Index

Note: Page numbers followed by f indicate figures, t indicate tables and np indicate footnote.

A

AC transformer 6
AC transmission lines 235
AC-DC-AC converters 303
Acid rain 15, 16
Advanced boiling water reactor (ABWR) 369
Advanced gas turbine cycles 78–81
efficiency of 79
intercooling in 79
mass injection in 80–81
recuperation in 80
reheating in 78–79
Advanced gas-cooled reactors (AGRs) 364, 365f
Advanced PWR (APWR) 370
Aero-derivative gas turbine 79
Agricultural waste 313, 316–317
Air pollution 15
Air quality standards 49t
Alabama Electric Cooperative 203
Alkaline fuel cells (AFCs) 133–134, 138–139, 138f
electrolyte in 138–139
potassium hydroxide used in 137, 138
Alternating current 6, 42
Alternative energy 5
Alternators 3–4
Ammonia 54, 58
Amorphous silicon 278–279
Ampère, Andrè 2
Anaerobic digester 330
Animal waste 329
Anthracite 31
APWR  See Advanced PWR
Aquabuoy 300
Arab-Israeli war 5
Arch dams 163–164, 164f
Archimedes Wave Swing 300
Argonne National Laboratory 353, 361–362
Ash removal 34
Ash waste 349–350
Atmosphere 224f
carbon cycle and warming of 18–20
carbon dioxide concentrations and warming of 18t
pressure differences in 224
Atom bomb 353
Atoms 357
Augustin Fresnel 1 plant 274
Aviation industry 71

B

Back-pressure steam turbine 119–120
Bacon, Francis 130, 138
Bacon Cell 130
Bagasse 316
Bandwidth 277, 277t, 278
Barrages 159–161
Base-load capacity 5
Batteries 
chemical reactions in 207–209
cost of systems using 212
distinct types of 207
energy storage with 209, 284
large-scale 206–212
lead-acid 208, 208f, 209
lithium 210
nickel-cadmium 210
rechargeable 197
redox 212
sodium-sulfur 210–211, 211f
wind power storage systems using 238
Bay of Fundy, Canada 183, 185, 189–190, 191
Becquerel, Antoine-César 259–260, 275–277
Binary cycle power plants 253–255, 254f
Biodiesel 100, 331
Biodiversity 175
Biofuel 57, 109
Biomass 
advantages of 314–315
cofiring 57–58
co-firing conversion of 324–326
costs of power generation from 331–333
digesters 317, 329–330
direct firing of 321–324
direct-firing system power plant 322f
electricity costs from 332–333
energy conversion methods for 314, 321
energy crops and 318–320, 319t
ethanol as 330–331
fluidized-bed gasifier for 326–327, 327f, 328f
fuel costs of 332
fuel handling for 328–329
fuels calorific value and 319, 320t
fuelwood and 317–318
gasifier 325
global energy capacity from 314
growing trade in 320–321
IGCC plant for 327
industries linked to 313
liquid fuels from 330–331
materials considered 313
moving grate for combustion of 323f
power plant efficiency using 329
problems with 315
technologies 321, 331–332
types of 315–316
Biomass combustion 315, 319–320, 323f, 325
Biomass gasification 326–328
Biomass waste 315–317
agricultural 316–317
livestock residues as 317
organic urban 316
wood as 317
Bituminous coal 31
Blade (turbine) cooling 77f
Bloom Energy 149
Boilers 44f, 51f
Boiling water reactor (BWR) 361–362, 361f
Boron rods 358
Bottoming cycle 81–82
Brine 247, 252, 275
Brine-methane reservoirs 248
Brown coal 32, 33–34
Bubbling bed plant 45, 324
Bulb turbines 169, 190, 190f
Bunded reservoir power plants 188
Buoyancy-based devices 298–299, 299f

