Bibliography

[ACDR04] Pedro Alonso, Raquel Cortina, Irene Díaz, and José Ranilla. Neville elimination: a study of the efficiency using checkerboard partitioning. Linear Algebra Appl., 393:3–14, 2004.
[ACHR01] Pedro Alonso, Raquel Cortina, Vicente Hernández, and Jose Ranilla. A study of the performance of Neville elimination using two kinds of partitioning techniques. In Proceedings of the Eighth Conference of the International Linear Algebra Society (Barcelona, 1999), volume 332/334, pages 111–117, 2001.
[AESW51] Michael Aissen, Albert Edrei, Isaac J. Schoenberg, and Anne Whitney. On the generating functions of totally positive sequences. Proc. Nat. Acad. Sci. USA, 37:303–307, 1951.
[AGP97] Pedro Alonso, Mariano Gasca, and Juan M. Peña. Backward error analysis of Neville elimination. Appl. Numer. Math., 23(2):193–204, 1997.
[AKSM04] Victor Ayala, Wolfgang Kliemann, and Luiz A. B. San Martin. Control sets and total positivity. Semigroup Forum, 69(1):113–140, 2004.
[And87] Tsuyoshi Ando. Totally positive matrices. Linear Algebra Appl., 90:165–219, 1987.
[AP99] Pedro Alonso and Juan Manuel Peña. Development of block and partitioned Neville elimination. C. R. Acad. Sci. Paris Sér. I Math., 329(12):1091–1096, 1999.
[Asn70] Bernard A. Asner, Jr. On the total nonnegativity of the Hurwitz matrix. SIAM J. Appl. Math., 18:407–414, 1970.
[ASW52] Michael Aissen, Isaac J. Schoenberg, and Anne M. Whitney. On the generating functions of totally positive sequences. I. J. Analyse Math., 2:93–103, 1952.
[AT01] Lidia Aceto and Donato Trigiante. The matrices of Pascal and other greats. Amer. Math. Monthly, 108(3):232–245, 2001.
[BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic Geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1998. Translated from the 1987 French original, revised by the authors.
[BF08] Adam Boocher and Bradley Froehle. On generators of bounded ratios of minors for totally positive matrices. Linear Algebra Appl., 428(7):1664–1684, 2008.
[BFZ96] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky. Parametrizations of canonical bases and totally positive matrices. Adv. Math., 122(1):49–149, 1996.
[BG84] Stanislaw Bialas and Jürgen Garloff. Intervals of P-matrices and related matrices. Linear Algebra Appl., 58:33–41, 1984.
[BHJ85] Abraham Berman, Daniel Hershkowitz, and Charles R. Johnson. Linear transformations that preserve certain positivity classes of matrices. Linear Algebra Appl., 68:9–29, 1985.
[BJ84] Wayne W. Barrett and Charles R. Johnson. Possible spectra of totally positive matrices. Linear Algebra Appl., 62:231–233, 1984.
[BJM81] Lawrence D. Brown, Iain M. Johnstone, and K. Brenda MacGibbon. Variation diminishing transformations: a direct approach to total positivity and its statistical applications. J. Amer. Statist. Assoc., 76(376):824–832, 1981.
[BP75] Richard E. Barlow and Frank Proschan. Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York, 1975. Probability models, International Series in Decision Processes, Series in Quantitative Methods for Decision Making.
[BR05] Arkady Berenstein and Vladimir Retakh. Noncommutative double Bruhat cells and their factorizations. Int. Math. Res. Not., (8):477–516, 2005.
[Bre95] Francesco Brenti. Combinatorics and total positivity. J. Combin. Theory Ser. A, 71(2):175–218, 1995.
[Bre00] Claude Brezinski, editor. Numerical Analysis 2000. Vol. II: Interpolation and extrapolation, volume 122. Elsevier Science B.V., Amsterdam, 2000.
[BZ97] Arkady Berenstein and Andrei Zelevinsky. Total positivity in Schubert varieties. Comment. Math. Helv., 72(1):128–166, 1997.
[Car67] David Carlson. Weakly sign-symmetric matrices and some determinantal inequalities. Colloq. Math., 17:123–129, 1967.
[CC98] Thomas Craven and George Csordas. A sufficient condition for strict total positivity of a matrix. Linear and Multilinear Algebra, 45(1):19–34, 1998.
[CFJ01] Alissa S. Crans, Shaun M. Fallat, and Charles R. Johnson. The Hadamard core of the totally nonnegative matrices. Linear Algebra Appl., 328(1–3):203–222, 2001.
[CFL02] Wai-Shun Cheung, Shaun Fallat, and Chi-Kwong Li. Multiplicative preservers on semigroups of matrices. Linear Algebra Appl., 355:173–186, 2002.
[CGP95] Jésus M. Carnicer, Tim N. T. Goodman, and Juan M. Peña. A generalization of the variation diminishing property. Adv. Comput. Math., 3(4):375–394, 1995.
[CGP99] Jésus M. Carnicer, Tim N. T. Goodman, and Juan M. Peña. Linear conditions for positive determinants. Linear Algebra Appl., 292(1–3):39–59, 1999.
[Cho05] Inheung Chon. Strictly infinitesimally generated totally positive matrices. Commun. Korean Math. Soc., 20(3):443–456, 2005.
[CP94a] Jésus M. Carnicer and Juan M. Peña. Spaces with almost strictly totally positive bases. Math. Nachr., 169:69–79, 1994.
[CP94b] Jésus M. Carnicer and Juan M. Peña. Totally positive bases for shape preserving curve design and optimality of B-splines. Comput. Aided Geom. Design, 11(6):633–654, 1994.
