References

  1. 1 Podlubny, I. (1999) Fractional-order systems and PIc01-math-001Dc01-math-002-controllers. IEEE Transactions on Automatic Control, 44 (1), 208–214.
  2. 2 Moghadasianx, M., Betin, F., Yazidi, A., et al. (2012) Position control of six-phase induction machine using fractional-order controller. International Conference on Electrical Machines (ICEM), Marseilles, France.
  3. 3 Das, S. and Pan, I. (2012) Fractional Order Signal Processing: Introductory Concepts and Applications, Springer, New York.
  4. 4 Shokooh, A. and Suáez, L. (1999) A comparison of numerical methods applied to a fractional model of damping materials. Journal of Vibration and Control, 5 (3), 331–354.
  5. 5 West, B., Bologna, M., and Grigolini, P. (2003) Physics of Fractal Operators, Springer, New York.
  6. 6 Dadras, S. and Momeni, H.R. (2010) Control of a fractional-order economical system via sliding mode. Physica A, 389 (12), 2434–2442.
  7. 7 El-Sayed, A.M.A., Rida, S.Z., and Arafa, A.A.M. (2009) Exact solutions of fractional-order biological population model. Communications in Theoretical Physics, 52 (6), 992–996.
  8. 8 Chen, W.C. (2008) Nonlinear dynamics and chaos in a fractional-order financial system. Chaos, Solitons & Fractals, 36 (5), 1305–1314.
  9. 9 Lu, J.G. (2006) Chaotic dynamics of the fractional-order Lü system and its synchronization. Physics Letters A, 354 (4), 305–311.
  10. 10 Wang, X.Y. and Wang, M.J. (2007) Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos, 17 (3), 033106.
  11. 11 Liu, L., Liu, C.X., and Zhang, Y.B. (2009) Experimental verification of a four-dimensional Chua's system and its fractional order chaotic attractors. International Journal of Bifurcation and Chaos, 19 (8), 2473–2486.
  12. 12 Wang, X.Y. and Song, J.M. (2009) Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Communications in Nonlinear Science and Numerical Simulation, 14 (8), 3351–3357.
  13. 13 Min, F.H., Yu, Y., and Ge, C.J. (2009) Circuit implementation and tracking control of the fractional-order hyper-chaotic Lü system. Acta Physica Sinica, 58 (3), 1456–1461.
  14. 14 Liu, L., Liang, D.L., and Liu, C.X. (2012) Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system. Nonlinear Dynamics, 69 (4), 1929–1939.
  15. 15 Liu, L. and Liu, C.X. (2014) Theoretical analysis and circuit verification for fractional-order chaotic behavior in a new hyperchaotic system. Mathematical Problems in Engineering, 2014, 682408.
  16. 16 S̆abanovic, A. (2011) Variable structure systems with sliding modes in motion control—a survey. IEEE Transactions on Industrial Informatics, 7 (2), 212–223.
  17. 17 Shi, P., Xia, Y.Q., Liu, G.P., and Rees, D. (2006) On designing of sliding-mode control for stochastic jump systems. IEEE Transactions on Automatic Control, 51 (1), 97–103.
  18. 18 Zhang, J.H., Shi, P., and Xia, Y.Q. (2010) Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties. IEEE Transactions on Fuzzy Systems, 18 (4), 700–711.
  19. 19 Gao, Z., Jiang, B., Shi, P., et al. (2012) Active fault tolerant control design for reusable launch vehicle using adaptive sliding mode technique. Journal of the Franklin Institute, 349 (4), 1543–1560.
  20. 20 Jiang, B., Shi, P., and Mao, Z.H. (2011) Sliding mode observer-based fault estimation for nonlinear networked control systems. Circuits, Systems, and Signal Processing, 30 (1), 1–16.
  21. 21 Utkin, V., Guldner, J., and Shi, J. (2009) Sliding Mode Control in Electro-Mechanical Systems, CRC Press, New York.
  22. 22 Feng, Y., Yu, X.H., and Man, Z.H. (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica, 38 (12), 2159–2167.
  23. 23 Yu, X.H., Man, Z.H., and Wu, B.L. (1998) Design of fuzzy sliding-mode control systems. Fuzzy Sets and Systems, 95 (3), 295–306.
  24. 24 Yu, X.H. and Man, Z.H. (2002) Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications, 49 (2), 261–264.
  25. 25 Byungkook, Y. and Ham, W. (1998) Adaptive fuzzy sliding mode control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 6(2), 315–321.
  26. 26 Chen, D.Y., Liu, Y.X., Ma, X.Y., and Zhang, R.F. (2012) Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dynamics, 67 (1), 893–901.
  27. 27 Yin, C., Zhong, S.M., and Chen, W.F. (2012) Design of sliding mode controller for a class of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 17 (1), 356–366.
  28. 28 Chen, D.Y., Liu, Y.X., Ma, X.Y., and Zhang, R.F. (2011) No-chattering sliding mode control in a class of fractional-order chaotic systems. Chinese Physics B, 20 (12), 120506.
  29. 29 Yin, C., Dadras, S., Zhong, S.M., and Chen, Y.Q. (2013) Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach. Applied Mathematical Modelling, 37 (4): 2469–2483.
  30. 30 Tavazoei, M.S. and Haeri, M. (2008) Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A, 387 (1), 57–70.
  31. 31 Wang, B., Zhou, Y.G., Xue, J.Y., and Zhu, D.L. (2014) Active sliding mode for synchronization of a wide class of four-dimensional fractional-order chaotic systems. ISRN Applied Mathematics, 2014, 472371.