C

Cabanyes, Isidoro 275
Cadmium telluride 279, 280–281
Caisson construction 189
Canadian deuterium uranium (CANDU) reactor 363–364, 363f, 370
Capacitors 198
applications for 218–219
costs of systems using 219
electrochemical 218–219
energy storage of 216–219
leakage of 218
performance characteristics of 218
Carbon 88
capture and storage 90
IGCC plant with capture and storage of 63
post-combustion capture of 58–59
pre-combustion capture of 61f
Carbon cycle 18–20
Carbon dioxide 
atmospheric warming concentrations of 18t
DMFCs release of 150
environment influenced by 17
flue gas removal of 56–57
fossil fuels releasing 18, 20
from gas turbine power plants 85, 88
hydrogen mixture with 61
IGCC plant removal of 48
from internal combustion engines 109
lifetime emissions of 25t
from natural gas 88–89
from power generation 25t
renewable energy and release of 24
sequestration 56–57, 58–59, 62–63, 62f
Carbon monoxide 85, 87–88, 99, 107, 108, 134–135, 326
Carnot cycle efficiency 123–124
Carnot thermodynamic cycle 35–36
Cascaded HAT (CHAT) 81
Catalysts 134–135
Catalytic converter 107–108
Catalytic reduction systems 48–49
Ceramic thermal barrier coating (TBC) 76–77
CH4  See Methane
Chain reaction 358
Chapin, Daryl 259–260
CHAT  See Cascaded HAT
Chemical energy 35–36, 94
Chemical factories 113
Chemical reactions 129, 130, 131, 207–209
Chernobyl 15, 354, 375, 377
Circulating fluidized bed plant 45, 324
Claude, Georges 291
Climate change 16, 50
Closed cycle OTEC 291–292, 292f, 293
Coal 12
air pollution from 15
ash removal from 34
bituminous 31
brown 32, 33–34
chemical energy of 35–36
cleaning and processing of 33–34, 50–51
countries' reserves of 33
electricity source importance of 29
energy density of 30, 31
flue gases of 48–49
gasification 46, 60–62
lignite 32
oxy-fuel combustion and burning of 59–60
regional reserves of 32t
reserves of 32–33
SO2 generated by 30–31
sub-bituminous 31
types of 31–32
Coal-fired power plants 
biofuel used in 57
biomass cofiring in 57–58
costs of 29, 63–65, 64t
countries using 30t
efficiency of 35, 41–42
emission control for 48–50
generators used in 42–43
hot flue gases of 35
NOx produced by 48
with SCR reactor 55f
SO2 produced by 48
steam turbines for 39–42, 40f
technological components of 34–36
Co-firing 324–326
Cogeneration 104–105, 123
Combined cycle plants 105–106
base-load capacity of 5
bottoming cycle used in 81–82
costs of 90
diesel engine-based 105–106
economics of 71
flexibility of 83
gas-fired 77f
SCR in 87f
Combined heat and power (CHP) 111–112, 141
applications of 119
cost of 125–127, 126t
as emissions control strategy 114
energy priorities of 116–117, 118
fuel cells in 124f
gas turbines in 121f
history and usage of 112–114
municipal use of 115f
nuclear power with 125
piston engines in 118f
power plants adapted to 116
steam turbines in 120f
technologies used in 116–118
Commercial sector 3, 283
Compressed-air energy storage (CAES) 202–206, 203t, 204f
components of 203–204
costs of 206
facilities for 204–205
gas turbine engines for 206
turbine technology for 205–206
underground caverns for 205
Compression ratios 74
of diesel engine 100
of gas turbine engines 76
of spark-ignition engine 99–100
Compression-ignition engine  See Diesel engine
Computer network 8
Concentrating solar cell 281
Concrete arch dams 163–164, 164f
Concrete gravity dams 163, 163f
Condensing turbine 120
Containment 360
Controlled nuclear reaction 358–359
Conventional boiler 37
Conventional island 360
Copper-indium-gallium-diselenide 280–281
Coppicing 318
Costs 
battery systems 212
biomass electricity 332–333
biomass power generation 331–333
biomass technology 331–332
of CAES 206
capacitor systems 219
of CHP 125–127, 126t
coal-fired power plants 29, 63–65, 64t
combined cycle plants 90
electricity production 22–23
energy storage obstacle of 196–197
of flywheel systems 216
of fuel cells 151–152, 151t
gas turbine power plants 75f, 89–91
geothermal energy 256–257
of hydropower plants 177–179
of marine power generation 311
of natural gas 67
of nuclear power 377–378
of oxy-fuel combustion 63
of piston engine-based power plants 109–110, 110t
in power generation 64t
power generation's capital 64t
power generation's external 23t
power plant 65
of pumped storage hydropower 202
of small hydropower plants 172–173
of SMES 214
of solar energy 284–286
of solar photovoltaic power 285–286
of solar thermal power generation 285–286, 285t
of Stirling engines 110
of tidal barrage power plants 193–194
United Kingdom and United States' WTE 352t
United Kingdom wind power 241t
waste plants energy 351–352
of wind power 240–242
Cottrell, Frederick 55–56
Countries 
coal reserves of 33
coal-fired power plants used in 30t
electricity generating capacity of 12
geothermal energy exploited by 244, 245t
with natural gas 69
with nuclear power 353, 354
power plant costs differing in 65
with tidal barrage power plants 185t
tidal energy potential of 183, 184
waste-to-energy plants in 335–336
wind power repowering in 240
Cross-flow turbines 306
Crystalline silicon 279, 280–281, 286

D

Dam and reservoir projects 161, 162f
Dams 
concrete arch 163–164, 164f
concrete gravity 163
embankment 162–163, 162f, 189
geological influence on 175
for hydropower plants 159–161
interregional disputes about 177
positive changes from 173
Dams and Development: A New Framework for Decision Making 154, 173
Darrieus wind turbines 227
d'Arsonval, Jacques-Arsène 291
DC current 213–214
Decommissioning plants 377
Deltastream 308
Department of Energy and Climate (DECC) 241
Deriaz, Paul 169
Deriaz turbines 169
Deuterium 359, 373
Deuterium atom 363np, 363
Diesel, Rudolph 95
Diesel engine-based combined cycle plant 105–106
Diesel engines 4, 94, 108
compression ratios of 100
efficiency of 100–101
emission range of 101t, 118
NOx production of 100
stroke cycles in 95–96
Diffuse radiation 261
Diffusion 308
Dioxins 350–351
Direct current 3–4, 6
Direct methanol fuel cell (DMFC) 149–150, 149f
applications of 149
carbon dioxide release by 150
efficiency of 149–150
membrane electrolyte of 150
Direct radiation 261
Direct steam geothermal plant 251–253
Direct steam power plants 251–252
Direct-drive generators 228, 231
Direct-firing system power plant 322f, 324
Direct-firing technology 321–324
Direct-steam energy capture system 268f, 269
Direct-steam technology 267
Distributed generation 7–8, 114
District heating system 112–113, 115, 116, 255
Double-flash technology 253
Downwind design 230
Drinking water 290–291
Drive trains 228, 231–232
Dual-cycle system 366–367
Dual-fuel engines 101–103, 102f
Dye-sensitized solar cells 281, 282
Dynamo 3–4

