Index


  • a
    • AA sensing  228–229
    • absorption spectra  268, 270–271
    • acoustic‐resolution PAM (AR‐PAM)  141, 142
    • AEAPMS  221
    • AFM. See atomic force microscopy (AFM) images
    • AFP. See alpha‐fetoprotein (AFP)
    • aggregation‐induced red shift emission (AIRSE)  217
    • alkaline phosphatase (ALP)  231
    • alkaline phosphatase‐α‐1 antitrypsin (ALP‐AAT)  187
    • ALP. See alkaline phosphatase (ALP)
    • alpha‐fetoprotein (AFP)  183
    • Alzheimer's disease  187
    • amidic coupling  23–24
    • amphiphilic polymers  22–23
    • anionic polymerization  19
    • antifouling polymers, bioapplications
      • azide‐alkyne cycloaddition  25
      • CDs, with PEG  23–24
      • covalent or noncovalent functionalization  22–23, 32
      • GO, PEG chain  23
      • “grafting from” approach  25
      • “grafting to” method  25
      • HPHT nanodiamonds  25, 26
      • nanodiamonds  24
      • phospholipid‐PEG coating  23
      • protein corona  22
      • silica coating  25, 26, 32
    • anti‐tumor immune responses  327–328
    • aptamers  219
    • AR‐PAM. See acoustic‐resolution PAM (AR‐PAM)
    • atomic force microscopy (AFM) images  214, 268, 269
    • atom transfer radical polymerization (ATRP)  19
    • average fiducial correction (AFC)  74
  • b
  • basic polypeptide (BPP)  280, 281, 284
  • bioanalysis applications, CDs
    • bioimaging/real‐time monitoring  236–238
    • biosensing mechanism/transduction schemes  221–225
    • enzyme activities and inhibitor screening  231–232
    • heavy metals/elements  225–226
    • natural compounds  228, 230
    • oligonucleotides  227–228
    • pH  232–233
    • pharmaceutical drugs  228, 230
    • point‐of‐care diagnostic kits, solid‐state sensing  234–236
    • proteins  230–231
    • ROS/RNS  226–227
    • small molecules  228–229
    • temperature  234
    • theranostics  238–240
  • biocompatibility of CNMs  90
  • bioengineering, CDs
    • biomolecules as sensing receptors  218–221
    • chemical functionalization  216
    • coupling with gold nanoparticles  217–218
    • bioengineering, CDs (Contd.)
    • doping  217
    • fabrication onto solid polymeric matrices  218
  • bioimaging  65
    • carbon dots  100–102
    • carbon nanoonions  102–104
    • carbon nanotubes  93–99
    • cisplatin  238
    • ex vivo testing  236
    • fluorescence ratio imaging  237–238
    • fullerene or C6091–93
    • graphene derivatives  99–100
    • nanodiamonds  104–105
  • biological transparent windows  87–88
  • biomarkers detection
    • abnormal levels or fluctuation of biomarkers  179
    • carbonaceus nanomaterials  179
    • carbon nanodot‐based biosensors  179–181
    • carbon nanotube‐based biosensors  182–187
    • detection of abnormal levels  168
    • graphene‐based biosensors  188–192
    • graphene quantum dot‐based biosensors  179–181
  • biomolecular adsorption/binding  169
  • biomolecules
    • aptamers  219
    • biopolymers  220–221
    • deoxyribonucleic acid  218–219
    • proteins and peptides  219–220
  • biopolymers
    • AEAPMS  221
    • ethylenediamine  221
    • polyethylene glycol  220
    • polyhedral oligomeric silsesquioxane  221
  • biosensing mechanism/transduction schemes
    • chemiluminescence  223–224
    • electrochemical properties  224–225
    • electrochemiluminescence  224
    • fluorescence  222–223
  • biosensors  169
  • boron dipyrromethene (BODIPY) derivative  103, 104
  • c
  • Caenorhabditis elegans (C. elegans)50, 75, 104, 215
  • cancer biomarker detection, CNT biosensors for
    • CNT‐FET device  183–184
    • conducting paper sensor  184
    • fabrication of DNA immunosensor  184–185
    • galectin‐3  183
    • matrix metalloproteinase‐3  185
    • osteopontin  182–183
    • oxidized MWCNTs  184
    • sandwich‐type biosensors  182
    • sandwich‐type immunosensor  185, 186
    • SWCNT–chitosan (CS) composite  184
    • SWCNT‐modified Pt microelectrode  182
    • total‐prostate‐specific antigen level  182
    • tumor suppressor protein p53  185
  • cancer management  43, 328
  • cancer photohyperthermia  329, 330
  • cancer phototherapy
    • characterization of G‐Ce6  268–272
    • fabrication of G‐Ce6  268
    • in vitro evaluation of G‐Ce6  272–274
  • carbon age  3–4
  • carbon‐based NPs  289–290
  • carbon dots (CDs)  12–13, 74, 89, 90, 179, 310
    • analytical characteristics  204
    • bioanalysis applications  221–240
    • bioengineering, for bioanalysis  216–221
    • biosafety assessments  214–216
    • biotoxicity of  214
    • carbogenic cores  214
