Contents

List of Figures

List of Tables

Preface

Editors

List of Contributors

List of Acronyms

Notations and Symbols

1    Introduction

2    Signal Processing Transforms

Serhan Yarkan and Khalid A. Qaraqe

2.1      Introduction

2.2      Basic Transformations

2.3      Fourier Series and Transform

2.3.1      Basic Definitions

2.3.2      Fourier Series

2.3.3      Fourier Transform

2.4      Sampling

2.4.1      Impulse-Train Sampling

2.4.2      Aliasing

2.5      Cosine and Sine Transforms

2.5.1      Cosine Transform

2.5.2      Sine Transform

2.6      Laplace Transform

2.6.1      Properties of Laplace Transform

2.7      Hartley Transform

2.7.1      Properties of Hartley Transform

2.8      Hilbert Transform

2.8.1      Properties of Hilbert Transform

2.9      Discrete-Time Fourier Transform

2.10    The Z-Transform

2.10.1    Properties of Z-Transform

2.11    Conclusion and Further Reading

2.12    Exercises

References

3    Linear Algebra

Fatemeh Hamidi Sepehr and Erchin Serpedin

3.1      Vector Spaces

3.1.1      Subspaces and Direct Sums

3.1.2      Spanning and Linear Independency

3.1.3      Bases

3.1.4      Dimension

3.1.5      Ordered Basis

3.1.6      Norms

3.1.7      Inner-Products

3.1.8      Induced Norms

3.1.9      Orthogonality

3.1.10    Gram-Schmidt Orthogonalization

3.2      Linear Transformations

3.2.1      Range and Nullspace of a Linear Transformation

3.2.2      Composition and Invertibility

3.2.3      Matrix Representation of Linear Transformations

3.2.4      Projection Operators

3.2.5      Linear Functionals and Dual Spaces

3.2.6      Adjoint of a Linear Transformation

3.2.7      Four Fundamental Subspaces

3.3      Operator Norms and Matrix Norms

3.4      Systems of Linear Equations

3.5      Determinant, Adjoint, and Inverse of a Matrix

3.6      Cramer’s Rule

3.7      Unitary and Orthogonal Operators and Matrices

3.8      LU Decomposition

3.9      LDL and Cholesky Decomposition

3.10    QR Decomposition

3.11    Householder and Givens Transformations

3.11.1    Orthogonal Reduction

3.12    Best Approximations and Orthogonal Projections

3.13    Least Squares Approximations

3.14    Angles Between Subspaces

3.14.1    Principal Angles Between Subspaces

3.15    Eigenvalues and Eigenvectors

3.15.1    Diagonalization

3.16    Schur Factorization and Spectral Theorem

3.17    Singular Value Decomposition (SVD)

3.18    Rayleigh Quotient

3.19    Application of SVD and Rayleigh Quotient: Principal Component Analysis

3.20    Special Matrices

3.20.1    Block Matrices

3.20.2    Circulant Matrices

3.20.3    Toeplitz Matrices

3.20.4    Hankel Matrices

3.20.5    Vandermonde Matrices

3.20.6    Normal Matrices

3.20.7    Stochastic Matrices

3.20.8    Positive and Negative Definite Matrices

3.20.9    Matrix Condition Number

3.20.10  Sherman-Morrison-Woodbury Identity

3.20.11  Schur Complement

3.20.12  Generalized Inverses

3.21    Matrix Operations

3.21.1    Kronecker Product

3.21.2    Hadamard Product

3.21.3    Dot Product

3.21.4    Direct Sum

3.21.5    Differentiation of Matrix and Vector Functions

3.22    References and Further Studies

3.23    Exercises

References

4    Elements of Galois Fields

Tolga Duman

4.1      Groups, Rings, and Fields

4.1.1      Groups

4.1.2      Rings

4.1.3      Fields

4.2      Galois Fields

4.3      Polynomials with Coefficients in GF(2)

4.4      Construction of GF(2m)

4.4.1      Conjugate Elements

4.4.2      Factorization of the Polynomial Xn + 1

4.5      Some Notes on Applications of Finite Fields

4.6      Exercises

References

5    Numerical Analysis

Vivek Sarin

5.1      Numerical Approximation

5.2      Sensitivity and Conditioning

5.3      Computer Arithmetic

5.4      Interpolation

5.4.1      Polynomial Interpolation

5.4.2      Piecewise Polynomial Interpolation

5.5      Nonlinear Equations

5.5.1      Interval Bisection

5.5.2      Newton’s Method

5.5.3      Secant Method

