Contents

List of Figures

List of Tables

List of Examples

Foreword

Preface to Volume IV

IV.1 Value at Risk and Other Risk Metrics

IV.1.1 Introduction

IV.1.2 An Overview of Market Risk Assessment

IV.1.2.1 Risk Measurement in Banks

IV.1.2.2 Risk Measurement in Portfolio Management

IV.1.2.3 Risk Measurement in Large Corporations

IV.1.3 Downside and Quantile Risk Metrics

IV.1.3.1 Semi-Standard Deviation and Second Order Lower Partial Moment

IV.1.3.2 Other Lower Partial Moments

IV.1.3.3 Quantile Risk Metrics

IV.1.4 Defining Value at Risk

IV.1.4.1 Confidence Level and Risk Horizon

IV.1.4.2 Discounted P&L

IV.1.4.3 Mathematical Definition of VaR

IV.1.5 Foundations of Value-at-Risk Measurement

IV.1.5.1 Normal Linear VaR Formula: Portfolio Level

IV.1.5.2 Static Portfolios

IV.1.5.3 Scaling VaR

IV.1.5.4 Discounting and the Expected Return

IV.1.6 Risk Factor Value at Risk

IV.1.6.1 Motivation

IV.1.6.2 Normal Linear Equity VaR

IV.1.6.3 Normal Linear Interest Rate VaR

IV.1.7 Decomposition of Value at Risk

IV.1.7.1 Systematic and Specific VaR

IV.1.7.2 Stand-alone VaR

IV.1.7.3 Marginal and Incremental VaR

IV.1.8 Risk Metrics Associated with Value at Risk

IV.1.8.1 Benchmark VaR

IV.1.8.2 Conditional VaR: Expected Tail Loss and Expected Shortfall

IV.1.8.3 Coherent Risk Metrics

IV.1.9 Introduction to Value-at-Risk Models

IV.1.9.1 Normal Linear VaR

IV.1.9.2 Historical Simulation

IV.1.9.3 Monte Carlo Simulation

IV.1.9.4 Case Study: VaR of the S&P 500 Index

IV.1.10 Summary and Conclusions

IV.2 Parametric Linear VaR Models

IV.2.1 Introduction

IV.2.2 Foundations of Normal Linear Value at Risk

IV.2.2.1 Understanding the Normal Linear VaR Formula

IV.2.2.2 Analytic Formula for Normal VaR when Returns are Autocorrelated

IV.2.2.3 Systematic Normal Linear VaR

IV.2.2.4 Stand-Alone Normal Linear VaR

IV.2.2.5 Marginal and Incremental Normal Linear VaR

IV.2.3 Normal Linear Value at Risk for Cash-Flow Maps

IV.2.3.1 Normal Linear Interest Rate VaR

IV.2.3.2 Calculating PV01

IV.2.3.3 Approximating Marginal and Incremental VaR

IV.2.3.4 Disaggregating Normal Linear Interest Rate VaR

IV.2.3.5 Normal Linear Credit Spread VaR

IV.2.4 Case Study: PC Value at Risk of a UK Fixed Income Portfolio

IV.2.4.1 Calculating the Volatility and VaR of the Portfolio

IV.2.4.2 Combining Cash-Flow Mapping with PCA

IV.2.4.3 Advantages of Using PC Factors for Interest Rate VaR

IV.2.5 Normal Linear Value at Risk for Stock Portfolios

IV.2.5.1 Cash Positions on a Few Stocks

IV.2.5.2 Systematic and Specific VaR for Domestic Stock Portfolios

IV.2.5.3 Empirical Estimation of Specific VaR

IV.2.5.4 EWMA Estimates of Specific VaR

IV.2.6 Systematic Value-at-Risk Decomposition for Stock Portfolios

IV.2.6.1 Portfolios Exposed to One Foreign Currency

IV.2.6.2 Portfolios Exposed to Several Foreign Currencies

IV.2.6.3 Interest Rate VaR of Equity Portfolios

IV.2.6.4 Hedging the Risks of International Equity Portfolios

IV.2.7 Case Study: Normal Linear Value at Risk for Commodity Futures

IV.2.8 Student t Distributed Linear Value at Risk

IV.2.8.1 Effect of Leptokurtosis and Skewness on VaR

IV.2.8.2 Student t Linear VaR Formula

IV.2.8.3 Empirical Examples of Student t Linear VaR

IV.2.9 Linear Value at Risk with Mixture Distributions

IV.2.9.1 Mixture Distributions

IV.2.9.2 Mixture Linear VaR Formula

IV.2.9.3 Mixture Parameter Estimation

IV.2.9.4 Examples of Mixture Linear VaR

IV.2.9.5 Normal Mixture Risk Factor VaR

IV.2.10 Exponential Weighting with Parametric Linear Value at Risk

IV.2.10.1 Exponentially Weighted Moving Averages

IV.2.10.2 EWMA VaR at the Portfolio Level

IV.2.10.3 RiskMetrics VaR Methodology

IV.2.11 Expected Tail Loss (Conditional VaR)