    • carbon‐based fluorescent tags  102
    • carbon quantum dots  101
    • crosslink‐enhanced emission effect  21
    • cytotoxicity of  214
    • fluorescent carbon‐based nanoparticles  100–101
    • fundamentals of  205–216
    • future perspectives  240–242
    • graphene nanoparticles  101–102
    • graphene quantum dots  101
    • mGQDs  101
    • optical properties  206–213
    • organic fluorophores  240
    • photoluminescence spectra  101
    • photoluminescent polymer‐carbon nanodots  102
    • physical and chemical properties  213–214, 318
    • PL mechanisms  240
    • polymer/silica hybrid film  218
    • QY improvement  241–242
    • sensitivity improvement for solid‐state sensing  242
    • sp2 and sp3 carbon atoms  15
    • synthesis approaches  205–206, 207–208
    • systematic synthesis protocol  241
    • top‐down and bottom‐up approaches  205–206, 207–208
    • “turn‐on” fluorescence system  228
    • for in vitro PTT  319
    • in vivo biodistribution and tracking  215–216
    • for in vivo PTT  319–320
  • carbon nanodots (CNDs)  13, 66, 69
    • biosensors for disease biomarkers detection  179–181
    • for VOC sensors  171–173
  • carbon nanohorns (CNHs)  56, 89, 90, 310
    • physical and chemical properties related to PTT  315–316
    • for in vitro PTT  316
    • for in vivo PTT  316–317
  • carbon nanomaterial (CNMs)
    • antifouling polymers for bioapplications  22–26, 33
    • biointerface  18
    • biomarkers detection using biosensors  179–192
    • carbon nanodots  69
    • carbon nanotubes  66–68
    • clinical translation  33
    • colloidal stability  16–18
    • delivery of nucleic acids  29–32
    • FDA's regulation  33
    • fluorescent nanodiamonds  66
    • graphene  69
    • influence of polymers on spectral properties  19–22
    • for optical imaging  45–51
    • for phototherapies of cancer  51–55
    • with polymers  18–19, 29–32
    • with stimuli‐responsive polymers  26–29
    • surface functionalization  43–45
    • survey of  66–69
    • VOC detection using gas/vapor sensors  169–179
  • carbon nanomaterial‐polyethyleneimine (CNM‐PEI) complexes  32
  • carbon nanoonions (CNOs)  56, 89, 90
    • BODIPY derivative  103, 104
    • difluoride azadipyrromethene fluorophores  103
    • fluorescence emission  103
    • intrinsic fluorescence  102
    • sp2 carbon atoms  102
    • surface functionalization  103
  • carbon nanoparticles (NPs)  167
  • carbon nanotube‐field‐effect transistor (CNT‐FET) transducer  183
  • carbon nanotubes (CNTs)  43, 44, 66–68, 89, 310
    • arginine‐glycine‐aspartic acid (RGD) peptide  95–96
    • ballistic transport  8
    • cancer biomarker detection, biosensors for  182–186
    • carbon–carbon bonds  6
    • charge transfer mechanism  174
    • conductive polymer composites  173
    • construction and band structure  8–9
    • covalent sidewall functionalization  94
    • deep‐tissue imaging  99
    • density of states  9
    • detection and discrimination of specific biomarkers  176
    • disease biomarker detection, biosensors for  186–187
    • effect of polyunsaturated fatty acids  95
    • electronics  8–10
    • E‐nose composed of nanocomposites of SWCNTs  176
    • fluorescence emission  93, 94
    • functional materials  173
    • intrinsic NIR emission of SWCNTs  96
    • mouse cerebral vasculature  97–98
    • multiple conductive paths  174, 175
    • MWCNTs and SWCNTs  173
    • for near‐infrared wavelengths  65–66
    • NIR photoluminescence  95
    • carbon nanotubes (CNTs) (Contd.)
    • noninvasive imaging of ovarian tumors  97
    • one‐dimensional (1D) electronic system  4, 8–9
    • optical and electrical properties  326–327
    • oxygen‐doped nanotubes  94
    • photoluminescence properties  19–20
    • physical and chemical properties related to PTT  315–316
    • Rituxan and Herceptin  95
    • semiconducting SWCNTs  99
    • single‐walled  6
    • sLbL technique  173–174
    • structure  6–7
    • surface functionalized CNTs  99
    • SWCNT‐RGD conjugate  96
    • SWCNTs, implantable sensors  98–99
    • for in vitro PTT  316
    • in vivo imaging of live animals  96
    • for in vivo PTT  316–317
    • for VOC sensors  173–176
  • carbon quantum dots (CQDs)  13, 43, 44, 45, 46, 69, 101, 172
  • carbon structures
    • carbon age  3–4
    • carbon nanotubes  6–10
    • classification  4
    • fullerene  4–5
    • graphene  10–12
    • nanodiamonds and carbon dots  12–13
  • carboxy fullerenes  320
  • CDs. See carbon dots (CDs)
  • cell death (apoptosis)  323