[CP97] Jésus M. Carnicer and Juan M. Peña. Bidiagonalization of oscillatory matrices. Linear and Multilinear Algebra, 42(4):365–376, 1997.
[CP08] Vanesa Cortés and Juan M. Peña. A stable test for strict sign regularity. Math. Comp., 77(264):2155–2171, 2008.
[CPZ98] Jésus M. Carnicer, Juan M. Peña, and Richard A. Zalik. Strictly totally positive systems. J. Approx. Theory, 92(3):411–441, 1998.
[Cry73] Colin W. Cryer. The LU -factorization of totally positive matrices. Linear Algebra Appl., 7:83–92, 1973.
[Cry76] Colin W. Cryer. Some properties of totally positive matrices. Linear Algebra Appl., 15(1):1–25, 1976.
[dB76] Carl de Boor. Total positivity of the spline collocation matrix. Indiana Univ. Math. J., 25(6):541–551, 1976.
[dB82] Carl de Boor. The inverse of a totally positive bi-infinite band matrix. Trans. Amer. Math. Soc., 274(1):45–58, 1982.
[dBD85] Carl de Boor and Ronald DeVore. A geometric proof of total positivity for spline interpolation. Math. Comp., 45(172):497–504, 1985.
[dBJP82] Carl de Boor, Rong Qing Jia, and Allan Pinkus. Structure of invertible (bi)infinite totally positive matrices. Linear Algebra Appl., 47:41–55, 1982.
[dBP82] Carl de Boor and Allan Pinkus. The approximation of a totally positive band matrix by a strictly banded totally positive one. Linear Algebra Appl., 42:81–98, 1982.
[Dem82] Stephen Demko. Surjectivity and invertibility properties of totally positive matrices. Linear Algebra Appl., 45:13–20, 1982.
[DJ97] Emily B. Dryden and Charles R. Johnson. Totally nonnegative completions. An unpublished paper from a National Science Foundation Research Experiences for Undergraduates program held at the College of William and Mary in the summer of 1997, 1997.
[DJK08] Emily B. Dryden, Charles R. Johnson, and Brenda K. Korschel. Adjacent edge conditions for the totally nonnegative completion problem. Linear Multilinear Algebra, 56(3):261–277, 2008.
[DK01] James Demmel and Plamen Koev. Necessary and sufficient conditions for accurate and efficient rational function evaluation and factorizations of rational matrices. In Structured matrices in mathematics, computer science, and engineering, II (Boulder, CO, 1999), volume 281 of Contemp. Math., pages 117–143. Amer. Math. Soc., Providence, RI, 2001.
[DK05] James Demmel and Plamen Koev. The accurate and efficient solution of a totally positive generalized Vandermonde linear system. SIAM J. Matrix Anal. Appl., 27(1):142–152 (electronic), 2005.
[DK08] Froilán M. Dopico and Plamen Koev. Bidiagonal decompositions of oscillating systems of vectors. Linear Algebra Appl., 428(11-12):2536–2548, 2008.
[DM88] Nira Dyn and Charles A. Micchelli. Piecewise polynomial spaces and geometric continuity of curves. Numer. Math., 54(3):319–337, 1988.
[DMS86] Wolfgang Dahmen, Charles A. Micchelli, and Philip W. Smith. On factorization of bi-infinite totally positive block Toeplitz matrices. Rocky Mountain J. Math., 16(2):335–364, 1986.
[DP05] Dimitar K. Dimitrov and Juan Manuel Peña. Almost strict total positivity and a class of Hurwitz polynomials. J. Approx. Theory, 132(2):212–223, 2005.
[Edr52] Albert Edrei. On the generating functions of totally positive sequences. II. J. Analyse Math., 2:104–109, 1952.
[Edr53a] Albert Edrei. On the generation function of a doubly infinite, totally positive sequence. Trans. Amer. Math. Soc., 74:367–383, 1953.
[Edr53b] Albert Edrei. Proof of a conjecture of Schoenberg on the generating function of a totally positive sequence. Canadian J. Math., 5:86–94, 1953.
[eGJT08] Ramadán el Ghamry, Cristina Jordán, and Juan R. Torregrosa. Double-path in the totally nonnegative completion problem. Int. Math. Forum, 3(33-36):1683–1692, 2008.
[EP02] Uri Elias and Allan Pinkus. Nonlinear eigenvalue-eigenvector problems for STP matrices. Proc. Roy. Soc. Edinburgh Sect. A, 132(6):1307–1331, 2002.
[Eve96] Simon P. Eveson. The eigenvalue distribution of oscillatory and strictly sign-regular matrices. Linear Algebra Appl., 246:17–21, 1996.
[Fal99] Shaun M. Fallat. Totally nonnegative matrices. PhD thesis, College of William and Mary, 1999.
[Fal01] Shaun M. Fallat. Bidiagonal factorizations of totally nonnegative matrices. Amer. Math. Monthly, 108(8):697–712, 2001.
[Fek13] Michael Fekete. Uber ein problem von Laguerre. Rend. Conti. Palermo, 34:110–120, 1913.
[FFM03] Shaun M. Fallat, Miroslav Fiedler, and Thomas L. Markham. Generalized oscillatory matrices. Linear Algebra Appl., 359:79–90, 2003.
[FG05] Shaun M. Fallat and Michael I. Gekhtman. Jordan structures of totally nonnegative matrices. Canad. J. Math., 57(1):82–98, 2005.
[FGG98] Shaun M. Fallat, Michael I. Gekhtman, and Carolyn Goldbeck. Ratios of principal minors of totally nonnegative matrices. An unpublished paper from a National Science Foundation Research Experiences for Undergraduates program held at the College of William and Mary in the summer of 1998, 1998.