E

Earth 
core temperature of 243
solar energy and 261t
wind power above surface of 226
Ebb-flow generation 185–186
Economic simplified BWR (ESBWR) 370
Edison, Thomas 2
Efficiency 
of advanced gas turbine cycles 79
biomass power plant's 329
Carnot cycle 123–124
of coal-fired power plants 35, 41–42
of diesel engine 100–101
of DMFC 149–150
dual-fuel engines seeking 101–102
of energy storage 198, 198t
of fluidized bed combustion 45
of fuel cells 124–125, 129–130, 136, 220
fuel-to-electricity conversion 106
of gas turbine engines 76
of generators 43
of heat engine 291
higher energy 112
of IGCC plant 48
mass injection increasing 80
of nickel-cadmium batteries 210
of piston engine-based power plants 105, 110t
of piston engines 99, 118
of PWR 362–363
reheating increasing turbine's 78–79
of renewable energy 25
shroud improving 304
of SOFC 148
of solar cells 278–279, 282
of steam turbine 119
of turbines 164–165, 166
Eggbeater design 227, 305
Electric motor 3–4
Electric Power Research Institute (EPRI) 63–64
Electricity 
biomass costs of 332–333
coal important in 29
commercial uses of 3
developing countries generating capacity of 12
EU's cost of 23–24
externalities of 23–24
as foundation of society 1
fuels conversion efficiency of 106
global generating capacity of 11t
global net generation of 11t
grid-based delivery of 196
light using 2
production costs of 22–23
rotating engines of 2, 3–4
security issues of 1–2
solar dishes and 273
sunlight driving steam turbines for 264–266
Electricity generation industry 
in countries 12
evolution of 3–5
free-market rules in 10
history of 2–3
liberalization of 9–10
material types used in 12
private sector ownership in 10
as public utility 9
size of global 10–13
standardization and growth of 3
Electricity networks 
evolution of 6–7
hierarchical structure of 6–7
from power stations 6
in smart grid 8
standardization of 6
system operator balancing 7
Electricity-using devices 8
Electrochemical capacitors 218–219
Electrochemistry 131, 132, 133
Electrolysis 130, 219
Electrolyte 
in AFCs 138–139
DMFCs membrane 150
of MCFCs 144–145
PAFCs using 140
SOFC using zirconia 146, 147
Electromagnetic radiation 277
Electrostatic precipitators (ESPs) 55
Elling, Aegidus 73
Embankment dams 162–163, 162f, 189
Emissions 
carbon dioxide 25t
carbon monoxide 87–88, 107, 108
CHP control strategy for 114
coal-fired power plants control of 48–50
controlling 106–109
diesel engines range of 101t, 118
EU power plants limits on 50t
flue gas levels of 49–50
from fossil fuels 15, 16
gas turbine power plants 85, 88
of internal combustion engines 106–107, 109
NOx standards for 86
piston engines NOx 107
power generation carbon dioxide 25t
of spark-ignition engines 99
sulfur scrubbers and 48–49
Energy 
CHP priorities of 116–117, 118
coal's density of 30, 31
crops 318–320, 319t, 332
fossil fuel's density of 30t
hydropower's potential of 155
MSW content of 339
payback ratios 25–26, 26t
regional urban waste content of 339t
tidal barrage power plants exploiting 181
wind farm's loss of 236–237
Energy arbitrage 195, 220–221
Energy conversion efficiency 
biomass and 314, 321
of fossil fuel-burning power plants 117
of fuels 106
of gas turbine combined cycle plant 67, 82, 83
of gas turbine engines 71, 120
of hydrogen 219
of MCFCs 145–146
of oxy-fuel combustion 60
of PEM fuel cells 142–143
of power plants 117t
of solar dishes 271, 272
Energy Information Administration (EIA) 89–90, 256, 331–332, 378
Energy storage 
with batteries 209, 284
of capacitors 216–219
cost as obstacle to 196–197
economics of 195
efficiency of 198, 198t
flywheels for mechanical 214–216, 215f
hydrogen 219–221, 220f
large-scale utility 198–199
lead-acid batteries used in 209
mechanical 197–198, 214–216, 215f
for off-peak periods 195
purpose of 196
response times of 197
solar field determining 266
of solar photovoltaic power 284
types of 197–199
wind power and 238
Environment 
carbon dioxide influencing 17
concern for 5
evolution of awareness about 16–17
flue gas material and 48–49
hydropower's considerations toward 173–174
nuclear power's issues of 374–377
power generation considerations of 15, 17–18, 26
SO2 and NOx influencing 16
tidal barrage power plants and 192–193
waste issues to 348–349
wind power's influence on 237
Environmental assessment 
biodiversity in 175
geological influences and 175
greenhouse gases in 176–177
of hydropower 174–177
resettlement in 174–175
sedimentation in 176
Ethanol 330–331
Europe 32, 331, 341–342
European pressurized water reactor (EPR) 370
European Union (EU) 23–24, 49, 49t, 50t
Exhaust gases 
from gas turbine engines 75
recirculation of 107
recycling of 88
waste combustion causing 344
Exhaust stroke 97
Exothermic reactions 131, 134
External combustion engine 103
Externalities 23–24, 23t

F

Faraday, Michael 2
FCE  See FuelCell Energy
Financial institutions 26–27
Fish gates 192–193
Flash steam plants 252–253
Flash-steam geothermal plant 250–251
Floating OTEC 293
Flow batteries 207, 208–209, 211–212
Flue gases 
carbon dioxide removal from 56–57
of coal 48–49
of coal-fired power plants 35
emission levels of 49–50
environment and materials in 48–49
particulates in 55
sorbent injection into 53
treatment residues of 350
waste combustion causing 345
Flue-gas desulfurization (FGD) 53, 53f, 54
Fluidized bed combustion 43–46, 323–324
boiler circulation in 44f
designs for 45
efficiency of 45
pressurized 46f
range of fuels used in 43
sulfur and NOx from 45, 46
Fluidized-bed gasifier 326–327, 327f, 328f
Fly ash 350
Flywheel 95–96
costs of systems using 216
friction loss of 215
functioning of 215–216
as mechanical energy storage 214–216, 215f
performance characteristics of 216
Fossil fuel-fired power plants 5, 117
Fossil fuels 
carbon dioxide released by 18, 20
emissions from 15, 16
energy densities of 30t
replacing 21
Four-pole generator 42
Four-stroke cycle 94, 95–97, 96f, 99t, 100f
Francia, Giovanni 273–274
Francis, James Bichens 167–168
Francis turbine 167–168, 167f, 169–170, 200–201
Franklin, Benjamin 2
Free-market rules 10
Fresnel lens thermal power plants 274f
Fresnel reflectors 273–274
Friction loss 215
Fritts, Charles 259–260
Fuel cells 5, 114, 123–125, 127, 133f
advantages of 130
carbon monoxide and SO2 in 134–135
catalysts used in 134–135
chemical reactions in 129, 130, 131
in CHP 124f
costs of 151–152, 151t
efficiency of 124–125, 129–130, 136, 220
electrochemistry of 131, 133
exothermic reactions in 131
first commercial 131
flow battery similar to 211–212
functioning of 131–134
high-temperature 116, 137
history of 130–131
hydrogen used in 21, 135
PAFC 123–124
types of 133f, 136–150
Fuel rods 360, 375, 376
FuelCell Energy (FCE) 144–145
Fuels 
calorific value of 319, 320t
dual-fuel engines burning 102–103
electricity conversion efficiency with 106
fluidized bed combustion using 43
gas turbines using varieties of 121
handling of 328–329
liquid 330–331
piston engines using 93
spark-ignition engine using 98
Fuelwood 317–318
Fukushima disaster 4–5, 354–355, 356, 375
Full conversion generators 232
Fuller, Calvin 259–260