  • cell inactivation  309
  • cellular apoptosis  309
  • cellular necrosis  309
  • charge‐coupled device (CCD)  119
  • chemical vapor deposition (CVD)  102
  • chemical vapor sensors  168, 172
  • chemiluminescence (CL)
    • detection of cobalt, Co(II)  223–224
    • nanoparticles  223
  • chemotherapy  43, 51, 289, 324
  • chiral angle  6–7
  • chiral vector  6
  • cholesterol checking  229
  • Chromobacterium viscosum (CV) lipase  220
  • CNDs. See carbon nanodots (CNDs)
  • CNHs. See carbon nanohorns (CNHs)
  • CNMs. See carbon nanomaterial (CNMs)
  • CNOs. See carbon nanoonions (CNOs)
  • CNTs. See carbon nanotubes (CNTs)
  • colloidal photonic crystals (CPhCs)  235
  • colloidal stability
    • DLVO theory  16
    • of nanoparticles (NPs)  16, 17
    • zeta potential  16
  • colorimetric technique  170
  • combined therapy, PTT
    • chemotherapy  324
    • gene therapy  325–327
    • immune therapy  327–328
    • photodynamic therapy  325
    • RT  324–325
    • theranostic applications  328–329
  • complementary DNA (cDNA)  213
  • computed tomographic (CT) scans  65, 289, 311
  • conducting paper (CP) sensor  184
  • conduction bands  8, 11
  • conductive polymer composites (CPC)  173
  • contrast agents, PA imaging
    • PFC compound  146
    • physical, optical absorption, and functional properties  149
    • for SLN mapping  146
    • SWNT‐RGD  146, 147–148
    • tumor‐targeting cyclic Arg‐Gly‐Asp (RGD)  146, 147–148
  • contrast‐to‐noise ratio (CNR)  150
  • copper sulphide (CuS) nanoparticles  52
  • CQDs. See carbon quantum dots (CQDs)
  • crosslink‐enhanced emission (CEE) effect  21
  • cyanine  69
  • cycloaddition  102
  • cyclopentadienyl end‐capped poly(N‐isopropylacrylamide) (PNIPAM‐Cp)  27
  • cylindrical detection PACT system  142, 143–144
  • cytochrome c (cyt c)  220
  • cytosine guanine (CpG) motifs  328
  • d
  • data acquisition boards (DAQs)  140
  • DDS. See drug delivery system (DDS)
  • Debye–Waller factor  71–72
  • deep‐tissue imaging
    • carbon nanomaterials for NIR imaging (see near‐infrared (NIR) light)
    • near‐infrared imaging materials  88–89
    • transparent optical windows in biological tissue  87–88
  • density of states (DOS)  9
  • deoxyribonucleic acid (DNA)  218–219
    • with basic polypeptides  280, 281
    • FTIR spectra  280, 282
    • for gene therapy  280–283
    • hydrodynamic diameter and zeta potential of nanoparticles  280, 282
    • ND‐PG‐BPP, dispersions  280, 283
    • polyglycerol‐functionalized nanodiamond  280
  • Derjaguin–Landau–Verwey–Overbeek (DLVO) theory  16
  • detonation nanodiamonds (DNDs)  24, 102
  • DIC. See differential interference contrast (DIC)
  • differential interference contrast (DIC)  50
  • difluoride azadipyrromethene fluorophores  103
  • 2‐(dimethylamino)ethyl methacrylate (DMAEMA)  30, 31
  • Drosophila melanogaster (fruit flies)  48, 97, 215
  • drug delivery system (DDS)  267
  • dual‐emission fluorescence  234
  • e
  • ECL. See electrochemiluminescence (ECL)
  • EDL. See electrostatic double layer (EDL)
  • electrical signals  168
  • electrochemiluminescence (ECL)  224
    • of CDs  224
    • origami device  219
  • electromechanical sensing  167
  • electron‐hole recombination  69
  • electrostatic double layer (EDL)  16, 17
  • ELISA kit. See enzyme‐inked immunosorbent assay (ELISA) kit
  • endohedral functionalization  91
  • enhanced permeability and retention (EPR)  311
  • enzyme‐inked immunosorbent assay (ELISA) kit  230
  • epidermal growth factor receptor (EGRF) antibody  51
  • Escherichia coli219
  • estrogen receptor negative cells (SKBr3)  92
  • ethylenediamine (EDA)  221
  • Euler's theorem  4
  • extended (X‐DLVO)  16
  • f
  • Fermi surface  8
  • few layer graphene (FLG)  268
  • field emission scanning electron microscope (FESEM)  290
  • FLIM. See fluorescence lifetime imaging microscopy (FLIM)
  • fluorescein  69
  • fluorescein fundus angiography (FFA)  217
  • fluorescence lifetime imaging microscopy (FLIM)  77, 105, 117
  • fluorescence “off‐on” sensing mechanism  232
  • fluorescence resonance energy transfer (FRET)  219
  • fluorescent dye  117
  • fluorescently labeled carbon nanomaterials  51
  • fluorescent nanodiamonds (FNDs)  66
    • acid‐treated HPHT  116
    • chemotherapy and radiotherapy treatments  119
    • clear intensity modulation  75, 76
    • cytoplasmic FNDs  119
    • energy level diagram  68, 69–70
    • fluorescent properties  68, 69–71
    • functionalization of  66, 67
    • fluorescent nanodiamonds (FNDs) (Contd.)