[FGJ00] Shaun M. Fallat, Michael I. Gekhtman, and Charles R. Johnson. Spectral structures of irreducible totally nonnegative matrices. SIAM J. Matrix Anal. Appl., 22(2):627–645 (electronic), 2000.
[FGJ03] Shaun M. Fallat, Michael I. Gekhtman, and Charles R. Johnson. Multiplicative principal-minor inequalities for totally nonnegative matrices. Adv. in Appl. Math., 30(3):442–470, 2003.
[FHGJ06] Shaun M. Fallat, Allen Herman, Michael I. Gekhtman, and Charles R. Johnson. Compressions of totally positive matrices. SIAM J. Matrix Anal. Appl., 28(1):68–80 (electronic), 2006.
[FHJ98] Shaun M. Fallat, H. Tracy Hall, and Charles R. Johnson. Characterization of product inequalities for principal minors of M-matrices and inverse M-matrices. Quart. J. Math. Oxford Ser. (2), 49(196):451–458, 1998.
[FJ99] Shaun M. Fallat and Charles R. Johnson. Sub-direct sums and positivity classes of matrices. Linear Algebra Appl., 288(1–3):149–173, 1999.
[FJ00] Shaun M. Fallat and Charles R. Johnson. Determinantal inequalities: ancient history and recent advances. In Algebra and its Applications (Athens, OH, 1999), volume 259 of Contemp. Math., pages 199–212. Amer. Math. Soc., Providence, RI, 2000.
[FJ01] Shaun M. Fallat and Charles R. Johnson. Multiplicative principal-minor inequalities for tridiagonal sign-symmetric P-matrices. Taiwanese J. Math., 5(3):655–665, 2001.
[FJ07a] Shaun M. Fallat and Charles R. Johnson. Hadamard duals, retractability and Oppenheim’s inequality. Oper. Matrices, 1(3):369–383, 2007.
[FJ07b] Shaun M. Fallat and Charles R. Johnson. Hadamard powers and totally positive matrices. Linear Algebra Appl., 423(2-3):420–427, 2007.
[FJM00] Shaun M. Fallat, Charles R. Johnson, and Thomas L. Markham. Eigenvalues of products of matrices and submatrices in certain positivity classes. Linear and Multilinear Algebra, 47(3):235–248, 2000.
[FJS00] Shaun M. Fallat, Charles R. Johnson, and Ronald L. Smith. The general totally positive matrix completion problem with few unspecified entries. Electron. J. Linear Algebra, 7:1–20 (electronic), 2000.
[FK75] Shmual Friedland and Samuel Karlin. Some inequalities for the spectral radius of non-negative matrices and applications. Duke Math. J., 42(3):459–490, 1975.
[FK00] Shaun M. Fallat and Nathan Krislock. General determinantal inequalities for totally positive matrices. An unpublished paper from an NSERC Undergraduate Summer Research Award held at the University of Regina in the summer of 2000, 2000.
[FL07a] Shaun Fallat and Xiao Ping Liu. A class of oscillatory matrices with exponent n — 1. Linear Algebra Appl., 424(2-3):466–479, 2007.
[FL07b] Shaun Fallat and Xiao Ping Liu. A new type of factorization of oscillatory matrices. Int. J. Pure Appl. Math., 37(2):271–296, 2007.
[Flo99] Michael S. Floater. Total positivity and convexity preservation. J. Approx. Theory, 96(1):46–66, 1999.
[FM97] Miroslav Fiedler and Thomas L. Markham. Consecutive-column and -row properties of matrices and the Loewner-Neville factorization. Linear Algebra Appl., 266:243–259, 1997.
[FM00a] Miroslav Fiedler and Thomas L. Markham. A factorization of totally nonsingular matrices over a ring with identity. Linear Algebra Appl., 304(1-3):161–171, 2000.
[FM00b] Miroslav Fiedler and Thomas L. Markham. Generalized totally positive matrices. Linear Algebra Appl., 306(1-3):87–102, 2000.
[FM02] Miroslav Fiedler and Thomas L. Markham. Generalized totally nonnegative matrices. Linear Algebra Appl., 345:9–28, 2002.
[FM04] Miroslav Fiedler and Thomas L. Markham. Two results on basic oscillatory matrices. Linear Algebra Appl., 389:175–181, 2004.
[FN01] Shaun M. Fallat and Michael Neumann. On Perron complements of totally nonnegative matrices. Linear Algebra Appl., 327(1-3):85–94, 2001.
[Fom01] Sergey Fomin. Loop-erased walks and total positivity. Trans. Amer. Math. Soc., 353(9):3563–3583 (electronic), 2001.
[Fri85] Shmuel Friedland. Weak interlacing properties of totally positive matrices. Linear Algebra Appl., 71:95–100, 1985.
[FT02] Shaun M. Fallat and Michael J. Tsatsomeros. On the Cayley transform of positivity classes of matrices. Electron. J. Linear Algebra, 9:190–196 (electronic), 2002.
[FvdD00] Shaun M. Fallat and Pauline van den Driessche. On matrices with all minors negative. Electron. J. Linear Algebra, 7:92–99 (electronic), 2000.
[FW07] Shaun M. Fallat and Hugo J. Woerdeman. Refinements on the interlacing of eigenvalues of certain totally nonnegative matrices. Oper. Matrices, 1(2):271–281, 2007.
[FZ99] Sergey Fomin and Andrei Zelevinsky. Double Bruhat cells and total positivity. J. Amer. Math. Soc., 12(2):335–380, 1999.
[FZ00a] Sergey Fomin and Andrei Zelevinsky. Total positivity: tests and parametrizations. Math. Intelligencer, 22(1):23–33, 2000.
