Text mining is based on the data of text, concerned with exacting relevant information from large natural language text, and searching for interesting relationships, syntactical correlation, or semantic association between the extracted entities or terms. It is also defined as automatic or semiautomatic processing of text. The related algorithms include text clustering, text classification, natural language processing, and web mining.
One of the characteristics of text mining is text mixed with numbers, or in other point of view, the hybrid data type contained in the source dataset. The text is usually a collection of unstructured documents, which will be preprocessed and transformed into a numerical and structured representation. After the transformation, most of the data mining algorithms can be applied with good effects.
The process of text mining is described as follows:
Information retrieval is to help users find information, most commonly associated with online documents. It focuses on the acquisition, organization, storage, retrieval, and distribution for information. The task of Information Retrieval (IR) is to retrieve relevant documents in response to a query. The fundamental technique of IR is measuring similarity. Key steps in IR are as follows:
Prediction of results from text is just as ambitious as predicting numerical data mining and has similar problems associated with numerical classification. It is generally a classification issue.
Prediction from text needs prior experience, from the sample, to learn how to draw a prediction on new documents. Once text is transformed into numeric data, prediction methods can be applied.
18.218.135.227