    • magneto‐optical properties  120, 132
    • for molecular and cellular bioimaging  65
    • near‐infrared spectral region  116
    • nitrogen vacancy defect  68, 69
    • NV centers  70–71
    • pixel‐by‐pixel lockin processing  77
    • silica‐coating and subsequent functionalization  66, 69
    • stem cells  116–117, 118
    • visible wavelengths  65
  • fluorescent single‐walled carbon nanotubes (f‐SWCNTs)  99
  • fluorination  102
  • FNDs. See fluorescent nanodiamonds (FNDs)
  • folic acid protein (FAP)  190
  • Foster Resonance Energy Transfer (FRET)  222–223, 228
  • Fourier transform infrared spectroscopy (FTIR)  214
  • fullerenes  43, 44, 310
    • C60 fullerene (or soccer ball)  4, 5
    • color‐tunable photoluminescence nanoparticles  92
    • definition  4–5
    • endohedral functionalization  91
    • FSNPs, reverse microemulsion method  91–92
    • fullerene‐oligothiophene chromophores  92–93
    • intrinsic photoluminescence  93
    • physical and chemical properties related to PTT  320
    • quasi‐fullerenes  5
    • tubular fullerene  6
    • for in vitro PTT  320, 321
    • for in vivo PTT  321
    • zero‐dimensional  4, 9
  • fullerene‐silica nanoparticles (FSNPs)  91
  • functionalized fullerenes  320
  • Furrier transform infrared (FT‐IR) spectroscopy  290
  • “grafting from” approach  19
  • “grafting to” approach  18
  • graphdiyne (GDY)  56, 156–157
  • graphene (GR)  43, 44, 66, 69, 89, 90, 267–268
    • electronics  11–12
    • properties  10
    • structure  10–11, 12
    • two‐dimensional  4, 10
  • graphene‐based biosensors
    • for cancer biomarker detection
      • breast cancer biomarker  189–190
      • cyclin A2 protein  188
      • human epithelial‐derived tumors  190
      • lung cancer biomarkers  188–189
      • optical immunosensor  188, 189
    • for disease biomarker detection
      • D‐amino acids  190
      • glucose sensors  191–192
      • immunosensor and binding of insulin  190, 191
      • lactate  191
    • for VOC sensors
      • analysis of acetone in exhaled breath  177, 192
      • detection of toluene in exhaled breath  177, 192
      • electronic sensors  177
      • graphene oxide (GO) and reduced GO (rGO)  177
      • SERS sensors  177–179
  • graphene‐based composite with chlorin e6 (G‐Ce6)
    • absorption spectra  268, 270–271
    • AFM images  268, 269
    • characterization of  268–272
    • fabrication of  268
    • HeLa cells  272, 273, 274
    • mechanism for cytotoxicity  273
    • molecular structure  269
    • phosphate buffer saline  272
    • Raman spectroscopy  271–272
    • STEM image  268, 270
    • in vitro evaluation for cancer phototherapy  272–274
  • graphene‐based NSs  290
  • graphene dots (GDs)  310
    • physical and chemical properties related to PTT  318
    • for in vitro PTT  319
    • for in vivo PTT  319–320
  • graphene nanoparticles (GNPs)  101–102
  • graphene oxide (GO)  20–21, 46, 69, 99–100, 290, 310
    • biological toxicity  330
    • PTT‐related physical and chemical properties  312
    • structural illustration  311
    • for in vitro PTT  312–314
    • for in vivo PTT  314
  • graphene quantum dots (GQDs)  45, 46, 69, 101
    • biosensors for disease biomarkers detection  179–181
    • for VOC sensors  171–173
  • graphite structural nanomaterials  310
  • green fluorescent protein (GFP)‐tagged yolk lipoprotein complexes (YLC)  121
  • Grueneisen parameters  140
  • h
  • HbO2. See oxyhemoglobin (HbO2)
  • heat shock proteins (HSPs)  314
  • HeLa. See human epithelial carcinoma cells (HeLa)
  • hemin‐functionalized GQD and GOx  181
  • HER‐3. See human epidermal growth factor receptor‐3 (HER‐3)
  • heteroatoms doping  217
  • highest occupied molecular orbital (HOMO)  11, 45
  • high‐pressure high‐temperature (HPHT)  24, 116
  • high‐resolution and high‐contrast imaging
    • fluorescent probes, general considerations  71–72
    • image alignment and drift correction  74
    • magnetic resonance imaging  73
    • optical imaging  74–78
    • photoacoustic imaging  72–73
    • preclinical and clinical optical imaging  74
    • in vitro and in vivo fluorescence imaging  74, 78
    • X‐ray CT imaging  73
  • hollow mesoporous silica nanoparticles (HMSNs)  238–239
  • HOMO. See highest occupied molecular orbital (HOMO)
  • honeycomb structure, graphene  10, 12
  • HPHT. See high‐pressure high‐temperature (HPHT)
  • HRTEM  214
  • HSPs. See heat shock proteins (HSPs)
  • human breast adenocarcinoma (MCF‐7) cells  214–215
  • human epidermal growth factor receptor‐3 (HER‐3)  183
  • human epithelial carcinoma cells (HeLa)  92, 214
  • human immunodeficiency virus (HIV)  228
  • human umbilical vein endothelial (HUVEC) cells  92, 214
  • HUVEC. See human umbilical vein endothelial (HUVEC) cells
  • hyaluronic acid (HA)  292
  • hybridization states (sp, sp2, sp3)  15
  • hydra vulgaris90
  • hydrothermal treatment  203
  • hyperthermia therapy  309
  • i
  • immune therapy  327–328
  • immunosorbent assay  230
  • indocyanine green (ICG)  69
  • infrared (IR) light  87
  • infrared spectroscopy  170
  • intensified charge‐coupled device (ICCD)  77
  • inter and intra cellular dynamics, FNDs
    • BSA‐coated FNDs  121
    • diffraction‐limited optical system  121–122
    • endocytosis mechanism  124
    • fluorescent semiconductor nanocrystals  124
    • FND diffusion  121, 122
    • GFP‐tagged YLC  121
    • nanoparticle‐based assay  124
    • ODMR resonant frequency  120–121
    • semi‐transparent organisms  120