[FZ00b] Sergey Fomin and Andrei Zelevinsky. Totally nonnegative and oscillatory elements in semisimple groups. Proc. Amer. Math. Soc., 128(12):3749–3759, 2000.
[Gar82a] Jürgen Garloff. Criteria for sign regularity of sets of matrices. Linear Algebra Appl., 44:153–160, 1982.
[Gar82b] Jürgen Garloff. Majorization between the diagonal elements and the eigenvalues of an oscillating matrix. Linear Algebra Appl., 47:181–184, 1982.
[Gar85] Jürgen Garloff. An inverse eigenvalue problem for totally nonnegative matrices. Linear and Multilinear Algebra, 17(1):19–23, 1985.
[Gar96] Jürgen Garloff. Vertex implications for totally nonnegative matrices. In Total Positivity and its Applications (Jaca, 1994), volume 359 of Math. Appl., pages 103–107. Kluwer, Dordrecht, 1996.
[Gar02] Jürgen Garloff. Intervals of totally nonnegative and related matrices. PAMM, 1(1):496–497, 2002.
[Gar03] Jürgen Garloff. Intervals of almost totally positive matrices. Linear Algebra Appl., 363:103–108, 2003.
[Gas96] Mariano Gasca. Spline functions and total positivity. Rev. Mat. Univ. Complut. Madrid, 9(Special Issue, suppl.):125–139, 1996. Meeting on Mathematical Analysis (Spanish) (Avila, 1995).
[GG04] Graham M. L. Gladwell and Kazem Ghanbari. The total positivity interval. Linear Algebra Appl., 393:197–202, 2004.
[GH87] Jürgen Garloff and Volker Hattenbach. The spectra of matrices having sums of principal minors with alternating sign. SIAM J. Algebraic Discrete Methods, 8(1):106–107, 1987.
[Gha06] Kazem Ghanbari. Pentadiagonal oscillatory matrices with two spectrum in common. Positivity, 10(4):721–729, 2006.
[GJ04] Michael Gekhtman and Charles R. Johnson. The linear interpolation problem for totally positive matrices. Linear Algebra Appl., 393:175–178, 2004.
[GJdSW84] Robert Grone, Charles R. Johnson, Eduardo M. de Sá, and Henry Wolkowicz. Positive definite completions of partial Hermitian matrices. Linear Algebra Appl., 58:109–124, 1984.
[GK37] Feliks R. Gantmacher and Mark G Krein. Sur les matrices complètement non-negatives et oscillatoires. Comp. Math., 4:445–476, 1937.
[GK60] Feliks R. Gantmacher and Mark G. Krein. Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme. Wissenschaftliche Bearbeitung der deutschen Ausgabe: Alfred Stöhr. Mathematische Lehrbücher und Monographien, I. Abteilung, Bd. V. Akademie-Verlag, Berlin, 1960.
[GK02] Feliks P. Gantmacher and Mark G. Krein. Oscillation matrices and kernels and small vibrations of mechanical systems. AMS Chelsea, Providence, RI, 2002. Translation based on the 1941 Russian original, Edited and with a preface by Alex Eremenko.
[Gla98] Graham M. L. Gladwell. Total positivity and the QR algorithm. Linear Algebra Appl., 271:257–272, 1998.
[Gla02] Graham M. L. Gladwell. Total positivity and Toda flow. Linear Algebra Appl., 350:279–284, 2002.
[Gla04] Graham M. L. Gladwell. Inner totally positive matrices. Linear Algebra Appl., 393:179–195, 2004.
[GM87] Mariano Gasca and Gunter Mühlbach. Generalized Schurcomplements and a test for total positivity. Appl. Numer. Math., 3(3):215–232, 1987.
[GM96] Mariano Gasca and Charles A. Micchelli, editors. Total Positivity and its Applications, volume 359 of Math. and its Appl. (Jaca 1994), Dordrecht, 1996. Kluwer Academic.
[GM00] Mariano Gasca and Gunter Mühlbach. Elimination techniques: from extrapolation to totally positive matrices and CAGD. J. Comput. Appl. Math., 122(1-2):37–50, 2000.
[GMP92] Mariano Gasca, Charles A. Micchelli, and Juan M. Peña. Almost strictly totally positive matrices. Numer. Algorithms, 2(2):225–236, 1992.
[Goo86] Gerald S. Goodman. A probabilistic representation of totally positive matrices. Adv. in Appl. Math., 7(2):236–252, 1986.
[Goo96] Tim N. T. Goodman. Total positivity and the shape of curves. In Total positivity and its applications (Jaca, 1994), volume 359 of Math. Appl., pages 157–186. Kluwer Acad. Publ., Dordrecht, 1996.
[GP92a] Mariano Gasca and Juan M. Peña. On the characterization of totally positive matrices. In Approximation theory, spline functions and applications (Maratea, 1991), volume 356 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 357–364. Kluwer Acad. Publ., Dordrecht, 1992.
[GP92b] Mariano Gasca and Juan M. Peña. Total positivity and Neville elimination. Linear Algebra Appl., 165:25–44, 1992.
[GP93a] Mariano Gasca and Juan M. Peña. Scaled pivoting in Gauss and Neville elimination for totally positive systems. Appl. Numer. Math., 13(5):345–355, 1993.
[GP93b] Mariano Gasca and Juan M. Peña. Total positivity, QR factorization, and Neville elimination. SIAM J. Matrix Anal. Appl., 14(4):1132–1140, 1993.
[GP93c] Mariano Gasca and Juan Manuel Peña. Sign-regular and totally positive matrices: an algorithmic approach. In Multivariate approximation: from CAGD to wavelets (Santiago, 1992), volume 3 of Ser. Approx. Decompos., pages 131–146. World Sci. Publishing, River Edge, NJ, 1993.
