-Health Impacts on Traditional Primary Care Roles

An e-medicine project in the early 1990s required a nurse in a primary health care clinic to contact a specialist clinician via a teleconferencing link and to treat patients according to the specialist's advice. The aim was to see whether specific specialist referrals (with attendant problems, including waiting times) could be cut without compromising levels of care. The system was cumbersome and unreliable but was used for the duration of the project.

By the end of this project, the videoconferencing system was not used, but the nurses continued to consult the specialists in awkward cases by telephoning while the patient was with them. This direct contact, initiated at the nurse's convenience, would previously have been unheard of, but it benefited patients, nurses, and specialists. Neither nurses nor specialists had believed that frequent telephone conversations would be so useful. Without realizing it, they had been playing out their traditional roles, in which such informal contact was frowned on. Although the e-system itself was generally deemed worse than useless, the context of e-health broke down traditional barriers. The sophisticated teleconferencing system had empowered the nurse to use the old-fashioned telephone.

Roles and boundaries in different areas of health care have always been subject to debate, but the e-health context speeds things up and blurs boundaries in unpredictable ways. Traditional relationships between professions don't always hold when put under the e-health spotlight. This leads to differences in perception of primary care roles, among others. For example, primary care is taking a bigger role in public health issues, enabled by the extra functionality provided by new technologies that deliver better facilities and processes. Nonetheless, there are differences in perception between primary care staff based in the community and those based in clinics about what their role should actually be (Heller, Edwards, Patterson, and Elhassan, 2003). Where there was once a clearly defined line between medics and trained nonmedics, the e-health context seems to be blurring that line. Evidence from a Netherlands-based trial indicates that patient care support from trained nonmedics alters clinical decision making (Frijling and others, 2003).

Conclusion

E-health in the context of primary health care is at an early stage. Health informatics and medical informatics are new disciplines compared with medicine and even with information technology. Despite some serious challenges, the difficulties in the current e-health environment in primary care are essentially teething problems. Not only is e-primary health care bringing enormous improvements in the quality and effectiveness of care, but it is also a driving force behind what are likely to become fundamental shifts in the roles and responsibilities of different health care professionals.

Both hardware and software are now available at a cost and level of reliability that should allow primary health care to benefit far more than it has. One primary obstacle is the immaturity of health informatics and medical informatics as disciplines. We can send data around the world and book complex travel tickets in any downtown office, but we still don't have reliable linked primary health care systems that can guarantee data integrity, confidentiality, security, portability, and comprehensiveness. There are signs, however, of emerging solutions. Time, the traditional great healer, is an effective treatment for problems of immaturity.

Note

1. CEN TC251, the Technical Committee of the European Standards Organisation, is responsibility for developing standards that enable compatibility and interoperability between independent systems in health care. In 1996, its Project Team PT1–011 produced a preliminary standard, ENV 12265, for the Electronic Record Architecture (www.centc251.org). In 1998, CEN Project Teams 26, 27, 28, and 29 began working together to produce a four-part standard as an enhancement of ENV 12265. PT26 produced the Extended Architecture and Domain Model. PT27 produced the Domain Term List. PT28 produced the Distribution Rules. PT29 produced the Messages for the Exchange of Record Information (www.centc251.org).

GEHR, the Good European Health Record project, an EU Framework III Telematics project, developed a comprehensive common data structure for using and sharing electronic health care records within Europe. Details are at http://www.chime.ucl.ac.uk/work-areas/ehrs/GEHR/.

References

Beale, T. (1994). The GEHR systems architecture guide. Retrieved from http://www.chime.ucl.ac.uk/work-areas/ehrs/GEHR/

Beale, T., & Lloyd, D. (1995). The GEHR Object Model, Version 2.2. Retrieved from http://www.chime.ucl.ac.uk/work-areas/ehrs/GEHR/, Good European Health Record Project

Bomba, T. (2003). A survey of patient attitudes towards the use of computerised medical records and unique identifiers in four Australian GP practices. Journal on Information Technology in Health Care, 1(1),35–45.

Calman, F. (1994). Working together, teamwork. Journal of Interprofessional Care 8, 95–101.

Camplin, D. (1994). GEHR software tools and prototypes/application software integration. GEHR Project Deliverable 16/17. Retrieved from http://www.chime.ucl.ac.uk/work-areas/ehrs/GEHR/

Dansky, K., Bowles, K., & Palmer, L. (2003). Clinical outcomes of telehomecare for diabetic patients. Journal on Information Technology in Health Care, 1, 61–74.

Dixon, R., Grubb, P., Gosland, J., & Lloyd, D. (2000, April). Final illustrative demonstrations of EHCR (Electronic Health Care Record Support Action) architecture features using scenarios and worked examples. Electronic Healthcare Record Support Action, an EU Framework IV Telematics project. Retrieved from http://www.chime.ucl.ac.uk/work-areas/ehrs/EHCR-SupA/

Dixon, R., Grubb, P., & Lloyd, D. (2000a, April). Final recommendations to CEN for future work. Electronic Healthcare Record Support Action, an EU Framework IV Telematics project. Retrieved from http://www.chime.ucl.ac.uk/work-areas/ehrs/EHCR-SupA/

Dixon, R., Grubb, P., & Lloyd, D. (2000b, April). Guidelines on interpretation and implementation of CEN EHCRA. Electronic Healthcare Record Support Action, an EU Framework IV Telematics project. Available at http://www.chime.ucl.ac.uk/work-areas/ehrs/EHCR-SupA/

Foy, R., & Warner, P. (2003). About time: Diagnostic guidelines that help clinicians. Quality and Safety in Health Care, 12, 205–209.

Frijling, B., Lobo, C., Hulscher, M., Akkermans, R., Drenth, B., Prins, A., Wouden, J., & Grol, R. (2003). Intensive support to improve clinical decision making in cardiovascular care: A randomized controlled trial in general practice. Quality and Safety in Health Care, 12, 181–187.

Glasziou, P., & Irwig, M. (2000). An evidence based approach to individualizing treatment. British Medical Journal, 320, 659–661.

Grubb, P., & Dixon, R. (1993, April). The communication of diabetic patient information through IT. Paper presented to the Royal Society of Medicine at the Forum on Computers in Medicine.

Grubb, P., & Takang, A. (2003). Software maintenance: Concepts and practice (2nd ed.) Hackensack, NJ: World Scientific Publishing Company.

Heller, R., Edwards, R., Patterson, L., & Elhassan, M. (2003). Public health in primary care trusts: A resource needs assessment. Public Health, 117, 157–164.

Ingram, D., Lloyd, D., Kalra, D., Beale, T., Heard, S., Grubb, P., Dixon, R., Camplin, D., Ellis, J., & Maskens, A. (1995, June 30). GEHR Architecture, Version 1.0. GEHR Deliverables 19, 20, and 24. Retrieved from http://www.chime.ucl.ac.uk/work-areas/ehrs/GEHR/

McSmith, A. (2003, June 29). Revealed: How GPs cheat on their patients. The Independent on Sunday. Report.

Murray, T. (1995). Education for rural primary health care workers. In Rural general practice in the United Kingdom (pp. 36–38). Royal College of General Practitioners, Occasional Paper 71.

Pavia, M., Foresta, M., Carbone, V., & Angelillo, I. (2003). Influenza and pneumococcal immunization in the elderly: Knowledge, attitudes, and practices among general practitioners in Italy. Public Health, 117, 202–207.

U.K. Secretary of State for Health. (1997). A first class service: Quality in the new NHS. London: Stationery Office.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.145.54.7