    • single particle tracking  123–124
    • TGF  122–123
    • time‐gated imaging  121
    • tracking assay  124, 125–126
  • interference tests  181
  • intrinsic fluorescence  100
    • C60 and C7046–47
    • fluorescent CNTs  47–48
    • GO sheet  46
    • GQDs and CQDs  46, 47, 48
    • graphene and its derivatives  49–50
    • HOMO and LUMO  45
    • nanodiamonds, bioimaging  50
    • noninvasive photoluminescent imaging  47
    • SWCNT NIR emission  47–48, 49
    • SWCNTs  45–46
  • in vitro and in vivo imaging  51, 56
  • in vitro cancer cell cytotoxicity  313
  • Iodine‐125 (125I)  215
  • iron oxide  285
  • l
  • linear detection PACT system  145
  • lithium hydroxide (LiOH)  92
  • liver hepatocellular carcinoma (HepG2) cells  214
  • long‐wavelength window (950–1400 nm)
    • one‐photon imaging  77
    • optical imaging  77–78
    • Raman imaging  78
    • transient absorption microscopy  78
  • lower critical solution temperature (LCST)  27
  • lowest unoccupied molecular orbital (LUMO)  45
  • LSCs. See lung stem cells (LSCs)
  • LUMO. See lowest unoccupied molecular orbital (LUMO)
  • lung stem cells (LSCs)  117, 118
  • m
  • macrophages  215
  • magnetically modulated fluorescence (MMF)  118–119
  • magnetic graphene nanocomposites (MGNCs)
    • MNPs  294
    • multifunctional GO/cobalt ferrite (CoFe2O4/GO) NCs  295
    • PTT  295
    • regional lymph nodes  294
  • magnetic graphene nanosheets (MGNs)  296
  • magnetic resonance imaging (MRI)  65, 73, 117, 289, 311
  • mammography  289
  • Mangifera indica (mango)  101
  • matrix‐assisted laser desorption‐ionization mass spectroscopy (MALDI MS)  229
  • matrix metalloproteinase‐3 (MMP‐3)  185
  • maximum likelihood method (MLE)  74
  • MCF‐7 cancer cells  236
  • MCNs. See mesoporous carbon nanospheres (MCNs)
  • mechanism of photoluminescence origin  21
  • medical practice  65
  • mesenchymal stem cells (MSCs)  117
  • mesoporous carbon nanospheres (MCNs)  327
  • metal‐graphene nanocomposites
    • gold‐graphene composites  292–294
    • magnetic graphene nanocomposites  294–295
  • MGNCs. See magnetic graphene nanocomposites (MGNCs)
  • microfluidic paper‐based analytical devices (μPADs)  235
  • microfluidics  234–235
  • microRNAs (miRNAs)  29, 219, 228
  • MIPs. See molecularly imprinted polymers (MIPs)
  • MMF. See magnetically modulated fluorescence (MMF)
  • MMP‐3. See matrix metalloproteinase‐3 (MMP‐3)
  • molecular imaging  43
  • molecularly imprinted polymers (MIPs)  218
  • MSCs. See mesenchymal stem cells (MSCs)
  • multicolor cell imaging  220
  • multifunctional graphene‐based nanocomposites
    • for cancer diagnosis  302
    • metal‐graphene nanocomposites  292–295
    • for MR Imaging  299
    • nanomedicine‐based PTT  292
    • NIR‐absorption ability  292
    • polymeric graphene nanocomposites  295–299
    • radiotherapy of cancer  300–301
    • synthesis of graphene derivatives  291–292
  • multilaminar vesicles (MLVs)  67
  • multimodal imaging and therapy  328
  • multimodal photoacoustic imaging
    • contrast agents  149
    • CT imaging  155
    • EB/carbon nanotube‐based delivery system (ACEC)  152
    • FL imaging  150, 152, 153–154
    • graphene‐based nanocomposites  152–153
    • ICG conjugated SWCNT  152
    • physical, optical absorption, and functional properties  155
    • Raman spectroscopy  149–150, 151
    • ultrasound and PA  149, 150–151, 153–154, 155
  • multiple‐walled carbon nanotubes (MWCNTs)  93, 290
  • multiwall nanotubes (MWNT)  6
  • murine colorectal carcinoma (CT26.WT) cells  214
  • MWNT. See multiwall nanotubes (MWNT)
  • myeloperoxidase (MPO) enzyme  186–187
  • myoglobin (Mgb)  186
  • n
  • nanocomposites (NCs)  291
    • CD‐ and GD‐based, for PTT  323–324
    • CNT‐based, for PTT  323
    • GO‐based, for PTT  322–323
  • nanodiamonds (NDs)  12–13, 43, 44, 89, 90
    • fluorescent  105
    • intracellular imaging  104–105
    • in vitro imaging  105
    • optical properties  104
    • photobleaching  105, 106
    • surface chemical functionalization  268
    • three‐dimensional  4
  • nanoecotoxicology  90
  • nanographene sheet (NGS)  314, 315
  • nanoimaging  65
  • nanoparticles (NPs)  16
    • cellular interactions  17
    • colloidal interactions  16, 17
    • Stern layer and diffuse layer  16
    • zeta potential  16
  • nano‐sized GO (nGO)  311
  • NAs. See nucleic acids (NAs)
  • NCs. See nanocomposites (NCs)
  • N‐doping  217
  • NDs. See nanodiamonds (NDs)
  • near‐infrared (NIR) light
    • absorption  290
    • biocompatibility of CNMs  90
    • CNMs as bioimaging platforms  91–105
    • covalent and noncovalent functionalization  91
    • description  87
    • fluorescence of CNMs probes  91
    • fluorophores  89
    • imaging materials  88–89
    • intrinsic photoluminescence (PL)  89
    • in vivo fluorescence imaging  88
  • neuromyelitis optica (NMO)  187
  • nGO. See nano‐sized GO (nGO)
  • NIR. See near‐infrared (NIR) light
  • NIR‐triggered drug delivery  220
  • nitrogen‐doped carbon nanodots (N‐CNDs)  156
  • nitrogen‐vacancy (N‐V) centers  20, 21, 32, 46, 66
  • nitroxide‐mediated radical polymerization (NMRP)  19
  • NMR. See nuclear magnetic resonance (NMR)
  • nonfunctionalized CNMs  15
  • non‐invasive sampling techniques  193
  • NPs. See nanoparticles (NPs)
  • nuclear magnetic resonance (NMR)  214
  • nucleic acids (NAs)  218–219
    • CD‐PEI/pDNA  31, 32
    • CNM‐PEI complexes  32
    • nucleic acids (NAs) (Contd.)