  32. 32 Hosseinnia, S.H., Ghaderi, R., Ranjbar, A.N., et al. (2010) Sliding mode synchronization of an uncertain fractional order chaotic system. Computers & Mathematics with Applications, 59 (5), 1637–1643.
  33. 33 Aghababa, M.P. (2012) Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Communications in Nonlinear Science and Numerical Simulation, 17 (6), 2670–2681.
  34. 34 Zhang, L., and Yan, Y. (2014) Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dynamics, 76 (3), 1761–1767.
  35. 35 Li, C., Su, K., and Wu, L. (2013) Adaptive sliding mode control for synchronization of a fractional-order chaotic system. Journal of Computational and Nonlinear Dynamics, 8 (3), 031005.
  36. 36 Liu, L., Ding, W., Liu, C., et al. (2014) Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dynamics, 76 (4), 2059–2071.
  37. 37 Tao, G. (2003) Adaptive Control Design and Analysis, John Wiley & Sons, Inc., Hoboken.
  38. 38 Wang, L.X. (1993) Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 1 (2), 146–155.
  39. 39 Polycarpou, M.M. (1996) Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 41 (3), 447–451.
  40. 40 Fukao, T., Nakagawa, H., and Adachi, N. (2000) Adaptive tracking control of a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation, 16 (5), 609–615.
  41. 41 Wang, H., Chen, B., Liu, X., et al. (2014) Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation. Information Sciences, 269, 300–315.
  42. 42 Li, Z., Ge, S.S., Adams, M., and Wijesoma, W.S. (2008) Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica, 44 (3), 776–784.
  43. 43 Li, Y., Tong, S., Li, T., and Jing, X. (2014) Adaptive fuzzy control of uncertain stochastic nonlinear systems with unknown dead zone using small-gain approach. Fuzzy Sets and Systems, 235, 1–24.
  44. 44 Li, Y., Tong, S., Liu, Y., and Li, T. (2014) Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach. IEEE Transactions on Fuzzy Systems, 22 (1), 164–176.
  45. 45 Zhou, Q., Shi, P., Lu, J., and Xu, S. (2011) Adaptive output-feedback fuzzy tracking control for a class of nonlinear systems. IEEE Transactions on Fuzzy Systems, 19 (5), 972–982.
  46. 46 Li, Z., Cao, X., and Ding, N. (2011) Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays. IEEE Transactions on Fuzzy Systems, 19 (4), 745–757.
  47. 47 Li, T., Wang, D., and Chen, N. (2011) Adaptive fuzzy control of uncertain MIMO non-linear systems in block-triangular forms. Nonlinear Dynamics, 63 (1), 105–123.
  48. 48 Vinagre, B.M., Petrás̆, I., Podlubny, I., and Chen, Y.Q. (2002) Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dynamics, 29 (1), 269–279.
  49. 49 Odibat, Z.M. (2010) Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dynamics, 60 (4), 479–487.
  50. 50 Yuan, J., Shi, B., and Yu, Z. (2015) Adaptive sliding control for a class of fractional commensurate order chaotic systems. Mathematical Problems in Engineering, 2015, 972914.
  51. 51 Zhou, P., and Ding, R. (2012) Adaptive function projective synchronization between different fractional-order chaotic systems. Indian Journal of Physics, 86 (6), 497–501.
  52. 52 Yin, C., Cheng, Y., Chen, Y.Q., et al. (2015) Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dynamics, 82 (1), 39–55.
  53. 53 Lin, T.C. and Lee, T.Y. (2011) Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Transactions on Fuzzy Systems, 19 (4), 623–635.
  54. 54 Lin, T.C., Lee, T.Y., and Balas, V.E. (2011) Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos, Solitons & Fractals, 44 (10), 791–801.
  55. 55 Li, C. and Tong, Y. (2013) Adaptive control and synchronization of a fractional-order chaotic system. Pramana, 80 (4), 583–592.
  56. 56 Lin, T.C. and Kuo, C.H. (2011) c01-math-003 synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach. ISA Transactions, 50 (4), 548–556.
  57. 57 Bhalekar, S. and Daftardar-Gejji, V. (2010) Synchronization of different fractional order chaotic systems using active control. Communications in Nonlinear Science and Numerical Simulation, 15 (11), 3536–3546.
  58. 58 Taghvafard, H. and Erjaee, G.H. (2011) Phase and anti-phase synchronization of fractional order chaotic systems via active control. Communications in Nonlinear Science and Numerical Simulation, 16 (10), 4079–4088.
  59. 59 Agrawal, S.K., Srivastava, M., and Das, S. (2012) Synchronization of fractional order chaotic systems using active control method. Chaos, Solitons & Fractals, 45 (6), 737–752.
  60. 60 Razminia, A., Majd, V.J., and Baleanu, D. (2011) Chaotic incommensurate fractional order Rössler system: Active control and synchronization. Advances in Difference Equations, 15. doi: 10.1186/1687-1847-2011-15
  61. 61 Radwan, A.G., Moaddy, K., Salama, K.N., et al. (2014) Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of Advanced Research, 5 (1), 125–132.
  62. 62 Li, M., Li, D., Wang, J., and Zhao, C. (2013) Active disturbance rejection control for fractional-order system. ISA Transactions, 52 (3), 365–374.
  63. 63 Senejohnny, D.M. and Delavari, H. (2012) Active sliding observer scheme based fractional chaos synchronization. Communications in Nonlinear Science and Numerical Simulation, 17 (11), 4373–4383.