G

Gallium arsenide 279
Gas prices 23
Gas turbine CHP plant 121–122, 122f
Gas turbine combined cycle plant 67, 82, 82f, 83
Gas turbine engines 67, 120–122
blade cooling in 77f
for CAES plants 206
in CHP 121f
compression and temperatures of 76
cross-section of 73f
development of 76–78
efficiency of 76
energy conversion efficiency of 71, 120
exhaust gases from 75
flexibility of 77–78
fuel varieties used by 121
growth of 71
heat energy lost by 81–82
natural gas used by 68
NOx produced by 85–86
power generation designs for 73–76
power stations impacted by 5
power turbine stage in 78–79
principles involved in 72–73
recuperation in 80f
with reheater 79f
thermodynamic heat engine in 74
turbine stages of 74–75
Gas turbine modular helium reactor (GT-MHR) 368
Gas turbine power plants 
carbon reduced at 88
cost of 75f, 89–91
emission control for 85, 88
Gas-cooled reactors 364–365
Gas-fired combined cycle plants 77f
Gasification 
biomass 326–328
coal 46, 60–62
plasma 347f
process of 46–48
waste 344–348, 346f
General Electric 142
Generator stator 304
Generators 42–43
in coal-fired power plants 42–43
direct-drive 228
efficiency of 43
four-pole 42
full conversion 232
heat-recovery steam 80–81, 82, 86–87, 87f
for hydropower plants 169–170
propeller turbine with 170f
variable-speed 191–192, 232
of wind turbines 231–232
Geographical averaging 239
Geological survey 158, 161
Geology 175
Geothermal energy 
conversion technologies for 250–251
costs of 256–257
countries exploiting 244, 245t
direct steam power plants and 251–252
district heating from 255
Earth's core temperature and 243
exploiting sources of 255–256
flash steam plants for 252–253
hot dry rock for 248, 249f
Larderello, Italy exploiting 244
locating resources for 250
resources suitable for 244–246
Geothermal fields 246–248
Geothermal power plants 246f, 250–251, 253–255, 254f
Geothermal reservoir 244–245, 247, 248, 250, 253, 255, 256
Geysers 244, 247, 252, 256
Global capacity 
of biomass 314
of hydropower 153
of nuclear power 355–356, 356t
of small hydropower plants 171
of wind power 223, 225
Global electricity production 11t
Global warming 15, 20
Grand Coulee Dam 175
Grasses 318, 319, 332
Gravity base structure 235
Gravity dams 163, 163f
Greenhouse effect 19
Greenhouse gases 176–177
Grid system 
computer and electrical network in 8
national 6
offshore 235
operating frequency 97
rooftop solar panels connected to 283f
synchronization 231–232
wind power issues and 237–239
Grid-based delivery 196, 213f
Grove, William 130
Gulf Stream 289

H

Head of water 168–169, 308–309
hydropower site with 157
overtopping devices and 296, 297
Pelton turbine with 166
run-of-river scheme with 159–160, 161
tidal barrage power plant and 186
turbines and 189–190
two-basin projects with 187
Headrace 159–160, 161
Heat energy 35, 81–82
Heat exchangers 255, 264–266, 269, 292
Heat storage system 266
Heat-recovery steam generator 80–81, 82, 86–87, 87f
Heavy metals 351
Heavy water 363, 364
Heliostats 267–268, 269
Hierarchical network 6–7
Higher energy efficiency 112
Higher heating value (HHV) 99np
High-performance materials 41
High-pressure (HP) turbine 35
High-speed engines 101
High-temperature gas-cooled reactors (HTGR) 365–367, 366f
High-temperature reservoirs 247
High-voltage DC (HVDC) transmission 235
History 
of CHP 112–114
of electricity generating industry 2–3
of fuel cells 130–131
of solar energy 259–260
Horizontal-axis turbines 227, 303–305, 303f
Hot dry rock 248, 249f
Hot rock 245, 248
Hot springs 247
Hot-gas cleanup technologies 48
H-shaped rotors 305–306
Humid-air turbine (HAT) cycle 81
Hybrid solar fossil fuel power plant 266–267
Hydrocarbon gas 135–136
Hydrocratic power 310
Hydrofoils 306, 307f
Hydrogen 373
bomb 355
carbon dioxide mixture with 61
carbon monoxide converted to 326
conversion efficiency of 219
deuterium produced from 359
energy storage 219–221, 220f
fuel cells using 21, 135
generation and use of 22
oxygen's reaction with 132, 134
PAFCs using oxygen and 141
PEMs using oxygen and 142–143
performance characteristics of 220–221
SOFCs using oxygen and 147–148
storage of 220, 221
sulfide 85, 252
Hydrogen economy 21–22, 129–130
Hydropower 4, 5, 12, 17 See also Pumped storage hydropower
economics of 178
energy potential of 155
environmental assessment of 174–177
environmental considerations in 173–174
geological survey for 158
global capacity of 153
greenhouse gases from 176
head of water for 157
project design and 155
regional capacity of 154t, 156, 156t, 157
as renewable energy 153
renewable generation in 177
river's hydrological conditions for 157, 158
suitable sites for 157–158
turbine types for 39–40, 164–169
wind power backup using 238
Hydropower plants 
categories of 158–159
costs of 177–179
dams and barrages for 159–161
dams and reservoir projects for 161, 162f
generators for 169–170
large 154, 155, 157, 158–161
pumped storage 177
run-of-river scheme for 159–161, 160f
size of 158–159
small 170–173