    • nonviral nanomaterial‐based gene delivery systems  29
    • PEG‐coated CNTs, siRNA delivery  30, 31
    • PEI‐coated GO/PEI complexes  30, 31
    • PEI‐modified CNT complex  30, 31
    • polycationic polymers  30
    • polymer‐coated CNMs  29
  • nucleus targeting  220
  • o
  • ODMR. See optically detected magnetic resonance (ODMR)
  • oligonucleotides  227–228
  • optical imaging
    • fluorescently labeled carbon nanomaterials  51
    • intrinsic fluorescence  45–50
    • in long‐wavelength window (950–1400 nm)  77–78
    • preclinical and clinical  74
    • in short‐wavelength window (650–950 nm)  74–77
  • optically detected magnetic resonance (ODMR)  66
  • optical properties, CDs
    • absorbance and photoluminescence  206–209
    • phosphorescence  212–213
    • photoluminescence origins  210–211
    • quantum yield  210
    • up‐conversion photoluminescence  211–212
  • optical‐resolution PAM (OR‐PAM)  141–142
  • optical sensing  167
  • optical spectroscopy  170
  • optical transport mean free path (TMFP)  139
  • optical windows in biological tissue  87–88
  • organic dyes  65
  • osteopontin (OPN)  182–183
  • “oxidation‐reduction” ECL mechanism  224
  • oxyhemoglobin (HbO2)  88
  • Paramecium caudatum50
  • Parkinson's disease (PD)  176, 229
  • PA signal receiver geometry  142
  • passivation or functionalization  216
  • PBS. See phosphate buffer saline (PBS)
  • PDT. See photodynamic therapy (PDT)
  • PEG. See polyethylene glycol (PEG)
  • PEI. See polyethyleneimine (PEI)
  • peptide conjugated single‐walled carbon nanotubes (SWNT‐RGD)  146, 147–148
  • peptides  219–220
  • perfluorocarbon (PFC) compound  146
  • PET. See positron emission tomography (PET) imaging
  • PG‐functionalized metal oxide nanoparticles  285
  • pH  232–233
  • pharmaceutical drugs  230
  • phonons  10
  • phosphate buffer saline (PBS)  24, 218, 272
  • phospholipid‐polyethylene glycol (PL‐PEG)  128
  • phospholipids  23
  • phosphorescence, CDs  212–213
  • photoacoustic computed tomography (PACT)
    • cylindrical detection  142, 143–144
    • linear detection  145
    • PA signal receiver geometry  142
    • planar detection  142
    • spherical detection  142, 145
  • photoacoustic image‐guided therapy
    • albumin encapsulated Ce6/ECNTs (ACEC)  158–159
    • gold nanorod@ silica‐carbon dots (GNR@SiO2‐CDs)  160
    • graphdiyne (GDY)  156, 158
    • maleic anhydride‐alt‐1‐octadecene‐poly(ethylene glycol) (C18PMH‐PEG)  158
    • nitrogen‐doped carbon nanodots (N‐CNDs)  156, 157
    • PTT and PDT  156, 160
  • photoacoustic (PA) imaging
    • carbon nanoparticles contrast agents  145
    • contrast agents  146–149
    • effects of  140
    • endogenous chromophores  145
    • exogenous contrast agents  145
    • high‐resolution volumetric optical imaging techniques  139
    • light‐absorption properties  161
    • multimodal photoacoustic imaging  149–155
    • nanomaterials  161
    • photoacoustic computed tomography  142–145
    • photoacoustic image‐guided therapy  156–160
    • photoacoustic microscopy  141–142
  • photoacoustic imaging (PAI)  72–73
  • photoacoustic microscopy (PAM)  141–142
    • acoustic‐resolution PAM (AR‐PAM)  141, 142
    • 2D axial image (B‐scan)  141
    • one‐dimensional image (A‐scan)  141
    • optical‐resolution PAM (OR‐PAM)  141–142
    • point‐by‐point raster scanning method  140
  • photodynamic therapy (PDT)  156, 290, 325, 326
    • fullerenes, C60 and C7053–54
    • GQDs  55
    • nano‐GO  54–55
    • photosensitizer (PS) molecules  53, 54
    • semiconducting SWCNTs  54, 56
  • photoelectrochemical (PEC) properties  181
  • photo‐induced electron transfer (PET)  213
  • photoluminescence (PL), CDs
    • effect of excitation wavelength  206
    • molecular‐state‐induced PL  210–211
    • origins  210–211
    • pH‐induced aggregations  206
    • quantum confinement effect  210
    • surface states theory  210
    • synthetic route and emission colors  209
  • photoluminescence excitation (PLE) spectra  69
  • photoluminescence (PL) properties  69, 206–209
  • photoluminescent polymer‐carbon nanodots (PCNDs)  102
  • photon absorption  96
  • photonic imaging  117
  • photon scattering  96
  • phototherapies of cancer
    • photodynamic therapy  53–55
    • photothermal therapy  52–53
  • phototherapy  43
  • photothermal conversion efficiency  312–313, 318
  • photothermal therapies (PTT)  156, 220, 290
    • applications  292, 293
    • CDs and GDs  318–320
    • clinical application  309–310
    • CNM‐based combined therapy  324–329
    • CNM‐based nanocomposites  321–324
    • CNTs and CNHs  314–317
    • CNTs and graphene  52–53
    • fullerenes  320–321
    • GO  312–314
    • graphene and its derivatives  53
    • light‐wave extinction by tissue  310
    • SWCNTs  53, 56
  • photothermal treatment  314, 321, 327