IV.2.11.1 ETL in the Normal Linear VaR Model

IV.2.11.2 ETL in the Student t Linear VaR Model

IV.2.11.3 ETL in the Normal Mixture Linear VaR Model

IV.2.11.4 ETL under a Mixture of Student t Distributions

IV.2.12 Case Study: Credit Spread Parametric Linear Value at Risk and ETL

IV.2.12.1 The iTraxx Europe Index

IV.2.12.2 VaR Estimates

IV.2.13 Summary and Conclusions

IV.3 Historical Simulation

IV.3.1 Introduction

IV.3.2 Properties of Historical Value at Risk

IV.3.2.1 Definition of Historical VaR

IV.3.2.2 Sample Size and Data Frequency

IV.3.2.3 Power Law Scale Exponents

IV.3.2.4 Case Study: Scale Exponents for Major Risk Factors

IV.3.2.5 Scaling Historical VaR for Linear Portfolios

IV.3.2.6 Errors from Square-Root Scaling of Historical VaR

IV.3.2.7 Overlapping Data and Multi-Step Historical Simulation

IV.3.3 Improving the Accuracy of Historical Value at Risk

IV.3.3.1 Case Study: Equally Weighted Historical and Linear VaR

IV.3.3.2 Exponential Weighting of Return Distributions

IV.3.3.3 Volatility Adjustment

IV.3.3.4 Filtered Historical Simulation

IV.3.4 Precision of Historical Value at Risk at Extreme Quantiles

IV.3.4.1 Kernel Fitting

IV.3.4.2 Extreme Value Distributions

IV.3.4.3 Cornish–Fisher Approximation

IV.3.4.4 Johnson Distributions

IV.3.5 Historical Value at Risk for Linear Portfolios

IV.3.5.1 Historical VaR for Cash Flows

IV.3.5.2 Total, Systematic and Specific VaR of a Stock Portfolio

IV.3.5.3 Equity and Forex VaR of an International Stock Portfolio

IV.3.5.4 Interest Rate and Forex VaR of an International Bond Position

IV.3.5.5 Case Study: Historical VaR for a Crack Spread Trader

IV.3.6 Estimating Expected Tail Loss in the Historical Value-at-Risk Model

IV.3.6.1 Parametric Historical ETL

IV.3.6.2 Empirical Results on Historical ETL

IV.3.6.3 Disaggregation of Historical ETL

IV.3.7 Summary and Conclusions

IV.4 Monte Carlo VaR

IV.4.1 Introduction

IV.4.2 Basic Concepts

IV.4.2.1 Pseudo-Random Number Generation

IV.4.2.2 Low Discrepancy Sequences

IV.4.2.3 Variance Reduction

IV.4.2.4 Sampling from Univariate Distributions

IV.4.2.5 Sampling from Multivariate Distributions

IV.4.2.6 Introduction to Monte Carlo VaR

IV.4.3 Modelling Dynamic Properties in Risk Factor Returns

IV.4.3.1 Multi-Step Monte Carlo

IV.4.3.2 Volatility Clustering and Mean Reversion

IV.4.3.3 Regime Switching Models

IV.4.4 Modelling Risk Factor Dependence

IV.4.4.1 Multivariate Distributions for i.i.d. Returns

IV.4.4.2 Principal Component Analysis

IV.4.4.3 Behavioural Models

IV.4.4.4 Case Study: Modelling the Price – Volatility Relationship

IV.4.5 Monte Carlo Value at Risk for Linear Portfolios

IV.4.5.1 Algorithms for VaR and ETL

IV.4.5.2 Cash-Flow Portfolios: Copula VaR and PC VaR

IV.4.5.3 Equity Portfolios: ‘Crash’ Scenario VaR

IV.4.5.4 Currency Portfolios: VaR with Volatility Clustering

IV.4.6 Summary and Conclusions

IV.5 Value at Risk for Option Portfolios

IV.5.1 Introduction

IV.5.2 Risk Characteristics of Option Portfolios

IV.5.2.1 Gamma Effects

IV.5.2.2 Delta and Vega Effects

IV.5.2.3 Theta and Rho Effects

IV.5.2.4 Static and Dynamic VaR Estimates

IV.5.3 Analytic Value-at-Risk Approximations