I

Ihrig, Harry 130
Impulse turbines 39–40, 164, 165–167
Incineration plants 342–344
Industrial Revolution 18–19, 72
Inertial confinement 359–360, 371, 373, 373f
Intake stroke 97
Integrated gasification combined cycle (IGCC) plant 46–48, 327
carbon capture and storage in 63
carbon dioxide removal in 48
efficiency of 48
Intercooling 79
Intermediate-pressure (IP) turbine 35
Internal combustion engines 94–98
emissions of 106–107, 109
heat exhaust from 104–105
Otto building first 95
rotary motion of early 95
types of 94
waste heat from 105–106
International Atomic Energy Agency 374
International Energy Agency (IEA) 67–68, 239–240, 288
International Fuel Cells 131
International reactor innovative and secure (IRIS) 370
International terrorism 375
International thermonuclear experimental reactor (ITER) 372
Interregional disputes 177
Inverted pendulum converter  See Oscillating flaps
Inverters 282

K

Kalina cycle 254, 291
Kaplan, Viktor 169
Kaplan turbines 169, 189–190, 297

L

La Rance (in France) 184, 186, 188, 190, 193
Land resources 261–262
Landfills 
gas methane from 332
waste sent to 335, 337
Landslips 175
Larderello, Italy 244, 251
Large engines 109
Large hydropower plants 154, 155, 157, 158–161
Large-scale batteries 206–212
Large-scale utility energy storage 198–199
Laser Inertial Fusion Energy (LIFE) 373
Lead-acid batteries 208, 208f, 209
Leakage 218
Lean-burn engines 99
Levelized cost of electricity (LCOE) 22, 24
Life-cycle assessments 24–26
Lifetime 
of carbon dioxide 25t
of geothermal fields 248
of PEMs 143
of SOFC 149
Light, from electricity 2
Lignite coal 32, 33–34
Line-focusing solar thermal power plant 263–264
Liquefied natural gas (LNG) 70
Liquid fuels 330–331
Lithium batteries 210
Livestock residue 317
Local generation 8
Loeb, Sidney 309
Low nitrogen oxide burners 86, 87–88
Low nitrogen oxide pulverized-coal boiler 51f
Lower heating value (LHV) 99np
Low-level waste 376
Low-pressure (LP) turbine 35
LP turbine  See Low-pressure turbine

M

Magma plumes 249
Magnetic confinement 371–372, 372f
Magnetohydrodynamic effect 307
Magnox reactor 364
Maricopa power plant 273
Marine current energy 301–308 See also Wave power
cross-flow turbines for 306
current designs for 308
horizontal-axis turbines for 303–305, 303f
hydrofoils for 306, 307f
vertical-axis turbines for 302, 305–306, 305f
Marine power generation 
costs of 311
energy resources for 287, 288–289, 288t
Mass injection 80–81
Mass-feed stoker 323
MEA  See Monoethylamine
Mechanical energy 94
Mechanical energy storage 197–198, 214–216, 215f
Mercury 56
Methane (CH468, 135–136, 176–177
Methanol 135
Micro-turbines 84–85, 114–115, 127
cogeneration applications of 123
recuperated 85
rotational speeds of 84
schematic of 84f
simple 85
Moderator 358–359, 360
Modules 282
Moisture 33
Molten carbonate fuel cell (MCFC) 125, 144–146
applications for 146
conversion efficiency of 145–146
electrolyte used in 144–145
high operating temperatures of 145
Monoethylamine (MEA) 58
Mouchet, August 272
Municipal power plants 115, 116
Municipal solid waste (MSW) 336, 337–338
energy content of 339
recycling important in 340

N

Nacelle 228, 234
National grid system 6
National Ignition Facility (NIF) 373
National Renewable Energy Laboratory 290
Nationalization 9
Natural gas 12, 68–69, 135
burning of 86
calorific value of 326
carbon dioxide from 88–89
cost of 67
countries with 69
gas turbines using 68
global consumption of 70t
oxy-fuel combustion burning of 89
recoverable reserves of 69t
reforming of 141
transportation of 69–70
Natural gas-based power generation 91
Natural gas-fired combined-cycle power plant 22
Natural gas-fired spark-ignition engine 101–102
Neutrons 358–359
New York Transit System 216
Nickel-cadmium batteries 210
Nitrogen oxide (NOx74, 99
capture of 54–55
coal-fired power plants producing 48
combustion strategies for 51–52
diesel engine's production of 100
emission standards for 86
environment influence by 16
fluidized bed combustion and 45, 46
from gas turbine CHP plant 122
gas turbine engines producing 85–86
piston engines emissions of 107
reburning of 52
removal of 55
Norsk Hydro 219
NOx  See Nitrogen oxide
Nuclear fast (breeder) reactors 367–368, 367f
Nuclear fission 356, 359, 361
ABWR for 369
BWR for 361–362
CANDU reactor for 363–364
gas-cooled reactors for 364–365
HTGR for 365–367
nuclear fast (breeder) reactors for 367–368
principles of 357–358
PWR for 362–363
RBMK reactor for 365
reactor designs for 360–370
third-generation reactors for 368, 369t
Nuclear fusion 5, 355, 356–357, 359–360, 370–374
inertial confinement in 373, 373f
magnetic confinement in 371–372, 372f
tritium production in 374
Nuclear island 360
Nuclear power 7, 12–13
controlled nuclear reaction in 358–359
costs of 377–378
countries with 4
challenges facing 17
with CHP 116
as base-load power station 12
as best-performing technology 25–26
decommissioning plants in 377
disasters with 15, 354
environmental issues in 374–377
fundamentals of 356–360
generating capacity of 12
global capacity of 355–356, 356t
global uptake of 4
in France 114, 126
in Russia 113
power generation from 353
progress slowed in 4–5
radioactive waste from 375–376
systems supporting 360
waste categories in 376–377
Nuclear power stations 354, 356