  • piezoresistive sensors  170
  • pixel‐by‐pixel lock‐in processing  77
  • planar detection PACT system  142
  • plasmid DNA (pDNA)
    • electrophoresis  282, 284
    • electrostatic interaction  282
    • hydrodynamic diameter and zeta potential of nanoparticles  280, 282
    • zeta potentials  282, 283
  • platinum‐based drug for cancer chemotherapy
    • cell‐killing effect of cisplatin  279
    • HeLa cells  279
    • ND50‐PG  274–276
    • ND‐PG‐Pt treatment  279–280
    • polyglycerol‐functionalized nanodiamond and derivatives (see polyglycerol‐functionalized nanodiamond)
  • point‐of‐care diagnosis  234
  • poly(lactic acid) (PLA)  173
  • poly(methyl methacrylate) (PMMA)  173
  • poly(styrene) (PS)  173
  • polyacrylic acid (PAA)  21
  • polycaprolactone (PCL)  173
  • polycarbonate (PC)  173
  • polycyclic aromatic hydrocarbons (PAHs)  10, 176
  • polyethylene glycol (PEG)  44, 220
  • polyethyleneimine (PEI)  27, 54, 312, 314
  • polyglycerol‐functionalized nanodiamond
    • 13C NMR spectra  278
    • conjugated with basic polypeptides  280
    • conjugated with platinum‐based drug for cancer chemotherapy  274–280
    • conjugation of carboxylic groups  276
    • and derivatives, characterization of  276–279
    • H NMR spectra  277, 278
    • hybridized with DNA for gene therapy  280–283
    • in vitro evaluation of  279–280
    • IR spectra  276
    • PG hydrogens  276, 278
    • synthesis of  274–276
  • polyhedral oligomeric silsesquioxane (POSS)  173, 221
  • polyhydroxy fullerenes (PHF)  320
  • polymeric graphene nanocomposites
    • chemophotothermal therapy  298
    • CS‐based biodegradable hydrogel  296–297
    • dual‐stimuli responsive NS  298–299
    • electrospinning techniques  297
    • magnetic graphene nanosheets  296
    • polymeric GNPs/GO theranostics  296
    • side effects of chemotherapy  298
    • surface‐modified GO polymeric NSs  296
  • polymers
    • covalent approaches  18–19
    • for delivery of nucleic acids  29–32
    • functionalization of CNMs  18–19
    • noncovalent approaches  18
    • on spectral properties of CNMs  19–22
    • stimuli‐responsive (see stimuli‐responsive polymers)
  • polyunsaturated fatty acids (PUFAs)  95
  • polyvinyl alcohol (PVA) matrix  212, 213
  • polyvinylpyrrolidone (PVP)  54
  • POPC. See palmitoyloleoyl‐oleoyl‐phosphatidylcholine (POPC)
  • positron emission tomography (PET) imaging  51, 117, 289
  • Pristine SWCNTs  99
  • Project of Nanotechnology  11
  • prostate‐specific antigen (PSA) level  182
  • protein corona  22
  • protein denaturation and aggregation  309
  • proteins  219–220, 230–231
  • PTT. See photothermal therapies (PTT)
  • PUFAs. See polyunsaturated fatty acids (PUFAs)
  • pyrolysis  102
  • q
  • QDs. See quantum dots (QDs)
  • quantum confinement effect  15
  • quantum dots (QDs)  65, 172, 203
  • quantum resistive sensor (QRS) arrays  173
  • quantum yield (QY)  204, 210
    • improvement and spectral expansion to longer wavelength  241–242
    • N‐doped CDs  210
  • quartz crystal microbalance (QCM)  170
  • quenching mechanism  222–223
  • QY. See quantum yield (QY)
  • r
  • radiation therapy (RT)  43, 324–325
  • radiotherapy  51, 289
    • GO characteristics  300
    • GO/Fe3O4@SiO2 nanocomposite  300–301
    • PEGylated nano rGO (nRGO‐PEG)  300
    • PTT/PDT effects  300, 302–303
    • in vivo bioluminescence and PET imaging  300, 301
  • Raman microscopy  73, 311
  • Raman scattering  290
  • Raman spectroscopy  214, 311
  • reactive oxygen/nitrogen species (ROS/RNS)  226–227
  • real‐time monitoring  236–238
  • reduced graphene oxide (rGO)  69, 290, 312
  • regional lymph nodes (RLNs)  294
  • reticuloendothelial system (RES)  215
  • reverse microemulsion method  92
  • reversible addition fragmentation chain transfer polymerization (RAFT)  19
  • rGO. See reduced graphene oxide (rGO)
  • ring‐opening polymerization (ROP) techniques  19
  • RNA interference (RNAi)  29
  • RNA silencing  326
  • RNA‐wrapped, oxidized double‐walled CNTs (oxDWNT‐RNA)  48, 49
  • rolling circle amplification (RCA)  219
  • room temperature phosphorescence (RTP)  212–213
  • s
  • Salmonella typhimurium219
  • scanning electron microscopy (SEM)  214, 290
  • scanning transmission electron microscope (STEM) image  268, 270
  • screen‐printed carbon electrode (SPCE)  183
  • secondary necrosis  309
  • second near‐infrared window (NIRII window)  19, 32
  • selected area electron diffraction (SAED) pattern  214
  • SELEX process  219
  • SEM. See scanning electron microscopy (SEM)
  • semiconducting SWCNTs  99, 106
  • sentinel lymph node (SLN) mapping  73, 146
  • short interfering RNA (siRNA)  29, 30
  • short‐wavelength window (650–950 nm)
    • carbon dots and FNDs  74–75
    • optical imaging  74–77
    • optical imaging beyond the diffraction limit  75