[GP94a] Mariano Gasca and Juan M. Peña. Corner cutting algorithms and totally positive matrices. In Curves and surfaces in geometric design (Chamonix-Mont-Blanc, 1993), pages 177–184. A K Peters, Wellesley, MA, 1994.
[GP94b] Mariano Gasca and Juan M. Peña. A matricial description of Neville elimination with applications to total positivity. Linear Algebra Appl., 202:33–53, 1994.
[GP94c] Mariano Gasca and Juan M. Peña. A test for strict signregularity. Linear Algebra Appl., 197/198:133–142, 1994. Second Conference of the International Linear Algebra Society (ILAS) (Lisbon, 1992).
[GP95] Mariano Gasca and Juan M. Peña. On the characterization of almost strictly totally positive matrices. Adv. Comput. Math., 3(3):239–250, 1995.
[GP96] Mariano Gasca and Juan M. Peña. On factorizations of totally positive matrices. In Total positivity and its applications (Jaca, 1994), volume 359 of Math. Appl., pages 109–130. Kluwer Acad. Publ., Dordrecht, 1996.
[GP02] Laura Gori and Francesca Pitolli. On some applications of a class of totally positive bases. In Wavelet analysis and applications (Guangzhou, 1999), volume 25 of AMS/IP Stud. Adv. Math., pages 109–118. Amer. Math. Soc., Providence, RI, 2002.
[GP06] Mariano Gasca and Juan M. Peña. Characterizations and decompositions of almost strictly positive matrices. SIAM J. Matrix Anal. Appl., 28(1):1–8 (electronic), 2006.
[GS93] Tim N. T. Goodman and Ambikeshaw Sharma. Factorization of totally positive, symmetric, periodic, banded matrices with applications. Linear Algebra Appl., 178:85–107, 1993.
[GS97] Michael I. Gekhtman and Michael Z. Shapiro. Completeness of real Toda flows and totally positive matrices. Math. Z., 226(1):51–66, 1997.
[GS04] Tim N. T. Goodman and Qiyu Sun. Total positivity and refinable functions with general dilation. Appl. Comput. Harmon. Anal., 16(2):69–89, 2004.
[GT98] Ji?í Gregor and Jaroslav Tišer. On Hadamard powers of polynomials. Math. Control Signals Systems, 11(4):372–378, 1998.
[GT02] Maite Gassó and Juan R. Torregrosa. A PLU-factorization of rectangular matrices by the Neville elimination. Linear Algebra Appl., 357:163–171, 2002.
[GT04] Maite Gassó and Juan R. Torregrosa. A totally positive factorization of rectangular matrices by the Neville elimination. SIAM J. Matrix Anal. Appl., 25(4):986–994 (electronic), 2004.
[GT06a] Maite Gassó and Juan R. Torregrosa. Bidiagonal factorization of totally nonnegative rectangular matrices. In Positive systems, volume 341 of Lecture Notes in Control and Inform. Sci., pages 33–40. Springer, Berlin, 2006.
[GT06b] Maite Gassó and Juan R. Torregrosa. Bidiagonal factorization of totally nonnegative rectangular matrices. 341:33–40, 2006.
[GT07] Maite Gassó and Juan R. Torregrosa. A class of totally positive P-matrices whose inverses are M-matrices. Appl. Math. Lett., 20(1):23–27, 2007.
[GT08] Maria T. Gassó and Juan R. Torregrosa. Bidiagonal factorizations and quasi-oscillatory rectangular matrices. Linear Algebra Appl., 429(8–9):1886–1893, 2008.
[GW76] Leonard J. Gray and David G. Wilson. Construction of a Jacobi matrix from spectral data. Linear Algebra and Appl., 14(2):131–134, 1976.
[GW96a] Jürgen Garloff and David G. Wagner. Hadamard products of stable polynomials are stable. J. Math. Anal. Appl., 202(3):797–809, 1996.
[GW96b] Jürgen Garloff and David G. Wagner. Preservation of total nonnegativity under the Hadamard product and related topics. In Total positivity and its applications (Jaca, 1994), volume 359 of Math. Appl., pages 97–102. Kluwer Acad. Publ., Dordrecht, 1996.
[Hei94] Berthold Heiligers. Totally nonnegative moment matrices. Linear Algebra Appl., 199:213–227, 1994.
[Hei01] Berthold Heiligers. Totally positive regression: E-optimal designs. Metrika, 54(3):191–213 (electronic) (2002), 2001.
[HJ85] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[HJ91] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[Hog07] Leslie Hogben, editor. Handbook of linear algebra. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2007. Associate editors: Richard Brualdi, Anne Greenbaum, and Roy Mathias.
[Hol03] Olga Holtz. Hermite-Biehler, Routh-Hurwitz, and total positivity. Linear Algebra Appl., 372:105–110, 2003.
[JB93] Charles R. Johnson and Wayne W. Barrett. Determinantal inequalities for positive definite matrices. Discrete Math., 119(1-3):97–106, 1993. ARIDAM IV and V (New Brunswick, NJ, 1988/1989).
[Jew89] Ian Jewitt. Choosing between risky prospects: the characterization of comparative statics results, and location independent risk. Management Sci., 35(1):60–70, 1989.
[Jia83] Rong Qing Jia. Total positivity of the discrete spline collocation matrix. J. Approx. Theory, 39(1):11–23, 1983.
[JK10] Charles R. Johnson and Brenda K. Kroschel. Conditions for a totally positive completion in the case of a symmetrically placed cycle. Electron. J. Linear Algebra, To appear, 2010.