O

Ocean thermal energy technology (OTEC) 287, 289–294
closed cycle 291–292, 292f, 293
drinking water from 290–291
floating 293
land-based plant for 290
open cycle 291, 292, 293, 293f
technology used in 291–294
Off-peak periods 195, 212–213
Offshore construction 
advantages of 233–234
gravity base structure in 235
stabilization in 235
for wind power 225–226
Offshore devices 298–301
Offshore grids 235
Offshore lagoon construction 189
Offshore wind farms 5
Ohl, Russell 259–260
Onshore wind turbines 229
Open cycle OTEC 291, 292, 293, 293f
Open-cycle gas turbine 75–76
Operating temperatures 
MCFCs high 145
of SOFCs 147
Organic urban waste 316, 344
Oscillating flaps 297–298, 297f
Oscillating water columns (OWC) 295–296
Osmotic power 309–310, 311
Otto, Nikolaus 95
Otto cycle engine 95, 102
Overtopping devices 296, 297, 297f
Oxy-fuel combustion 57
coal burning with 59–60
costs of 63
energy conversion efficiency of 60
natural gas burning with 89
schematic of 60f
Oxygen 
hydrogen's reaction with 132, 134
PAFCs using hydrogen and 141
PEMs using hydrogen and 142–143
restricting 51–52
separation plant 59–60
SOFCs using hydrogen and 147–148
Oyster 298

P

Paddled wheel 302–303
Paper mills 113
Parabolic reflector 264
Parabolic troughs 263–267, 263f
Parallel co-firing 325
Parsons, Charles 4, 34
Particulates 55–56, 108, 344
Part-load conditions 98
Peak-load power plants 7
Pearson, Gerald 259–260
Pebble-bed modular reactor (PBMR) 370
Pelamis 300
Pellets 320, 321
Pelton, Lester Allen 166
Pelton turbine 166, 166f, 169–170, 298
Penstock 159–160
Phosphoric acid fuel cells (PAFC) 123–124, 133–134, 140–142, 140f
electrolyte used in 140
hydrogen and oxygen in 141
Photovoltaic cell 259–260, 262, 275–284
Piezoelectric devices 301
Pile burner 322, 323
Pipeline system 63, 69–70
Piston engine-based power plants 
cost of 109–110, 110t
efficiency of 105, 110t
grid operating frequency and 97
Piston engines 118–119
in CHP 118f
efficiency of 99, 118
fuels used in 93
heat sources in 118–119
NOx emissions of 107
part-load conditions and 98
power generation using 93–94
speed and size classifications of 97, 98t
Plants 19
Plasma 359–360, 371
Plasma gasification 347f
Platinum 134–135
Platte, R. 310
Plutonium 367–368, 374
Point absorber 295, 299–300
Political diversion 9–10
Polycrystalline silicon 278–279
Poly-perfluorocarbon sulfonate 142
Post-combustion capture 57, 58–59, 59f
Potassium hydroxide 137, 138
Power plants  See also specific power plants
binary cycle 253–255, 254f
biomass efficiency used in 329
bunded reservoir 188
CHP adapted to 116
countries with differing costs of 65
direct steam 251–252
direct-firing system 322f, 324
energy conversion efficiencies of 117t
EU emission limits of 50t
fossil fuel-fired 5, 117
fresnel lens thermal 274f
hybrid solar fossil fuel 266–267
line-focusing solar thermal 263–264
Maricopa 273
municipal 115
natural gas-fired combined-cycle 22
output of conventional 7–8
peak-load 7
solar parabolic trough 265f, 266, 267, 267f
solar pond 276f
solar trough 285
two-basin 187–188
ultra-supercritical 37–39
urban mass-burn 343f
Power stations 
electricity networks from 6
gas turbine engines impact in 5
impact of 17
nuclear 354, 356
steam engine used at first 4
tidal 189–191
Power turbine stage 78–79
Powerbuoy 300
Power-from-waste plants 336, 337, 339, 340, 341, 349, 351
Pratt and Whitney Aircraft Corporation 130–131
Pre-combustion capture 57, 61f, 89
Prefabricated caissons 189
Preignition chamber 98
Pressure differences 224
Pressurized bed plant 45–46
Pressurized fluidized bed combustion 46f
Pressurized heavy water reactor  See Canadian deuterium uranium reactor
Pressurized volumetric air solar tower system 270f
Pressurized water reactor (PWR) 362–363, 362f
Primary cells 207, 208
Private sector 10, 26
Process heat 105, 121–122
Propeller turbines 168–169, 168f, 170f, 190
Proton exchange membrane (PEM) fuel cells 123–124, 142–144
conversion efficiency of 142–143
hydrogen and oxygen used in 142–143
lifetime of 143
Public utility 9
Pulverized coal (PC) 325
Pulverized coal-fired power plants (PC plant) 34f, 36, 36f
Pumped storage hydropower 177, 199–202, 199f
costs of 202
layout and technology of 200–201
performance of 202
suitable sites of 201–202
variable-speed operation of 201
Pumps-for-turbines (PATs) 171–172
Pyrolysis 344–348

R

Radiant heat 37
Radioactive waste 375–376
Rain forests 16
Rankine cycle turbine system 291, 327–328
RBMK reactor 365
Reaction turbines 39–40, 164, 167
Reactor designs 360–370
Reburning 52
Rechargeable batteries 197
Reciprocating engines  See Piston engine-based power plants See also Piston engines
Recovery systems 123
Recuperation 
in advanced gas turbine cycles 80
in gas turbine engines 80f
micro-turbines 85
Recycling 88, 340, 348–349
Redox batteries 212
Reformation 135–136
Reforming 129, 135, 141
Refuse-derived fuel (RDF) 336, 348
Regeneration process 58–59
Regional capacity 154t, 156, 156t, 157, 224t
Regional reserves 32t
Reheating 78–79, 79f
Renewable energy 10
carbon dioxide release and 24
distributed generation and 7–8
efficiency of 25
energy payback ratios of 25–26
hydropower as 153
switching to 21
Renewable generation 177
Repowering wind farms 240
Reservoirs 
brine-methane 248
geological influence of 175
geothermal 244–245, 247, 248, 250, 253, 255, 256
high-temperature 247
methane production from 176–177
pumped storage plant with 199
Resettlement 174–175
Residential sector 283
Response times 197
Return on investment 26
Reverse electrodialysis 310
Rich-burn engines 99
River Mersey barrage 189
River's hydrological conditions 157, 158
Rotary motion 95
Rotating engines 2, 3–4
Rotational speed 229–230
Rotor blades 230, 231
Run-of-river scheme 159–161, 160f