    • selective modulation of emission  75–77
    • time‐gated fluorescence lifetime imaging  77
  • signal‐to‐noise ratio (SNR)  71
  • signal transducer  168
  • significant polarization anisotropy  71
  • silicon vacancy (SiV) centers  20, 21
  • single particle tracking (SPT)  115
  • single‐photon emission computed tomography (SPECT)  117, 289
  • single‐walled carbon nanotubes (SWCNTs)  6, 45–46, 48, 90, 93
    • Brownian or random thermal motion  130
    • chiral or achiral structures  6
    • development of spherical particles  127
    • diffusion and optical imaging  128
    • 1D nanoscale transporters  130
    • drug delivery strategies  127
    • fluorescence emission  19, 20, 127–128
    • fluorescent properties  71
    • molecular diffusion processes  128
    • noncovalent coating  19–20
    • optical resonances and NIR luminescence  127
    • photoluminescence  128
    • structural characteristics  66
    • super‐resolved map  130, 131
    • tissue penetration  129–130
  • single‐walled nanotubes (SWNTs)  46
  • siRNA. See short interfering RNA (siRNA)
  • small interference RNA (siRNA)  239, 326
  • sol‐gel technology  176
  • solid‐state sensing for point‐of‐care diagnostic kits  234–236
  • solid‐state sensors  235
  • soybean peroxidase (SBP)  220
  • spectral properties
    • CDs  21
    • CNTs, fluorescence of  19–20
    • effect of polymer functionalization  19
    • fluorescent nanodiamonds, NV centers  21, 32
    • pristine graphene sheet  20–21
    • Raman spectroscopy  21–22
  • spectral “therapeutic window”  88
  • spherical detection PACT system  142, 145
  • spray layer‐by‐layer (sLbL) technique  173
  • π–π stacking  91, 216
  • STEM. See scanning transmission electron microscope (STEM) image
  • stimulated emission depletion (STED)  75
  • stimuli‐responsive polymers
    • carbon nanoparticles with thermoresponsive polymers  27
    • multi‐responsive carbon nanoparticles  28–29
    • pH‐responsive carbon nanoparticles  27–28
    • physical or chemical properties  26–27
    • redox‐responsive carbon nanoparticles  28
  • stochastic optical reconstruction microscopy (STORM)  74
  • Stokes shifts  127
  • sulfonated poly(ether ether ketone) (SPEEK)  174
  • surface acoustic wave (SAW) sensors  170
  • surface‐enhanced Raman scattering (SERS) sensors  149, 177
  • surface functionalization
    • CNTs and graphene  45
    • covalent or noncovalent functionalizations  44
    • fullerenes  44–45
    • nanodiamond  45
  • surface Plasmon resonance (SPR)  302
  • surgical resection  43
  • SWCNTs. See single‐walled carbon nanotubes (SWCNTs)
  • SWNTs. See single‐walled nanotubes (SWNTs)
  • t
  • TEM. See transmission electron microscopy (TEM) images
  • tetraethylene glycol (TEG)  92
  • tetraethyl orthosilicate (TEOS)  67
  • Tetrahymena thermophila50
  • TGF. See transforming growth factor (TGF)
  • theranostics
    • applications  328–329
    • HMSNs  238–239
    • nanomaterials  43
    • PDT  239–240
    • TAT peptides  239
  • thermal therapy  309
  • thermal treatment  203
  • thrombin  230–231
  • time‐gated fluorescence (TGFluo) confocal microscopy  117
  • tissue auto‐fluorescence  96
  • titanium oxide  285
  • TMDs. See transition‐metal dichalcogenides (TMDs)
  • total internal reflection fluorescence microscope (TIRFM)  71
  • total internal reflection fluorescence (TIRF) video microscopy  124
  • total‐prostate‐specific antigen (T‐PSA) level  182
  • T‐PSA. See total‐prostate‐specific antigen (T‐PSA) level
  • transforming growth factor (TGF)  122–123
  • transition‐metal dichalcogenides (TMDs)  240
  • transmission electron microscopy (TEM) images  66, 150, 214
  • transparent optical windows in biological tissue  87–88
  • trypsin  220
  • tumor suppressor protein p53 (AGp53)  185
  • v
  • valence bands  8, 11
  • van der Waals (vdW) forces  15, 283–284
  • van Hove singularities  9
  • VOC sensors, gas/vapor sensors
    • analysis of  167–168
    • analytical techniques  170
    • breath analysis  169–170
    • chemiresistive sensors  170–171
    • CNDs and GQDs for  171–173
    • CNTs  173–176
    • detection of VOC  168
    • graphene for  176–179
    • nanocarbon‐based sensors  171
  • w
  • wax screen printing  235
  • wheat‐germ agglutinin (WGA) lectin  183
  • x
  • xenograft tumor models  51, 52
  • X‐ray computed tomographic (CT) imaging  73
  • X‐ray diffraction (XRD)  214, 290
  • X‐ray fluorescence (XRF) microscopy  67
  • X‐ray photoelectron spectroscopy (XPS)  214
  • XRD. See X‐ray diffraction (XRD)
  • XRF. See X‐ray fluorescence (XRF) microscopy
  • y
  • Young's modulus  10
  • z
  • zebrafish (Danio rerio)  50, 90, 103
  • zero phonon lines (ZPLs)  66
  • zinc oxide nanoparticles  285
  • zonyl polymer  24
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.15.6.77