  64. 64 Srivastava, M., Ansari, S.P., Agrawal, S.K., et al. (2014) Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dynamics, 76 (2), 905–914.
  65. 65 Bhalekar, S. (2014) Synchronization of non-identical fractional order hyperchaotic systems using active control. World Journal of Modelling and Simulation, 10 (1), 60–68.
  66. 66 Baskonus, H.M., Mekkaoui, T., Hammouch, Z., and Hammouch, B. (2015) Active control of a chaotic fractional order economic system. Entropy, 17 (8), 5771–5783.
  67. 67 Li, X., Wang, X., and Chen, G. (2004) Pinning a complex dynamical network to its equilibrium. IEEE Transactions on Circuits and Systems I: Regular Papers, 51 (10), 2074–2087.
  68. 68 Wang, X.F. and Chen, G. (2002) Pinning control of scale-free dynamical networks. Physica A, 310 (3), 521–531.
  69. 69 Liu, Z.X., Chen, Z.Q., and Yuan, Z.Z. (2007) Pinning control of weighted general complex dynamical networks with time delay. Physica A, 375 (1), 345–354.
  70. 70 Xiang, L., Chen, Z., Liu, Z., et al. (2008) Pinning control of complex dynamical networks with heterogeneous delays. Computers & Mathematics with Applications, 56 (5), 1423–1433.
  71. 71 Zhou, J., Lu, J., and Lü, J. (2008) Pinning adaptive synchronization of a general complex dynamical network. Automatica, 44 (4), 996–1003.
  72. 72 Yu, W., Chen, G., and Lü, J. (2009) On pinning synchronization of complex dynamical networks. Automatica, 45 (2), 429–435.
  73. 73 Grigoriev, R.O., Cross, M.C., and Schuster, H.G. (1997) Pinning control of spatiotemporal chaos. Physical Review Letters, 79 (15), 2795–2798.
  74. 74 Chai, Y., Chen, L., Wu, R., and Sun, J. (2012) Adaptive pinning synchronization in fractional-order complex dynamical networks. Physica A, 391 (22), 5746–5758.
  75. 75 Sun, W., Chen, Y.Q., and Li, C. (2011) Multi-group consensus of heterogeneous fractional-order nonlinear agents via pinning control. ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC.
  76. 76 Tang, Y., Wang, Z., and Fang, J. (2009) Pinning control of fractional-order weighted complex networks. Chaos, 19 (1), 013112.
  77. 77 Yu, Z., Jiang, H., Hu, C., and Yu, J. (2015) Leader-following consensus of fractional-order multi-agent systems via adaptive pinning control. International Journal of Control, 88 (9), 1746–1756.
  78. 78 Liang, S., Wu, R., and Chen, L. (2016) Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay. Physica A, 444, 49–62.
  79. 79 Liu, J., Huang, L., and Meng, Y. (2013) Adaptive synchronization of fractional-order complex networks via pinning control. International Journal of Adaptive Control and Signal Processing, 27 (12), 1086–1096.
  80. 80 Yang, L., He, W., Zhang, F., and Jia, J. (2014) Cluster projective synchronization of fractional-order complex network via pinning control. Abstract and Applied Analysis, 2014, 314742.
  81. 81 Wang, F., Yang, Y., Hu, A., and Xu, X. (2015) Exponential synchronization of fractional-order complex networks via pinning impulsive control. Nonlinear Dynamics, 82 (4), 1979–1987.
  82. 82 Wang, J., Ma, Q., Chen, A., and Liang, Z. (2015) Pinning synchronization of fractional-order complex networks with Lipschitz-type nonlinear dynamics. ISA Transactions, 57, 111–116.
  83. 83 Wang, F., Yang, Y., Hu, M., and Xu, X. (2015) Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control, Physica A, 434, 134–143.
  84. 84 Pan, L., Zhou, W., Fang, J., and Li, D. (2010) Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control. Communications in Nonlinear Science and Numerical Simulation, 15 (12), 3754–3762.
  85. 85 Zhang, T.P. and Ge, S.S. (2007) Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica, 43 (6), 1021–1033.
  86. 86 Chen, M., Ge, S.S., and How, B.V.E. (2010) Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Transactions on Neural Networks, 21 (5), 796–812.
  87. 87 Liu, Y.J., Chen, C.L.P., Wen, G.X., and Tong, S.C. (2011) Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Transactions on Neural Networks, 22 (7), 1162–1167.
  88. 88 Wang, H., Chen, B., Liu, K., et al. (2014) Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis. IEEE Transactions on Neural Networks and Learning Systems, 25 (5), 947–958.
  89. 89 Liu, Y.J., Tong, S.C., Wang, D. et al. (2011) Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Transactions on Neural Networks, 22 (8), 1328–1334.
  90. 90 Wang, D. and Huang, J. (2002) Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form. Automatica, 38 (8), 1365–1372.
  91. 91 Hovakimyan, N., Nardi, F., Calise, A., and Kim, N. (2002) Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks. IEEE Transactions on Neural Networks, 13 (6), 1420–1431.
  92. 92 Ge, S.S. and Wang, J. (2002) Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems. IEEE Transactions on Neural Networks, 13 (6), 1409–1419.
  93. 93 Wang, D. and Huang, J. (2005) Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Transactions on Neural Networks, 16 (1), 195–202.
  94. 94 Calise, A.J., Hovakimyan, N., and Idan, M. (2001) Adaptive output feedback control of nonlinear systems using neural networks. Automatica, 37(8), 1201–1211.
