The R implementation

Here is the R source code of the main algorithm:

GSP  <- function (d,I,MIN_SUP){
  f <- NULL
  c[[1]] <- CreateInitalPrefixTree(NULL)
  len4I <- GetLength(I)
  for(idx in 1:len4I){
    SetSupportCount(I[idx],0)
    AddChild2Node(c[[1]], I[idx],NULL)
  }
  k <- 1
  while( !IsEmpty(c[[k]]) ){
     ComputeSupportCount(c[[k]],d)
     while(TRUE){
       r <- GetLeaf(c[[k]])
       if( r==NULL ){
         break
       }
       if(GetSupport(r)>=MIN_SUP){
         AddFrequentItemset(f,r,GetSupport(r))
       }else{
         RemoveLeaf(c[[k]],s)
       }
    }
    c[[k+1]] <- ExtendPrefixTree(c[[k]])
    k <- K+1
  }
  f
}

The SPADE algorithm

Sequential Pattern Discovery using Equivalent classes (SPADE) is a vertical sequence-mining algorithm applied to sequence patterns; it has a depth-first approach. Here are the features of the SPADE algorithm:

  • SPADE is an extension of the A-Priori algorithm
  • It uses the A-Priori property
  • Multiple passes of the initial transaction data set are required
  • The vertical data format is used
  • It uses a simple join operation
  • All sequences are found in three dataset passes

The short description of SPADE algorithm goes here.

Here is the pseudocode before calling the SPADE algorithm, The SPADE algorithm:

The SPADE algorithm
The SPADE algorithm

The R implementation

Here is the R source code of the main algorithm:

SPADE  <- function (p,f,k,MIN_SUP){
  len4p <- GetLength(p)
  for(idx in 1:len4p){
     AddFrequentItemset(f,p[[idx]],GetSupport(p[[idx]]))
     Pa <- GetFrequentTidSets(NULL,MIN_SUP)
     for(jdx in 1:len4p){
       xab <- CreateTidSets(p[[idx]],p[[jdx]],k)
       if(GetSupport(xab)>=MIN_SUP){
         AddFrequentTidSets(pa,xab)
       }
     }
     if(!IsEmptyTidSets(pa)){
       SPADE(p,f,k+1,MIN_SUP)
     }
  }
}

Rule generation from sequential patterns

Sequential rules, label sequential rules, and class sequential rules can be generated from sequential patterns, which you will get from the previous sequential patterns discovery algorithms.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.142.135.121