[JKL98] Charles R. Johnson, Brenda K. Kroschel, and Michael Lundquist. The totally nonnegative completion problem. In Topics in semidefinite and interior-point methods (Toronto, ON, 1996), volume 18 of Fields Inst. Commun., pages 97–107. Amer. Math. Soc., Providence, RI, 1998.
[JN09] Charles R. Johnson and Cris Negron. Totally positive completions for monotonically labeled block clique graphs. Electron. J. Linear Algebra, 18:146–161, 2009.
[JO04] Charles R. Johnson and Dale D. Olesky. Sums of totally positive matrices. Linear Algebra Appl., 392:1–9, 2004.
[JO05] Charles R. Johnson and Dale D. Olesky. Rectangular submatrices of inverse M-matrices and the decomposition of a positive matrix as a sum. Linear Algebra Appl., 409:87–99, 2005.
[Joh87] Charles R. Johnson. Closure properties of certain positivity classes of matrices under various algebraic operations. Linear Algebra Appl., 97:243–247, 1987.
[Joh98] Charles R. Johnson. Olga, matrix theory and the Taussky unification problem. Linear Algebra Appl., 280(1):39–49, 1998. With the assistance of Shaun Fallat, Special issue in memory of Olga Taussky Todd.
[JOvdD99] Charles R. Johnson, Dale D. Olesky, and Pauline van den Driessche. Elementary bidiagonal factorizations. Linear Algebra Appl., 292(1-3):233–244, 1999.
[JOvdD01] Charles R. Johnson, Dale D. Olesky, and Pauline van den Driessche. Successively ordered elementary bidiagonal factorization. SIAM J. Matrix Anal. Appl., 22(4):1079–1088 (electronic), 2001.
[JS00] Charles R. Johnson and Ronald L. Smith. Line insertions in totally positive matrices. J. Approx. Theory, 105(2):305–312, 2000.
[JT03] Cristina Jordán and Juan R. Torregrosa. Paths and cycles in the totally positive completion problem. In Positive systems (Rome, 2003), volume 294 of Lecture Notes in Control and Inform. Sci., pages 217–224. Springer, Berlin, 2003.
[JT04] Cristina Jordán and Juan R. Torregrosa. The totally positive completion problem. Linear Algebra Appl., 393:259–274, 2004.
[JTeG09] Cristina Jordán, Juan R. Torregrosa, and Ramadán el Ghamry. The completable digraphs for the totally nonnegative completion problem. Linear Algebra Appl., 430(5-6):1675–1690, 2009.
[JX93] Charles R. Johnson and Christos Xenophontos. Irreducibility and primitivity of Perron complements: application of the compressed directed graph. In Graph Theory and Sparse Matrix Computation, volume 56 of IMA Vol. Math. Appl., pages 101–106. Springer, New York, 1993.
[Kar64] Samuel Karlin. Total positivity, absorption probabilities and applications. Trans. Amer. Math. Soc., 111:33–107, 1964.
[Kar65] Samuel Karlin. Oscillation properties of eigenvectors of strictly totally positive matrices. J. Analyse Math., 14:247–266, 1965.
[Kar68] Samuel Karlin. Total Positivity. Vol. I. Stanford University Press, Stanford, Calif, 1968.
[Kar71] Samuel Karlin. Total positivity, interpolation by splines, and Green’s functions of differential operators. J. Approximation Theory, 4:91–112, 1971.
[KD02] Plamen Koev and James Demmel. Accurate solutions of totally positive linear systems application to generalized vandermonde systems. In Householder Symposium XV (Peebles, Scotland, 2002), Peebles, Scotland, 2002.
[KL70] Samuel Karlin and John Walter Lee. Periodic boundary-value problems with cyclic totally positive Green’s functions with applications to periodic spline theory. J. Differential Equations, 8:374–396, 1970.
[KLM01] Grzegorz Kubicki, Jen? Lehel, and Micha? Morayne. Totally positive matrices and totally positive hypergraphs. Linear Algebra Appl., 331(1-3):193–202, 2001.
[KM59] Samuel Karlin and James McGregor. Coincidence probabilities. Pacific J. Math., 9:1141–1164, 1959.
[Koe05] Plamen Koev. Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl., 27(1):1–23 (electronic), 2005.
[Koe07] Plamen Koev. Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl., 29(3):731–751 (electronic), 2007.
[Kot50] D.M. Kotelyanski?. On the theory of nonnegative and oscillating matrices. Ukrain. Mat. žurnal, 2(2):94–101, 1950.
[Kot53] D.M. Kotelyanski?. On a property of sign-symmetric matrices. Uspehi Matem. Nauk (N.S.), 8(4(56)):163–167, 1953.
[Kot63a] D. M. Koteljanski?. A property of sign-symmetric matrices. Amer. Math. Soc. Transl. (2), 27:19–23, 1963.
[Kot63b] D. M. Koteljanski?. The theory of nonnegative and oscillating matrices. Amer. Math. Soc. Transl. (2), 27:1–8, 1963.
[KP74] Samuel Karlin and Allan Pinkus. Oscillation properties of generalized characteristic polynomials for totally positive and positive definite matrices. Linear Algebra and Appl., 8:281–312, 1974.
[KR80] Samuel Karlin and Yosef Rinott. Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. J. Multivariate Anal., 10(4):467–498, 1980.
[KR81] Samuel Karlin and Yosef Rinott. Total positivity properties of absolute value multinormal variables with applications to confidence interval estimates and related probabilistic inequalities. Ann. Statist., 9(5):1035–1049, 1981.
[KR88] Samuel Karlin and Yosef Rinott. A generalized Cauchy-Binet formula and applications to total positivity and majorization. J. Multivariate Anal., 27(1):284–299, 1988.