IV.5.3.1 Delta Approximation and Delta–Normal VaR

IV.5.3.2 P&L Distributions for Option Portfolios

IV.5.3.3 Delta–Gamma VaR

IV.5.4 Historical Value at Risk for Option Portfolios

IV.5.4.1 VaR and ETL with Exact Revaluation

IV.5.4.2 Dynamically Hedged Option Portfolios

IV.5.4.3 Greeks Approximation

IV.5.4.4 Historical VaR for Path-Dependent Options

IV.5.4.5 Case Study: Historical VaR for an Energy Options Trading Book

IV.5.5 Monte Carlo Value at Risk for Option Portfolios

IV.5.5.1 Monte Carlo VaR and ETL with Exact Revaluation

IV.5.5.2 Risk Factor Models for Simulating Options VaR

IV.5.5.3 Capturing Non-normality and Non-linearity

IV.5.5.4 Capturing Gamma, Vega and Theta Effects

IV.5.5.5 Path Dependency

IV.5.5.6 Option Portfolios with a Single Underlying

IV.5.5.7 Option Portfolios with Several Underlyings

IV.5.5.8 Case Study: Monte Carlo VaR for an Energy Options Trading Book

IV.5.6 Summary and Conclusions

IV.6 Risk Model Risk

IV.6.1 Introduction

IV.6.2 Sources of Risk Model Risk

IV.6.2.1 Risk Factor Mapping

IV.6.2.2 Risk Factor or Asset Returns Model

IV.6.2.3 VaR Resolution Method

IV.6.2.4 Scaling

IV.6.3 Estimation Risk

IV.6.3.1 Distribution of VaR Estimators in Parametric Linear Models

IV.6.3.2 Distribution of VaR Estimators in Simulation Models

IV.6.4 Model Validation

IV.6.4.1 Backtesting Methodology

IV.6.4.2 Guidelines for Backtesting from Banking Regulators

IV.6.4.3 Coverage Tests

IV.6.4.4 Backtests Based on Regression

IV.6.4.5 Backtesting ETL Forecasts

IV.6.4.6 Bias Statistics for Normal Linear VaR

IV.6.4.7 Distribution Forecasts

IV.6.4.8 Some Backtesting Results

IV.6.5 Summary and Conclusions

IV.7 Scenario Analysis and Stress Testing

IV.7.1 Introduction

IV.7.2 Scenarios on Financial Risk Factors

IV.7.2.1 Broad Categorization of Scenarios

IV.7.2.2 Historical Scenarios

IV.7.2.3 Hypothetical Scenarios

IV.7.2.4 Distribution Scenario Design

IV.7.3 Scenario Value at Risk and Expected Tail Loss

IV.7.3.1 Normal Distribution Scenarios

IV.7.3.2 Compound Distribution Scenario VaR

IV.7.3.3 Bayesian VaR

IV.7.4 Introduction to Stress Testing

IV.7.4.1 Regulatory Guidelines

IV.7.4.2 Systemic Risk

IV.7.4.3 Stress Tests Based on Worst Case Loss

IV.7.5 A Coherent Framework for Stress Testing

IV.7.5.1 VaR Based on Stressed Covariance Matrices

IV.7.5.2 Generating Hypothetical Covariance Matrices

IV.7.5.3 Stress Tests Based on Principal Component Analysis

IV.7.5.4 Modelling Liquidity Risk

IV.7.5.5 Incorporating Volatility Clustering

IV.7.6 Summary and Conclusions

IV.8 Capital Allocation

IV.8.1 Introduction

IV.8.2 Minimum Market Risk Capital Requirements for Banks

IV.8.2.1 Basel Accords

IV.8.2.2 Banking and Trading Book Accounting

IV.8.2.3 Regulatory Framework for Market Risk

IV.8.2.4 Internal Models

IV.8.2.5 Standardized Rules

IV.8.2.6 Incremental Risk Charge

IV.8.3 Economic Capital Allocation

IV.8.3.1 Measurement of Economic Capital

IV.8.3.2 Banking Applications of Economic Capital

IV.8.3.3 Aggregation Risk

IV.8.3.4 Risk Adjusted Performance Measures

IV.8.3.5 Optimal Allocation of Economic Capital

IV.8.4 Summary and Conclusions

References

Index

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.144.110.253