  95. 95 Ge, S.S., Hong, F., and Lee, T. H. (2003) Adaptive neural network control of nonlinear systems with unknown time delays. IEEE Transactions on Automatic Control, 48 (11), 2004–2010.
  96. 96 Ge, S.S., Hong, F., and Lee, T.H. (2004) Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34 (1), 499–516.
  97. 97 Yu, J., Shi, P., Dong, W., et al. (2015) Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors. IEEE Transactions on Neural Networks and Learning Systems, 26 (3), 640–645.
  98. 98 Kiumarsi, B., Lewis, F.L., and Levine, D.S. (2015) Optimal control of nonlinear discrete time-varying systems using a new neural network approximation structure. Neurocomputing, 156, 157–165.
  99. 99 Chen, M., Jiang, C., and Wu, Q. (2007) Backstepping control for a class of uncertain nonlinear systems with neural network. International Journal of Nonlinear Science, 3 (2), 137–143.
  100. 100 Chen, M. and Chen, W. (2009) Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems. Chaos, Solitons & Fractals, 41 (5), 2716–2724.
  101. 101 Chen, M., Jiang, C., and Wu, Q. (2007) Synchronization scheme for uncertain chaotic systems via RBF neural network. Chinese Physics Letters, 24 (4), 890–893.
  102. 102 Li, S.H., Yang, J., Chen, W.H., and Chen, X.S. (2014) Disturbance Observer-Based Control: Methods and Applications, CRC Press, London.
  103. 103 Chen, W.H., Ballance, D.J., Gawthrop, P.J., and O'Reilly, J. (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics, 47 (4), 932–938.
  104. 104 Chen, W.H. (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Transactions on Mechatronics, 9 (4), 706–710.
  105. 105 Chen, M., Chen, W., and Wu, Q. (2014) Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer. Science China Information Sciences, 57 (1), 1–13.
  106. 106 Chen, W.H., Yang, J., Guo, L., and Li, S.H. (2015) Disturbance observer-based control and related methods—an overview. IEEE Transactions on Industrial Electronics, 63 (2), 1083–1095.
  107. 107 Yang, J., Li, S., and Yu, X. (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Transactions on Industrial Electronics, 60 (1), 160–169.
  108. 108 Chen, M. and Yu, J. (2015) Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer. Chinese Journal of Aeronautics, 28 (3), 853–864.
  109. 109 Chen, M. and Yu, J. (2015) Disturbance observer-based adaptive sliding mode control for near-space vehicles. Nonlinear Dynamics, 82 (4), 1671–1682.
  110. 110 Chen, M. and Chen, W.H. (2010) Disturbance-observer-based robust control for time delay uncertain systems. International Journal of Control, Automation and Systems, 8 (2), 445–453.
  111. 111 Chen, M., Jiang, B., Zou, J., and Feng, X. (2010) Robust adaptive tracking control of the underwater robot with input nonlinearity using neural networks. International Journal of Computational Intelligence Systems, 3 (5), 646–655.
  112. 112 Chen, M., Wu, Q., and Jiang, C. (2012) Disturbance-observer-based robust synchronization control of uncertain chaotic systems. Nonlinear Dynamics, 70 (4), 2421–2432.
  113. 113 Chen, M. and Ge, S.S. (2015) Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Transactions on Industrial Electronics, 62 (12), 7706–7716.
  114. 114 Chen, M. and Jiang, B. (2013) Robust attitude control of near space vehicles with time-varying disturbances. International Journal of Control, Automation and Systems, 11 (1), 182–187.
  115. 115 Chen, M. and Chen, W.H. (2010) Sliding mode control for a class of uncertain nonlinear system based on disturbance observer. International Journal of Adaptive Control and Signal Processing, 24 (1), 51–64.
  116. 116 Zhou, Y. and Chen, M. (2013) Sliding mode control for NSVs with input constraint using neural network and disturbance observer. Mathematical Problems in Engineering, 2013, 904830.
  117. 117 Chen, W.H. (2003) Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. Journal of Guidance, Control, and Dynamics, 26 (1), 161–166.
  118. 118 Yang, J., Chen, W.H., and Li, S. (2011) Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory & Applications, 5 (18), 2053–2062.
  119. 119 Yang, J., Li, S., and Chen, W.H. (2012) Nonlinear disturbance observer-based control for multi-input multi-output nonlinear systems subject to mismatching condition. International Journal of Control, 85 (8), 1071–1082.
  120. 120 Chen, M., Zhou, Y., and Guo, W.W. (2014) Robust tracking control for uncertain MIMO nonlinear systems with input saturation using RWNNDO. Neurocomputing, 144, 436–447.
  121. 121 Luo, Y. and Zhang, H. (2008) Approximate optimal control for a class of nonlinear discrete-time systems with saturating actuators. Progress in Natural Science, 18 (8), 1023–1029.
  122. 122 Li, Y., Li, T., and Tong, S. (2013) Adaptive fuzzy modular backstepping output feedback control of uncertain nonlinear systems in the presence of input saturation. International Journal of Machine Learning and Cybernetics, 4 (5), 527–536.
  123. 123 Li, Y., Tong, S., and Li, T. (2014) Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets and Systems, 248, 138–155.
  124. 124 Cao, Y.Y., Lin, Z., and Hu, T. (2002) Stability analysis of linear time-delay systems subject to input saturation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49 (2), 233–240.
  125. 125 Wen, C., Zhou, J., Liu, Z., and Su, H. (2011) Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Transactions on Automatic Control, 56 (7), 1672–1678.