[KV06] Olga M. Katkova and Anna M. Vishnyakova. On sufficient conditions for the total positivity and for the multiple positivity of matrices. Linear Algebra Appl., 416(2-3):1083–1097, 2006.
[Lew80] Mordechai Lewin. Totally nonnegative, M-, and Jacobi matrices. SIAM J. Algebraic Discrete Methods, 1(4):419–421, 1980.
[LF08] Xiao Ping Liu and Shaun M. Fallat. Multiplicative principalminor inequalities for a class of oscillatory matrices. JIPAM. J. Inequal. Pure Appl. Math., 9(4): Article 92, 18, 2008.
[Lig89] Thomas M. Liggett. Total positivity and renewal theory. In Probability, Statistics, and Mathematics, pages 141–162. Academic Press, Boston, 1989.
[Liu08] XiaoPing Liu. Determinantal inequalities and factorizations of totally nonnegative matrices. PhD thesis, University of Regina, 2008.
[LL97] Shiowjen Lee and J. Lynch. Total positivity of Markov chains and the failure rate character of some first passage times. Adv. in Appl. Probab., 29(3):713–732, 1997.
[LM79] Jens Lorenz and Wolfgang Mackens. Toeplitz matrices with totally nonnegative inverses. Linear Algebra Appl., 24:133–141, 1979.
[LM02] Chi-Kwong Li and Roy Mathias. Interlacing inequalities for totally nonnegative matrices. Linear Algebra Appl., 341:35–44, 2002. Special issue dedicated to Professor T. Ando.
[Loe55] Charles Loewner. On totally positive matrices. Math. Z., 63:338–340, 1955.
[LS02] Chi-Kwong Li and Hans Schneider. Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol., 44(5):450–462, 2002.
[Lus98] George Lusztig. Introduction to total positivity. In Positivity in Lie Theory: Open Problems, volume 26 of de Gruyter Exp. Math., pages 133–145. de Gruyter, Berlin, 1998.
[Lus08] George Lusztig. A survey of total positivity. Milan J. Math., 76:125–134, 2008.
[LY04] Hong Bin Lü and Zhong Peng Yang. The Schur-Oppenheim strict inequality for tridiagonal totally nonnegative matrices. J. Math. Study, 37(2):193–199, 2004.
[Mar70a] Thomas L. Markham. On oscillatory matrices. Linear Algebra and Appl., 3:143–156, 1970.
[Mar70b] Thomas L. Markham. A semigroup of totally nonnegative matrices. Linear Algebra Appl., 3:157–164, 1970.
[Mel96] Avraham A. Melkman. Another proof of the total positivity of the discrete spline collocation matrix. J. Approx. Theory, 84(3):265–273, 1996.
[Met73] Kurt Metelmann. Ein Kriterium für den Nachweis der To-talnichtnegativität von Bandmatrizen. Linear Algebra Appl., 7:163–171, 1973.
[Mey89] Carl D. Meyer. Uncoupling the Perron eigenvector problem. Linear Algebra Appl., 114/115:69–94, 1989.
[MG85] Gunter Mühlbach and Mariano Gasca. A generalization of Sylvester’s identity on determinants and some applications. Linear Algebra Appl., 66:221–234, 1985.
[MG87] Gunter Mühlbach and Mariano Gasca. A test for strict total positivity via Neville elimination. In Current Trends in Matrix Theory (Auburn, Ala., 1986), pages 225–232. North-Holland, New York, 1987.
[M0r96] Knut M. M0rken. On total positivity of the discrete spline collocation matrix. J. Approx. Theory, 84(3):247–264, 1996.
[MP77] Charles A. Micchelli and Allan Pinkus. Total positivity and the exact n-width of certain sets in L1. Pacific J. Math., 71(2):499–515, 1977.
[MP99] Esmeralda Mainar and Juan M. Peña. Corner cutting algorithms associated with optimal shape preserving representations. Comput. Aided Geom. Design, 16(9):883–906, 1999.
[MP00] Esmeralda Mainar and Juan M. Peña. Knot insertion and totally positive systems. J. Approx. Theory, 104(1):45–76, 2000.
[MP07] Esmeralda Mainar and Juan M. Peña. A general class of Bernstein-like bases. Comput. Math. Appl., 53(11):1686–1703, 2007.
[Pen95a] Juan M. Peña. M-matrices whose inverses are totally positive. Linear Algebra Appl., 221:189–193, 1995.
[Pen95b] Juan M. Peña. Matrices with sign consistency of a given order. SIAM J. Matrix Anal. Appl., 16(4):1100–1106, 1995.
[Pen97] Juan M. Peña. On the Schur and singular value decompositions of oscillatory matrices. Linear Algebra Appl., 261:307–315, 1997.
[Pen98] Juan M. Peña. On the relationship between graphs and totally positive matrices. SIAM J. Matrix Anal. Appl., 19(2):369–377 (electronic), 1998.
[Pen01] Juan M. Peña. Determinantal criteria for total positivity. In Proceedings of the Eighth Conference of the International Linear Algebra Society (Barcelona, 1999), volume 332/334, pages 131137, 2001.
[Pen02] Juan M. Peña. Sign regular matrices of order two. Linear Multilinear Algebra, 50(1):91–97, 2002.
[Pen03] Juan M. Peña. On nonsingular sign regular matrices. Linear Algebra Appl., 359:91–100, 2003.
[Pen04] Juan M. Peña. Characterizations and stable tests for the Routh-Hurwitz conditions and for total positivity. Linear Algebra Appl., 393:319–332, 2004.
[Pin85] Allan Pinkus. Some extremal problems for strictly totally positive matrices. Linear Algebra Appl., 64:141–156, 1985.