S

Salinity gradient power generation 308–310, 309f, 311
hydrocratic power in 310
osmotic power in 309–310
reverse electrodialysis in 310
vapor compression in 310
Salt caverns 205
Salter, Stephen 288
Salter's Duck 299
Seagen 308
Seawater 54
Secondary cells 207, 208, 209
Security issue 1–2
Sedimentation 176, 192
Selective catalytic reduction (SCR) 54, 55f, 86–87, 87f, 108
Selective noncatalytic reduction (SNCR) 54
Semiconductors, organic 281
Sequestration 56–57, 58–59, 62–63, 62f
Severn Barrage Development Project 189, 194
Shale gas 67–68
Shiplocks 192
Shoreline devices 295
Shroud 304
Siemens, Werner 3–4
Sihwa tidal plant 190, 193
Simple micro-turbines 85
Sintering process 349–350
Slow-speed engines 101
Sluices 192–193
Slurry 329–330
Small hydropower plants 170–173
costs of 172–173
design of 171
global installed capacity of 171
turbine types used in 171–172
Smeaton, John 164
Smog 16
Smokejack 72
SO2  See Sulfur dioxide
Sodium-sulfur batteries 210–211, 211f
Solar cells 
concentrating 281
dye-sensitized 281, 282
efficiency of 278–279, 282
module 282f
semiconductors 277t, 278
structures for 279–281
third-generation 281–282
types of 278–279
Solar chimneys 263, 274
Solar dishes 271–273, 271f, 285
electricity generation with 273
energy conversion efficiency of 271, 272
multiple mirrors of 272f
Solar energy 
cost of 284–286
Earth and 261t
history of 259–260
land resources and sites for 261–262
power generation technologies for 262
process of 260–261
Stirling engines exploiting 104
Solar field 266
Solar molten-salt system 285
Solar panels 282–283, 283f
Solar parabolic trough power plant 265f, 266, 267, 267f
Solar photovoltaic power 116, 262, 280f
costs of 285–286
energy storage of 284
system types of 283–284
technologies for 277–278
Solar pond 263, 275, 276f
Solar power 8, 12–13
Solar radiation 260, 263
Solar thermal power generation 262–275, 284–286
costs of 285, 285t
Fresnel reflectors in 273–274
parabolic troughs in 263–267
solar dishes in 271–273, 271f
solar tower in 267–271
technologies for 274–275
Solar towers 275, 285
with direct-steam energy capture system 268f
direct-steam systems used in 269
maximum size of 269
power generation of 267–271
Spain using 271
Solar trough power plants 285
Solid oxide fuel cell (SOFC) 125, 146–149, 147f, 148f
designs of 148
efficiency of 148
high operating temperatures of 147
hydrogen and oxygen used in 147–148
lifetime of 149
zirconia electrolyte in 146, 147
Solid-state devices 275–277
Sorbent injection 52–53
Spark-ignition engines 4, 94
compression ratio of 99–100
emissions of 99
various fuels used in 98
natural gas-fired 101–102
Speed and size classifications 97
Speed regulation 191–192
Spillway 162–163
Spool 78np, 78–79
Spreader stoker 323
St. Malo project 188
Stacks 140, 149
Stages, of steam turbine 41
Stalling 229
Statkraft 309–310
Steam boilers 39
Steam engines 4
Steam generation 119
Steam power 4
Steam turbine-based CHP system 120
Steam turbines 119–120
back-pressure 119–120
in CHP 120f
coal-fired power plants with 39–42, 40f
designs of 39–42
efficiency of 119
functioning of 41
heat energy from 35
high-performance materials in 41
stages of 41
sunlight creating electricity from 264–266
types of 39–40
Steam-injected gas turbine (STIG) 80–81
Stirling, Robert 103
Stirling engines 94, 103–104
cost of 110
as external combustion engine 103
functioning of 103–104
solar energy exploited with 104
stroke cycles of 103f
Stoker combustor 322, 323
Stolze, F. 72, 73–74
Storage technologies  See Energy storage
Straflo turbines 191f
Stroke cycles 
in diesel engines 95–96
of four-stroke cycle 95–97, 96f, 100f
of Stirling engines 103f
of two-stroke cycle 97f
Sub-bituminous coal 31
Substations 236
Sugarcane processing 316
Sulfur 
co-firing reducing 325
from fluidized bed combustion 46
removal of 55
scrubbers 48–49
Sulfur dioxide (SO230–31, 108
coal-fired power plants producing 48
from diesel engines 108
environment influenced by 16
in fuel cells 134–135
removal of 52–54
sorbent injection in 52–53
wet scrubbing systems for 53
Supercapacitor 217f
Superconducting magnetic energy storage (SMES) 212–214
costs of 214
DC current stored in 213–214
grid-connected 213f
Superconductivity 212–213
Supercritical point 37
Survey of Energy Resources (World Energy Council) 313
Swan, Joseph 2
Syngas 61
System operator 7–8