  126. 126 Lan, W. and Huang, J. (2003) Semiglobal stabilization and output regulation of singular linear systems with input saturation. IEEE Transactions on Automatic Control, 48 (7), 1274–1280.
  127. 127 Chen, M., Ge, S.S., and Choo, Y.S. (2009) Neural network tracking control of ocean surface vessels with input saturation. IEEE International Conference on Automation and Logistics, Shenyang, China.
  128. 128 Chen, M., Ge, S.S., and Ren, B. (2011) Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 47 (3), 452–465.
  129. 129 Yau, H.T. and Chen, C.L. (2007) Chaos control of Lorenz systems using adaptive controller with input saturation. Chaos, Solitons & Fractals, 34 (5), 1567–1574.
  130. 130 Choi, J. (1999) On the stabilization of linear discrete time systems subject to input saturation. Systems & Control Letters, 36 (3), 241–244.
  131. 131 Zhou, B., Gao, H., Lin, Z., and Duan, G.R. (2012) Stabilization of linear systems with distributed input delay and input saturation. Automatica, 48 (5), 712–724.
  132. 132 Li, T., Li, R., and Li, J. (2011) Decentralized adaptive neural control of nonlinear interconnected large-scale systems with unknown time delays and input saturation. Neurocomputing, 74 (14), 2277–2283.
  133. 133 Huang, J., Wen, C., Wang, W., and Jiang, Z.P. (2013) Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance. Systems & Control Letters, 62 (3), 234–241.
  134. 134 Yang, Y., Yue, D., and Xue, Y. (2015) Decentralized adaptive neural output feedback control of a class of large-scale time-delay systems with input saturation. Journal of the Franklin Institute, 352 (5), 2129–2151.
  135. 135 Iqbal, M., Rehan, M., Hong, K.S., et al. (2015) Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation. Chaos, Solitons & Fractals, 77, 158–169.
  136. 136 Lim, Y.H., Oh, K.K.,and Ahn, H.S. (2013) Stability and stabilization of fractional-order linear systems subject to input saturation. IEEE Transactions on Automatic Control, 58 (4), 1062–1067.
  137. 137 Luo, J. (2014) State-feedback control for fractional-order nonlinear systems subject to input saturation. Mathematical Problems in Engineering, 2014, 891639.
  138. 138 Farina, L. and Rinaldi, S. (2000) Positive Linear Systems: Theory and Applications, John Wiley & Sons, Inc., New York.
  139. 139 Kaczorek, T. (2002) Positive 1-D and 2-D Systems, Springer, New York.
  140. 140 Kaczorek, T. (1999) Stabilization of positive linear systems by state feedback. Pomiary Automatyka Kontrola, 45 (3), 2–5.
  141. 141 Gao, H.J., Lam, J., Wang, C.H., and Xu, S.Y. (2005) Control for stability and positivity: Equivalent conditions and computation. IEEE Transactions on Circuits and Systems II: Express Briefs, 52 (9), 540–544.
  142. 142 Wang, C.H. and Huang, T.M. (2013) Static output feedback control for positive linear continuous-time systems. International Journal of Robust and Nonlinear Control, 23 (14), 1537–1544.
  143. 143 Benzaouia, A., Hmamed, A., and El Hajjaji, A. (2010) Stabilization of controlled positive discrete-time T–S fuzzy systems by state feedback control. International Journal of Adaptive Control and Signal Processing, 24 (12), 1091–1106.
  144. 144 Chen, X.M., Lam, J., Li, P., and Shu, Z. (2013) c01-math-004-induced norm and controller synthesis of positive systems. Automatica, 49 (5), 1377–1385.
  145. 145 Chen, X.M., Lam, J., Li, P., and Shu, Z. (2014) Output-feedback control for continuous-time interval positive systems under c01-math-005 performance. Asian Journal of Control, 16 (6), 1592–1601.
  146. 146 Chen, X.M., Lam, J., Li, P., and Shu, Z. (2013) c01-math-006-induced performance analysis and sparse controller synthesis for interval positive systems. International Conference of Applied and Engineering Mathematics, London.
  147. 147 Chen, X.M., Lam, J., and Li, P. (2014) Positive filtering for continuous-time positive systems under c01-math-007 performance. International Journal of Control, 87 (9), 1906–1913.
  148. 148 Chen, X.M., Lam, J., and Lam, H.K. (2015) Positive filtering for positive Takagi–Sugeno fuzzy systems under c01-math-008 performance. Information Sciences, 299, 32–41.
  149. 149 Shen, J. and Lam, J. (2015) c01-math-009-gain analysis for positive linear systems with unbounded time-varying delays. IEEE Transactions on Automatic Control, 60 (3), 857–862.
  150. 150 Liu, J.J., Zhang, K.J., Pang, G.C., and Wei, H.K. (2015) Robust stabilisation for constrained discrete-time switched positive linear systems with uncertainties. IET Control Theory & Applications, 9 (17), 2598–2605.
  151. 151 Liu, J.J. and Zhang, K.J. (2015) State feedback with memory for constrained switched positive linear systems. Entropy, 17 (5), 2655–2676.
  152. 152 Liu, J.J., Zhang, K.J., Pang, G.C., and Wei H.K. (2016) Controller synthesis for constrained discrete-time switched positive linear systems. Nonlinear Analysis: Hybrid Systems, 19, 1–12.
  153. 153 Liu, J.J., Zhang, K.J., Pang, G.C., and Wei, H.K. (2015) Robust stability of positive switched systems with dwell time. International Journal of Systems Science, 47 (11), 2553–2562.