[Pin98] Allan Pinkus. An interlacing property of eigenvalues of strictly totally positive matrices. Linear Algebra Appl., 279(1-3):201–206, 1998.
[Pin04] Allan Pinkus. Interpolation by matrices. Electron. J. Linear Algebra, 11:281–291 (electronic), 2004.
[Pin08] Allan Pinkus. Zero minors of totally positive matrices. Electron. J. Linear Algebra, 17:532–542, 2008.
[Pin10] Allan Pinkus. Totally positive matrices, volume 181 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2010.
[Pri68] Harvey S. Prince. Monotone and oscillation matrices applied to finite difference approximations. Math. Comp., 22:489–516, 1968.
[Rad68] Charles E. Radke. Classes of matrices with distinct, real characteristic values. SIAM J. Appl. Math., 16:1192–1207, 1968.
[RH72] John W. Rainey and George J. Habetler. Tridiagonalization of completely nonnegative matrices. Math. Comp., 26:121–128, 1972.
[Rie01] Konstanze Rietsch. Quantum cohomology rings of Grassmannians and total positivity. Duke Math. J., 110(3):523–553, 2001.
[Rie03a] Konstanze Rietsch. Total positivity, flag varieties and quantum cohomology. In European women in mathematics (Malta, 2001), pages 149–167. World Sci. Publishing, River Edge, NJ, 2003.
[Rie03b] Konstanze Rietsch. Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties. J. Amer. Math. Soc., 16(2):363–392 (electronic), 2003.
[Rie08] Konstanze Rietsch. Errata to: “Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties” [J. Amer. Math. Soc. 16 (2003), no. 2, 363–392; mr1949164]. J. Amer. Math. Soc., 21(2):611–614, 2008.
[RS06] Brendon Rhoades and Mark Skandera. Kazhdan-Lusztig immanants and products of matrix minors. J. Algebra, 304(2):793–811, 2006.
[Sch30] Isaac J. Schoenberg. Uber variationsvermindernde lineare transformationen. Math. Z, 32:321–328, 1930.
[Sch47] Isaac J. Schoenberg. On totally positive functions, Laplace integrals and entire functions of the Laguerre-Polya-Schur type. Proc. Nat. Acad. Sci. U. S. A., 33:11–17, 1947.
[Sch86] E. J. P. Georg Schmidt. On the total—and strict total—positivity of the kernels associated with parabolic initial-boundary value problems. J. Differential Equations, 62(2):275–298, 1986.
[Ska04] Mark Skandera. Inequalities in products of minors of totally nonnegative matrices. J. Algebraic Combin., 20(2):195–211, 2004.
[Sob75] Aleksander V. Sobolev. Totally positive operators. Siberian Math. J., 16:636–641, 1975.
[SR03] Mark Skandera and Brian Reed. Total nonnegativity and (3+1)- free posets. J. Combin. Theory Ser. A, 103(2):237–256, 2003.
[SS95] Boris Z. Shapiro and Michael Z. Shapiro. On the boundary of totally positive upper triangular matrices. Linear Algebra Appl., 231:105–109, 1995.
[SS06] Ernesto Salinelli and Carlo Sgarra. Correlation matrices of yields and total positivity. Linear Algebra Appl., 418(2-3):682–692, 2006.
[Sta00] Richard P. Stanley. Positivity problems and conjectures in algebraic combinatorics. In Mathematics: frontiers and perspectives, pages 295–319. Amer. Math. Soc., Providence, RI, 2000.
[Ste90] John R. Stembridge. Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math., 83(1):96–131, 1990.
[Ste91] John R. Stembridge. Immanants of totally positive matrices are nonnegative. Bull. London Math. Soc., 23(5):422–428, 1991.
[Ste92] John R. Stembridge. Some conjectures for immanants. Canad. J. Math., 44(5):1079–1099, 1992.
[Stu88] Bernd Sturmfels. Totally positive matrices and cyclic polytopes. In Proceedings of the Victoria Conference on Combinatorial Matrix Analysis (Victoria, BC, 1987), volume 107, pages 275–281, 1988.
[SW49] Isaac J. Schoenberg and Anne Whitney. Sur la positivité des determinants de translation des fonctions de frequence de Pólya, avec une application à un problème d’interpolation. C. R. Acad. Sci. Pans, 228:1996–1998, 1949.
[SW51] Isaac J. Schoenberg and Anne Whitney. A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transformations. Compositio Math., 9:141–160, 1951.
[SW53] Isaac J. Schoenberg and Anne Whitney. On Polya frequency function. III. The positivity of translation determinants with an application to the interpolation problem by spline curves. Amer. Math. Soc., 74(2):246–259, 1953.
[Vol05] Yu. S. Volkov. Totally positive matrices in the methods of constructing interpolation splines of odd degree [Translation of Mat. Tr. 7 (2004), no. 2, 3–34; mr2124538]. Siberian Adv. Math., 15(4):96–125, 2005.
[Wag92] David G. Wagner. Total positivity of Hadamard products. J. Math. Anal. Appl., 163(2):459–483, 1992.
[Whi52] Anne M. Whitney. A reduction theorem for totally positive matrices. J. Analyse Math., 2:88–92, 1952.
[YF07] Zhongpeng Yang and Xiaoxia Feng. New lower bound of the determinant for Hadamard product on some totally nonnegative matrices. J. Appl. Math. Comput., 25(1-2):169–181, 2007.
[ZY93] Xiao Dong Zhang and Shang Jun Yang. An improvement of Hadamard’s inequality for totally nonnegative matrices. SIAM J. Matrix Anal. Appl., 14(3):705–711, 1993.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.219.67.169