5.5.4      Muller’s Method

5.5.5      Linear Fractional Interpolation

5.5.6      Zeros of Polynomials

5.6      Eigenvalues and Singular Values

5.6.1      Power Iterations

5.6.2      QR Algorithm

5.6.3      Computing Singular Values

5.7      Further Reading

5.8      Exercises

References

6    Combinatorics

Walter D. Wallis

6.1      Two Principles of Enumeration

6.2      Permutations and Combinations

6.3      The Principle of Inclusion and Exclusion

6.4      Generating Functions

6.5      Recurrence Relations

6.6      Graphs

6.7      Paths and Cycles in Graphs

6.8      Trees

6.9      Encoding and Decoding

6.10    Latin Squares

6.11    Balanced Incomplete Block Designs

6.12    Conclusion

6.13    Exercises

References

7    Probability, Random Variables, and Stochastic Processes

Dinesh Rajan

7.1      Introduction to Probability

7.2      Random Variables

7.2.1      Discrete Random Variables

7.2.2      Continuous Random Variables

7.3      Joint Random Variables

7.3.1      Expected Values, Characteristic Functions

7.3.2      Inequalities

7.3.3      Functions of Multiple Random Variables

7.3.4      Convergence of Random Variables

7.3.5      Law of Large Numbers (LLN) and Central Limit Theorem (CLT)

7.4      Random Processes

7.4.1      Stationary Process

7.4.2      Random Process as the Input to a Linear System

7.5      Markov Process

7.5.1      Markov Chains

7.5.2      Continuous Time Markov Chains

7.5.3      Hidden Markov Model

7.6      Summary and Further Reading

7.7      Exercises

References

8    Random Matrix Theory

Romain Couillet and Merouane Debbah

8.1      Probability Notations

8.2      Spectral Distribution of Random Matrices

8.2.1      Wishart Matrices

8.2.2      Limiting Spectral Distribution

8.3      Spectral Analysis

8.3.1      Exact Eigenvalue Separation

8.3.2      Support of l.s.d.

8.4      Statistical Inference

8.5      Applications

8.5.1      Binary Hypothesis Testing

8.5.2      Parameter Estimation

8.6      Conclusion

8.7      Exercises

References

9    Large Deviations

Hongbin Li

9.1      Introduction

9.2      Concentration Inequalities

9.3      Rate Function

9.4      Cramér’s Theorem

9.5      Method of Types

9.6      Sanov’s Theorem

9.7      Hypothesis Testing

9.8      Further Readings

9.9      Exercises

References

10  Fundamentals of Estimation Theory

Yik-Chung Wu

10.1    Introduction

10.2    Bound on Minimum Variance – Cramér-Rao Lower Bound

10.2.1    Computation of CRLB

10.2.2    Finding MVUE Attaining the CRLB

10.3    MVUE Using RBLS Theorem

10.3.1    Sufficient Statistics

10.3.2    Finding MVUE from Sufficient Statistics

10.4    Maximum Likelihood Estimation

10.4.1    ML Estimation Principle

10.4.2    Properties of the ML Estimator

10.5    Least Squares Estimation

10.5.1    Geometrical Interpretation

10.5.2    Recursive LS Estimation

10.5.3    Weighted LS and Iterative Reweighted LS

10.5.4    Constrained LS Estimation

10.6    Regularized LS Estimation

10.6.1    2 Regularization

10.6.2    LS Estimation with Quadratic Constraint

10.6.3    1 Regularization

10.7    Bayesian Estimation

10.7.1    Minimum Mean Square Error Estimation

10.7.2    General Bayesian Estimator

10.7.3    Handling Nuisance Parameters

10.8    References and Further Reading

10.9    Exercises

References

11  Fundamentals of Detection Theory

Venugopal V. Veeravalli

11.1    Introduction

11.1.1    Statistical Decision Theory Framework

11.1.2    Probabilistic Structure for Observation Space

11.1.3    Conditional Density and Conditional Risk

11.1.4    Bayesian Approach

11.1.5    Minimax Approach

11.1.6    Randomized Decision Rules

11.1.7    General Method for Finding Bayes Rules

11.2    Bayesian Binary Detection

11.2.1    Likelihood Ratio Test

11.2.2    Uniform Costs

11.2.3    Examples

11.3    Binary Minimax Detection

11.3.1    Bayes Risk Line and Minimum Risk Curve

11.3.2    Equalizer Rule

11.3.3    Examples