  154. 154 Podlubny, I. (1999) Fractional Differential Equations, Academic Press, San Diego.
  155. 155 Kaczorek, T. (2011) Selected Problems of Fractional System Theory, Springer, Berlin.
  156. 156 Kaczorek, T. (2008) Fractional positive continuous-time linear systems and their reachability. International Journal of Applied Mathematics and Computer Science, 18 (2), 223–228.
  157. 157 Kaczorek, T. (2010) Stability and stabilization of positive fractional linear systems by state-feedbacks. Bulletin of the Polish Academy of Sciences: Technical Sciences, 58 (4), 537–554.
  158. 158 Hmamed, A., Mesquine, F., Benzaouia, A., et al. (2013) Continuous-time fractional bounded positive systems. 52nd IEEE Conference on Decision and Control, Florence, Italy.
  159. 159 Kaczorek, T. (2014) Minimum energy control of fractional positive continuous-time linear systems with bounded inputs. International Journal of Applied Mathematics and Computer Science, 24 (2), 335–340.
  160. 160 Mesquine, F., Hmamed, A., Benhayoun, M., et al. (2015) Robust stabilization of constrained uncertain continuous-time fractional positive systems. Journal of the Franklin Institute, 352 (1), 259–270.
  161. 161 Benzaouia, A., Hmamed, A., Mesquine, F., et al. (2014) Stabilization of continuous-time fractional positive systems by using a Lyapunov function. IEEE Transactions on Automatic Control, 59 (8), 2203–2208.
  162. 162 Kaczorek, T. (2015) Minimum energy control of fractional positive electrical circuits with bounded inputs. Circuits, Systems, and Signal Processing, 35 (6), 1815–1829.
  163. 163 Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006) Theory and Application of Fractional Differential Equations, Elsevier, New York.
  164. 164 Petrás̆, I. (2011) Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Higher Education Press, Beijing.
  165. 165 Pan, I. and Das, S. (2012) Intelligent Fractional Order Systems and Control: An Introduction, Springer, Heidelberg.
  166. 166 Li, C. and Deng, W. (2007) Remarks on fractional derivatives. Applied Mathematics and Computation, 187 (2), 777–784.
  167. 167 Aguila-Camacho, N., Duarte-Mermoud, M.A., and Gallegos, J.A. (2014) Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 19 (9), 2951–2957.
  168. 168 Li, L. and Sun, Y. (2015) Adaptive fuzzy control for nonlinear fractional-order uncertain systems with unknown uncertainties and external disturbance. Entropy, 17 (8), 5580–5592.
  169. 169 Shao, S., Chen, M., and Yan, X. (2015) Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dynamics, 83 (4), 1855–1866.
  170. 170 Ge, S.S., Hang, C.C., Lee, T.H., and Zhang, T. (2001) Stable Adaptive Neural Network Control, Kluwer, Norwell, MA.
  171. 171 Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., and Castro-Linares, R. (2015) Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22 (1), 650–659.
  172. 172 Wei, Y., Chen, Y., Liang, S., and Wang, Y. (2015) A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing, 165, 395–402.
  173. 173 Wen, X.J., Wu, Z.M., and Lu, J.G. (2008) Stability analysis of a class of nonlinear fractional-order systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 55 (11), 1178–1182.
  174. 174 Ye, H., Gao, J., and Ding, Y. (2007) A generalized Gronwall inequality and its application to a fractional differential equation. Journal of Mathematical Analysis and Applications, 328 (2), 1075–1081.
  175. 175 Wu, Z.B. and Zou, Y.Z. (2014) Global fractional-order projective dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 19 (8), 2811–2819.
  176. 176 Cao, Y. and Bai, C. (2014) Finite-time stability of fractional-order BAM neural networks with distributed delay. Abstract and Applied Analysis, 2014, 634803.
  177. 177 Lim, Y.H. and Ahn, H.S. (2012) Utilization of Gronwall–Bellman lemma in fractional order systems. Technical Report of Distributed Control and Autonomous Systems Lab., Gwangju Institution of Science and Technology, GIST DCASL TR 2012-01.
  178. 178 Lorenz, E.N. (1963) Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20 (2), 130–141.
  179. 179 Li, C. and Yan, J. (2007) The synchronization of three fractional differential systems. Chaos, Solitons & Fractals, 32 (2), 751–757.
  180. 180 Lu, J.G. (2005) Chaotic dynamics and synchronization of fractional-order Genesio–Tesi systems. Chinese Physics, 14 (8), 1517.
  181. 181 Lu, J.G. (2005) Chaotic dynamics and synchronization of fractional-order Arneodo's systems. Chaos, Solitons & Fractals, 26 (4), 1125–1133.
  182. 182 Samardzija, N. and Greller, L.D. (1988) Explosive route to chaos through a fractal torus in a generalized Lotka–Volterra model. Bulletin of Mathematical Biology, 50 (5), 465–491.
  183. 183 Ma, J.H. and Chen, Y.S. (2001) Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Applied Mathematics and Mechanics, 22 (11), 1240–1251.
  184. 184 Sheu, L.J., Chen, H.K., Chen, J.H., et al. (2008) Chaos in the Newton–Leipnik system with fractional order. Chaos, Solitons & Fractals, 36 (1), 98–103.
  185. 185 Lü, J., Chen, G., Cheng, D., and Celikovsky, S. (2002) Bridge the gap between the Lorenz system and the Chen system. International Journal of Bifurcation and Chaos, 12 (12), 2917–2926.