T

Tailrace 159–160
Tapchannel 297
Tapered channels 296–297
Technologies 
biomass 321, 331–332
CAES and turbine 205–206
CHP using 116–118
coal-fired power plants components and 34–36
direct-firing 321–324
direct-steam 267
double-flash 253
Europe's combustion 341–342
geothermal energy conversion 250–251
hot-gas cleanup 48
OTEC use of 291–294
power generation waste 341–342
pumped storage hydropower layout and 200–201
solar energy 262
for solar photovoltaic power 277–278
for solar thermal power generation 274–275
waste combustion 341–342
waste power generation 341–342
wave power using 295
wind power 226–227
wind turbine 226–227, 226f
wind turbine's offshore 233–235, 234f
Telegraph 2
Temperature  See also specific High-temperature entries
Earth's core 243
of gas turbine engines 76
operating 145, 147
Tethered buoy 300
Thermal breeder reactor 368
Thermodynamic heat engine 74
Third-generation nuclear reactors 368, 369t
Three Gorges Dam 174, 175
Three Mile Island 354, 375
Tidal barrage power plants 182f, 185f
bulb turbine used in 190f
bunded reservoir 188
construction techniques for 188–189
costs of 193–194
countries with 185t
design of 185–186
ebb-flow generation in 185–186
energy exploitation with 181
environmental considerations when planning 192–193
head of water and 186
operation of 184–185
sluices and shiplocks in 192
turbines used in 189–191
two-basin 187–188
Tidal lagoons 194
Tidal mills 306
Tidal power 
amplitude in 182–183
countries' potential for 183, 184
recoverable 183
Tidal reach 182–183, 188, 189–190, 192
Tidal stream 288–289
Tidal stream converters  See Marine current energy
Tidal stream turbines 304
Tip speed ratio (TSR) 228–229
Tokamak Fusion Test Reactor (TFTR) 371–372
Tokamak reactor 371–372
Tooele Army Base 273
Topping cycle 76np
Toshiba 141
Towers, wind turbine 232–233
Transmission network 6–7
Transportation 69–70
Transuranic waste 376
Trees, fast-growing 318
Trioxide (SO354
Tritium production 374
TSR  See Tip speed ratio
Turbines 165f
bulb 169, 190, 190f
CAES and technologies for 205–206
Deriaz 169
efficiency of 164–165, 166
head of water and 189–190
horizontal-axis 227
impulse 164, 165–167
Kaplan 169, 189–190
Pelton 166, 166f, 169–170
propeller 168–169, 168f, 170f, 190
reaction 164, 167
small hydropower plants types of 171–172
speed regulation of 191–192
stages of 74–75
Straflo 191f
in tidal power stations 189–191
tidal stream 304
Turgo 166–167
vertical-axis 227
wind power technology using 226–227
Turbochargers 84, 105np
Turgo turbines 166–167
Twenty Thousand Leagues Under the Sea (Verne) 291
Two-basin power plants 187–188
Two-stroke cycle 94, 97, 97f

U

Ultra-supercritical power plants 37–39
Underground caverns 205
Underwater Electric Kite (UEK) 308
Underwater turbines 287
United Kingdom 241t, 352t
United States 
air quality standards of 49t
mercury regulations in 56
WTE costs in 352t
Unpredictable resource 224–225
Uranium 358, 361, 363, 367, 368
Uranium-oxide fuel 366
Urban mass-burn power plant 343f
Urban waste 335, 336f, 339t
Utility sector 283

V

Valves 95
Vapor compression 310
Variable-speed generators 191–192, 232
Variable-speed operation 201
Venturi effect 303, 307
Venturi tube 192
Verne, Jules 291
Vertical-axis turbines 227, 302, 305–306, 305f
Volatile organic compounds (VOCs) 106–107, 108
Volta, Alessandro 2

W

agricultural 313, 316–317
animal 329
collection and recycling of 340
combustion technologies for 341–342
composition of 338–340
dioxins in 350–351
environmental issues of 348–349
Europe's combustion technology for 341–342
exhaust gases from combustion of 344
flue gases from burning 345
gasification 344–348, 346f
heavy metals in 351
high-level 376
incineration plants for 342–344
landfill disposal of 335, 337
low-level 376
nuclear power's categories of 376–377
organic urban 316, 344
power generation technologies for 341–342
pyrolysis 344–348
radioactive 375–376
recycling and 348–349
regional urban 339t
sources of 337–338
transuranic 376
urban 335, 336f, 339t
urban mass-burn power from 343f
Waste heat 
cogeneration using 105
from internal combustion engines 105–106
power generation using 115, 116
recovery systems for 123
utilizing 111–112
Waste plants 349–352
Waste-to-energy plants (WTE) 335–336, 342, 352t
Water shift reaction 135
Water wheel 172f, 181
Water-shift reaction 61
Wave Dragon 297
Wave energy converters 295–298, 296f, 300f
buoyancy-based devices for 298–299, 299f
offshore devices for 298–301
oscillating flaps for 297–298, 297f
overtopping devices for 297, 297f
OWC for 295–296
piezoelectric devices for 301
tapered channels for 296–297
energy converters for 296f
sea and ocean 287, 288, 289
shoreline devices using 295
technology used for 295
of western shorelines 294
Waveroller 298
Weather forecasting 238–239
Wells turbine 295–296
Western shorelines 294
Wet scrubbing systems 53, 55
Wheatstone, Charles 3–4
Wilkins, John 72
Wind farms 225, 236–237
dedicated substation for 236
energy loss in 236–237
layout of 236f
offshore 5
repowering 240
Wind power 4, 8, 12–13
atmospheric generation of 224f
battery storage systems of 238
capacity limits of 239–240
costs of 240–242
countries' repowering 240
energy storage and 238
environmental influence of 237
global capacity of 223, 225
grid issues of 237–239
height above Earth's surface influencing 226
hydropower backup for 238
offshore construction for 225–226
pressure differences causing 224
regional disposition of global 224t
turbine technology for 226–227
United Kingdom costs of 241t
as unpredictable resource 224–225
weather forecasting important in 238–239
Wind turbines 
blades of 229, 230
components of 228–233
Darrieus 227
downwind design of 230
drive train and generator of 231–232
grid synchronization required for 231–232
offshore technologies for 233–235, 234f
onshore 229
rotational speed of 229–230
rotors of 228–230
stabilizing offshore 235
technology 226–227, 226f
tower 232–233
yawing of 230
Wood pellets 320, 321, 332
World Coal Association 29
World Energy Council 183, 260, 313
World oil prices 5

Y

Yawing 230

Z

Zirconia 146, 147
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.147.79.84