11.4    Binary Neyman-Pearson Detection

11.4.1    Solution to the N-P Optimization Problem

11.4.2    N-P Rule and Receiver Operating Characteristic

11.4.3    Examples

11.5    Bayesian Composite Detection

11.6    Neyman-Pearson Composite Detection

11.6.1    UMP Detection with One Composite Hypothesis

11.6.2    UMP Detection with Both Composite Hypotheses

11.6.3    Generalized Likelihood Ratio (GLR) Detection

11.6.4    Locally Most Powerful (LMP) Detection

11.7    Binary Detection with Vector Observations

11.7.1    Conditionally Independent Observations

11.7.2    Deterministic Signals in Correlated Gaussian Noise

11.7.3    Gaussian Signals in Gaussian Noise

11.8    Summary and Further Reading

11.9    Exercises

References

12  Monte Carlo Methods for Statistical Signal Processing

Xiaodong Wang

12.1    Introduction

12.1.1    Model-Based Signal Processing

12.1.2    Examples

12.2    Monte Carlo Methods

12.3    Markov Chain Monte Carlo (MCMC) Methods

12.3.1    General MCMC Algorithms

12.3.2    Applications of MCMC in Digital Communications

12.4    Sequential Monte Carlo (SMC) Methods

12.4.1    General SMC Algorithms

12.4.2    Resampling Procedures

12.4.3    Applications of SMC in Bioinformatics

12.5    Conclusions and Further Readings

12.6    Exercises

References

13  Factor Graphs and Message Passing Algorithms

Aitzaz Ahmad, Erchin Serpedin, and Khalid A. Qaraqe

13.1    Introduction

13.1.1    Why Factor Graphs?

13.1.2    Literature Survey

13.1.3    Organization of the Chapter

13.2    Factor Graphs

13.3    Modeling Systems Using Factor Graphs

13.3.1    Behavioral Modeling

13.3.2    Probabilistic Modeling

13.4    Relationship with Other Probabilistic Graphical Models

13.4.1    Markov Random Fields

13.4.2    Bayesian Networks

13.5    Message Passing in Factor Graphs

13.5.1    Sum-Product Algorithm

13.5.2    Max-Product Algorithm

13.6    Factor Graphs with Cycles

13.6.1    Message Passing Schedules

13.6.2    Iterative Message Passing

13.7    Some General Remarks on Factor Graphs

13.7.1    Mappers

13.7.2    Hybrid Equality Constraint

13.7.3    Quantizers

13.7.4    Continuous Variables

13.8    Some Important Message Passing Algorithms

13.8.1    Forward/Backward Algorithm

13.8.2    The Viterbi Algorithm

13.8.3    Kalman Filter

13.8.4    Expectation Maximization (EM) Algorithm

13.9    Applications of Message Passing in Factor Graphs

13.9.1    Detection of OFDM Signals in the Presence of Carrier Frequency Offset and Phase Noise

13.10  Exercises

References

14  Unconstrained and Constrained Optimization Problems

Shuguang Cui, Anthony Man-Cho So, and Rui Zhang

14.1    Basics of Convex Analysis

14.2    Unconstrained vs. Constrained Optimization

14.2.1    Optimality Conditions for Unconstrained Optimization

14.2.2    Optimality Conditions for Constrained Optimization

14.2.3    Lagrangian Duality

14.3    Application Examples

14.4    Exercises

References

15  Linear Programming and Mixed Integer Programming

Bogdan Dumitrescu

15.1    Linear Programming

15.1.1    General Presentation

15.1.2    Transformations of the Standard Problem

15.1.3    Optimality Characterization

15.1.4    Duality Aspects

15.1.5    The Simplex Method

15.1.6    Interior-Point Methods

15.2    Modeling Problems via Linear Programming

15.2.1    Optimization with 1-norm and ∞-norm

15.2.2    Chebyshev Center of a Polytope

15.2.3    Classification with Separating Hyperplanes

15.2.4    Linear Fractional Programming

15.2.5    Continuous Constraints and Discretization

15.3    Mixed Integer Programming

15.3.1    Problem Statement and LP Relaxation

15.3.2    Branch and Bound

15.3.3    Examples of Mixed Integer Problems

15.4    Historical Notes and Further Reading

15.5    Exercises

References

16  Majorization Theory and Applications

Jiaheng Wang and Daniel Palomar

16.1    Majorization Theory

16.1.1    Basic Concepts

16.1.2    Schur-Convex/Concave Functions