  186. 186 Lü, J. and Chen, G. (2002) A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12 (3), 659–661.
  187. 187 Deng, W.H. and Li, C.P. (2005) Chaos synchronization of the fractional Lü system. Physica A, 353, 61–72.
  188. 188 Min, F.H., Shao, S.Y., Huang, W.D., and Wang, E.R. (2015) Circuit implementations, bifurcations and chaos of a novel fractional-order dynamical system. Chinese Physics Letters, 32 (3), 030503.
  189. 189 Ahmad, W.M. (2005) Hyperchaos in fractional order nonlinear systems. Chaos, Solitons & Fractals, 26 (5), 1459–1465.
  190. 190 Wu, X., Lu, H., and Shen, S. (2009) Synchronization of a new fractional-order hyperchaotic system. Physics Letters A, 373 (27), 2329–2337.
  191. 191 Huang, X., Zhao, Z., Wang, Z., and Li, Y. (2012) Chaos and hyperchaos in fractional-order cellular neural networks, Neurocomputing, 94, 13–21.
  192. 192 Oustaloup, A., Sabatier, J., and Lanusse, P. (1999) From fractal robustness to the CRONE control. Fractional Calculus and Applied Analysis, 2 (1), 1–30.
  193. 193 Li, T.Z., Yu, W., and Luo, M.K. (2014) Control of fractional chaotic and hyperchaotic systems based on a fractional order controller. Chinese Physics B, 23 (8), 80501.
  194. 194 Shao, S.Y. and Chen, M. (2016) Fractional-order control for a novel chaotic system without equilibrium. IEEE/CAA Journal of Automatica Sinica. doi: 10.1109/JAS.2016.7510124
  195. 195 Shao, S.Y., Chen, M., Chen, S.D., and Wu, Q.X. (2016) Adaptive neural control for an uncertain fractional-order rotational mechanical system using disturbance observer. IET Control Theory & Applications, 10 (16), 1972–1980.
  196. 196 Shao, S.Y., Chen, M., and Yang, Q.Y. (2016) Sliding mode control for a class of fractional-order nonlinear systems based on disturbance observer. IEEE International Conference on Industrial Technology, Taipei, Taiwan.
  197. 197 Shao, S.Y., Chen, M., and Wu, Q.X. (2016) Stabilization control of continuous-time fractional positive systems based on disturbance observer. IEEE Access, 4, 3054–3064.
  198. 198 Shao, S.Y., Chen, M., and Wu, Q.X. (2016) Tracking control for uncertain fractional-order chaotic systems based on disturbance observer and neural network. IMA Journal of Mathematical Control and Information. doi: 10.1093/imamci/dnw024
  199. 199 Ziegler, J.G. and Nichols, N.B. (1942) Optimal settings for automatic controllers. Transactions of the American Society of Mechanical Engineers, 64, 759–768.
  200. 200 Liang, T.N. (2011) Fractional order PID controllers and analysis of stability region for fractional order systems with uncertain parameters. Doctoral thesis. Xidian University.
  201. 201 Luo, Y. and Chen, Y. (2012) Fractional Order Motion Controls, John Wiley & Sons, Ltd, Chichester.
  202. 202 Xue, D.Y. and Zhao, C.N. (2007) Fractional order PID controller design for fractional order system. Control Theory & Applications, 24 (5), 771–776.
  203. 203 Wei, L., Fei, M., and Hu, H. (2008) Modeling and stability analysis of grey-fuzzy predictive control. Neurocomputing, 72 (1), 197–202.
  204. 204 Chen, X., Yang, J., Li, S., and Li, Q. (2009) Disturbance observer based multi-variable control of ball mill grinding circuits. Journal of Process Control, 19 (7), 1205–1213.
  205. 205 Olivier, L.E., Craig, I.K., and Chen, Y.Q. (2012) Fractional order and BICO disturbance observers for a run-of-mine ore milling circuit. Journal of Process Control, 22 (1), 3–10.
  206. 206 Chen, Y.Q., Vinagre, B.M., and Podlubny, I. (2003) On fractional order disturbance observer. ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL.
  207. 207 Lu, J., Xie, W., Zhou, H., and Zhang, A. (2014) Vibration suppression using fractional-order disturbance observer based adaptive grey predictive controller. Journal of Vibroengineering, 16 (5), 2205–2215.
  208. 208 Son, N.N. and Anh, H.P.H. (2014) Adaptive backstepping self-balancing control of a two-wheel electric scooter. International Journal of Advanced Robotic Systems, 11 (10), 165.
  209. 209 Li, Y., Chen, Y.Q., and Podlubny, I. (2009) Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica, 45 (8), 1965–1969.
  210. 210 Sadati, S.J., Baleanu, D., Ranjbar, A. et al. (2010) Mittag–Leffler stability theorem for fractional nonlinear systems with delay. Abstract and Applied Analysis, 2010, 108651.
  211. 211 Liu, S., Li, X.Y., Jiang, W., and Zhou, X.F. (2012) Mittag–Leffler stability of nonlinear fractional neutral singular systems. Communications in Nonlinear Science and Numerical Simulation, 17 (10), 3961–3966.
  212. 212 Qian, D.L., Li, C.P., Agarwal, R.P., and Wong, P.J.Y. (2010) Stability analysis of fractional differential system with Riemann–Liouville derivative. Mathematical and Computer Modelling, 52 (5), 862–874.
