This course begins by looking at the Data Analysis with R module. This module will help you navigate the R environment. You'll gain a thorough understanding of statistical reasoning and sampling. Finally, you'll be able to put best practices into effect to make your job easier and facilitate reproducibility.
The second place to explore is R Graphs. This module will help you leverage powerful default R graphics and utilize advanced graphics systems such as lattice and ggplot2, the grammar of graphics. Through inspecting large datasets using tableplot and stunning three-dimensional visualizations, you will know how to produce, customize, and publish advanced visualizations using this popular, and powerful, framework.
With the third module, Learning Data Mining with R, you will learn how to manipulate data with R using code snippets and be introduced to mining frequent patterns, association, and correlations while working with R programs. Discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on RHadoop projects. You will finish this module feeling confident in your ability to know which data mining algorithm to apply in any situation.
The Mastering R for Quantitative Finance module pragmatically introduces both the quantitative finance concepts and their modeling in R, enabling you to build a tailor-made trading system on your own. By the end of the module, you will be well versed with various financial techniques using R and will be able to place good bets while making financial decisions.
Finally, we'll look at the Machine Learning with R module. With this module, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. Through full engagement with the sort of real-world problems data-wranglers face, you'll learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, market analysis, and clustering.
18.226.164.53