16.1.3    Relation to Matrix Theory

16.1.4    Multiplicative Majorization

16.1.5    Stochastic Majorization

16.2    Applications of Majorization Theory

16.2.1    CDMA Sequence Design

16.2.2    Linear MIMO Transceiver Design

16.2.3    Nonlinear MIMO Transceiver Design

16.2.4    Impact of Correlation

16.2.5    Robust Design

16.3    Conclusions and Further Readings

16.4    Exercises

References

17  Queueing Theory

Thomas Chen

17.1    Introduction

17.2    Markov Chains

17.2.1    Discrete-Time Markov Chains

17.2.2    Continuous-Time Markov Chains

17.3    Queueing Models

17.4    M/M/1 Queue

17.4.1    Steady-State Probabilities for Number in System

17.4.2    Little’s Formula

17.4.3    Probability Distribution of Delay Through System

17.5    M/M/1/N Queue

17.5.1    Example: Queueing Model of a Packet Switch

17.6    M/M/N/N Queue

17.7    M/M/1 Queues in Tandem

17.7.1    Product Form

17.7.2    Jackson Networks

17.8    M/G/1 Queue

17.8.1    Embedded Markov Chain

17.8.2    Mean Number in System

17.8.3    Distribution of Number in System

17.8.4    Mean Delay Through System

17.8.5    Distribution of Delay Through System

17.8.6    Example: Mixed Packets

17.8.7    Example: Data Frame Retransmissions

17.9    Conclusions

17.10  Exercises

References

18  Network Optimization Techniques

Michał Pióro

18.1    Introduction

18.2    Basic Multicommodity Flow Networks Optimization Models

18.2.1    Notions and Notations

18.2.2    Link-Path vs. Node-Link Formulation Applied to Allocation Problems

18.2.3    Dimensioning Problems

18.3    Optimization Methods for Multicommodity Flow Networks

18.3.1    Decomposition Methods

18.3.2    Solving MIP Problems

18.3.3    Heuristic Approaches

18.4    Optimization Models for Multistate Networks

18.4.1    Protection Models

18.4.2    Restoration Models

18.4.3    Multihour and Multiperiod Design

18.5    Concluding Remarks

18.6    Exercises

References

19  Game Theory

Erik G. Larsson and Eduard Jorswieck

19.1    Introduction

19.2    Utility Theory

19.3    Games on the Normal Form

19.3.1    Zero-Sum Games

19.3.2    Non-Zero-Sum Games

19.4    Noncooperative Games and the Nash Equilibrium

19.5    Cooperative Games

19.5.1    Bargaining without Transferable Utilities

19.5.2    Bargaining with Transferable Utilities

19.6    Games with Incomplete Information

19.7    Extensive Form Games

19.7.1    Nash Equilibrium in Extensive Form Games

19.7.2    Subgame-Perfect Equilibrium

19.7.3    Incomplete Information in Extensive Form Games

19.8    Repeated Games and Evolutionary Stability

19.8.1    Repeated Games

19.8.2    Evolutionary Game Theory

19.9    Coalitional Form/Characteristic Function Form

19.9.1    The Core

19.9.2    The Kernel

19.9.3    The Nucleolus

19.9.4    The Shapley Value

19.10  Mechanism Design and Implementation Theory

19.10.1  Social Choice

19.10.2  Auctions

19.10.3  Direct Revelation Principle

19.10.4  Clarke-Groves and AGV-Arrow Mechanism

19.11  Applications to Signal Processing and Communications

19.12  Acknowledgments

19.13  Exercises

References

20  A Short Course on Frame Theory

Veniamin I. Morgenshtern and Helmut Bölcskei

20.1    Examples of Signal Expansions

20.2    Signal Expansions in Finite-Dimensional Spaces

20.2.1    Orthonormal Bases

20.2.2    General Bases

20.2.3    Redundant Signal Expansions

20.3    Frames for General Hilbert Spaces

20.3.1    The Frame Operator

20.3.2    The Canonical Dual Frame

20.3.3    Signal Expansions

20.3.4    Tight Frames

20.3.5    Exact Frames and Biorthonormality

20.4    The Sampling Theorem

20.4.1    Sampling Theorem as a Frame Expansion

20.4.2    Design Freedom in Oversampled A/D Conversion

20.4.3    Noise Reduction in Oversampled A/D Conversion

20.5    Important Classes of Frames

20.5.1    Weyl-Heisenberg Frames

20.5.2    Wavelets

20.6    Exercises

References

Index

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.117.227.194