  213. 213 Zhang, F.R. and Li, C.P. (2011) Stability analysis of fractional differential systems with order lying in (1, 2). Advances in Difference Equations, 2011, 213485.
  214. 214 Qin, Z.Q., Wu, R.C., and Lu, Y.F. (2014) Stability analysis of fractional-order systems with the Riemann-Liouville derivative. Systems Science & Control Engineering, 2 (1), 727–731.
  215. 215 Chen, L.P., He, Y. G., Chai, Y., and Wu, R.C. (2014) New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dynamics, 75 (4), 633–641.
  216. 216 Hua, C.C. and Guan, X.P. (2004) Adaptive control for chaotic systems. Chaos, Solitons & Fractals, 22 (1), 55–60.
  217. 217 Liu, L.P., Han, Z.Z., and Li, W.L. (2009) Global sliding mode control and application in chaotic systems. Nonlinear Dynamics, 56 (1–2), 193–198.
  218. 218 Jia, Q. (2007) Hyperchaos generated from the Lorenz chaotic system and its control. Physics Letters A, 366 (3), 217–222.
  219. 219 Volos, C.K., Kyprianidis, I.M., and Stouboulos, I.N. (2013) Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93 (5), 1328–1340.
  220. 220 Wang, Z., Huang, X., Li, Y.X., and Song, X.N. (2013) A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system, Chinese Physics B, 22 (1), 010504.
  221. 221 Zhou, P. and Bai, R. (2014) One adaptive synchronization approach for fractional-order chaotic system with fractional-order c01-math-010. The Scientific World Journal, 2014, 490364.
  222. 222 Chen, L., Chai, Y., Wu, R., and Yang, J. (2012) Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Transactions on Circuits and Systems II: Express Briefs, 59 (9), 602–606.
  223. 223 Lu, J.G. and Chen, G. (2006) A note on the fractional-order Chen system. Chaos, Solitons & Fractals, 27 (3), 685–688.
  224. 224 Milanovic, V. and Zaghloul, M.E. (1996) Improved masking algorithm for chaotic communications systems. Electronics Letters, 32 (1), 11–12.
  225. 225 Ishteva, M. (2005) Properties and applications of the Caputo fractional operator. Master thesis. Universität Karlsruhe (TH).
  226. 226 Ge, Z.M. and Jhuang, W.R. (2007) Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos, Solitons & Fractals, 33 (1), 270–289.
  227. 227 Xin, G., and Yu, J.B. (2005) Chaos and chaotic control in a fractional-order electronic oscillator. Chinese Physics, 14 (5), 908.
  228. 228 Tavazoei, M.S. and Haeri, M. (2008) Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Analysis: Theory, Methods & Applications, 69 (4), 1299–1320.
  229. 229 Ahmad, W.M. and Sprott, J.C. (2003) Chaos in fractional-order autonomous nonlinear systems. Chaos, Solitons & Fractals, 16 (2), 339–351.
  230. 230 Li, Y., Chen, Y.Q., and Podlubny, I. (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Computers & Mathematics with Applications, 59 (5), 1810–1821.
  231. 231 Araki, M. and Kondo, B. (1972) Stability and transient behavior of composite nonlinear systems. IEEE Transactions on Automatic Control, 17 (4), 537–541.
  232. 232 Yu, S.M. (2004) A new type of chaotic generator. Acta Physica Sinica, 53 (12), 4111–4119.
  233. 233 Daftardar-Gejji, V. and Bhalekar, S. (2010) Chaos in fractional ordered Liu system. Computers & Mathematics with Applications, 59 (3), 1117–1127.
  234. 234 Jiang, G.P. and Tang, W.K.S. (2002) A global synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach. International Journal of Bifurcation and Chaos, 12 (10), 2239–2253.
  235. 235 Yin, Y.Z. (1997) Synchronization of chaos in a modified Chua's circuit using continuous control. Journal of Electronics, 19 (6), 824–827.
  236. 236 Thamilmaran, K., Lakshmanan, M., and Venkatesan, A. (2004) Hyperchaos in a modified canonical Chua's circuit. International Journal of Bifurcation and Chaos, 14 (1), 221–243.
  237. 237 Shao, S.Y., Min, F.H., Wu, X.H., and Zhang, X.G. (2014) Implementation of a new chaotic system based on field programmable gate array. Acta Physica Sinica, 63 (6), 060501.
  238. 238 Suykens, J.A.K., Curran, P.F., Vandewalle, J., and Chua, L.O. (1997) Robust nonlinear c01-math-011 synchronization of chaotic Lur'e systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44 (10), 891–904.
  239. 239 Zhu, H., Zhou, S., and Zhang, J. (2009) Chaos and synchronization of the fractional-order Chua's system. Chaos, Solitons & Fractals, 39 (4), 1595–1603.
  240. 240 Matignon, D. (1996) Stability results for fractional differential equations with applications to control processing. CESA'96 IMACS Multiconference: Computational Engineering in Systems Applications, Lille, France.
  241. 241 Petrás̆, I. (2002) Control of fractional-order Chua's system. Journal of Electrical Engineering, 53 (7–8), 219–222.
  242. 242 Jiang, G.P., Chen, G.R., and Tang, W.K. (2003) A new criterion for chaos synchronization using linear state feedback control. International Journal of Bifurcation and Chaos, 13 (8), 2343–2351.
  243. 243 Monje, C.A., Chen, Y., Vinagre, B. M., et al. (2010) Fractional-order Systems and Controls: Fundamentals and Applications, Springer, New York.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.219.22.169