4
Fluid Systems

In Chapters 13, wave propagation is considered in unbound media, and boundaries occurred only in the context of scattering, reflection, or radiation. Beams or shells were characterized by their boundaries, but their effect was the creation of different forms of wave propagation. For example, the dimension (thickness) of a plate causes the different wave types, bending, in-plane shear, and dilation, but in principle there was always at least one infinite dimension. In Chapter 4 we will approach the system from Chapter 1, meaning that we consider bounded systems, for example a closed cavity with specific input and output positions.

4.1 One-dimensional Systems

A one-dimensional subsystem can be a small tube with radius R small enough that the wavelength is larger than the diameter 2R for the highest considered frequency (Pierce, 1991). The tube has rigid surfaces and is filled with a fluid, e.g. air with given density ρ0 and speed of sound c0.

The solution of the wave Equation (2.42) in the tube is given by the one-dimensional solution of the wave equation for pressure (2.34) and velocity (2.36)

StartLayout 1st Row 1st Column bold-italic p left-parenthesis x right-parenthesis equals 2nd Column bold-italic upper A e Superscript minus j bold-italic k x plus bold-italic upper B e Superscript j bold-italic k x EndLayout  (4.1)
StartLayout 1st Row 1st Column bold-italic v Subscript x Baseline left-parenthesis x right-parenthesis equals StartFraction 1 Over z 0 EndFraction left-parenthesis 2nd Column bold-italic upper A e Superscript minus j bold-italic k x Baseline minus bold-italic upper B e Superscript j bold-italic k x Baseline right-parenthesis EndLayout  (4.2)

Interaction with the tube fluid takes place at the end and the beginning of the tube. So, we look for a representation similar to a 2DOF system (1.73) but with the velocities vx1=vx(0) and vx2=vx(L) instead of the displacement. We must clearly separate between state and external variables in order to avoid confusion. So, we separate between the state pressure pR(0),pL(L), denoting the pressure at the right side at x=0 and at the left side at z=L. A positive pressure pR(0) at x=0 leads to a force in the negative x-direction that must be compensated by a positive pressure pL(0) due to the face normal and x-coordinate both pointing in positive directions. At x=L a positive pressure pL(L) leads to positive blocked force in the x-direction that must be compensated by a negative pressure pR(L). We must keep this in mind when we introduce external forces and for coping with the transfer matrix method. Consequently the external force for the system description is replaced by the pressures p1=pL(0) and p2=pR(L)=pL(L)

Start 2 By 2 Matrix 1st Row 1st Column z 11 2nd Column z 12 2nd Row 1st Column z 21 2nd Column z 22 EndMatrix StartBinomialOrMatrix bold-italic v Subscript x Baseline Subscript 1 Baseline Choose bold-italic v Subscript x Baseline Subscript 2 Baseline EndBinomialOrMatrix equals StartBinomialOrMatrix bold-italic p Subscript upper R Baseline left-parenthesis 0 right-parenthesis Choose minus bold-italic p Subscript upper L Baseline left-parenthesis upper L right-parenthesis EndBinomialOrMatrix equals StartBinomialOrMatrix bold-italic p 1 Choose bold-italic p 2 EndBinomialOrMatrix  (4.3)

Using Equation (4.2) at the related positions of x we get for the velocities

StartLayout 1st Row 1st Column z 0 bold-italic v Subscript x Baseline Subscript 1 2nd Column equals bold-italic upper A minus bold-italic upper B EndLayout  (4.4)
StartLayout 1st Row 1st Column z 0 bold-italic v Subscript x Baseline Subscript 2 2nd Column equals bold-italic upper A e Superscript minus j bold-italic k upper L Baseline minus bold-italic upper B e Superscript plus j bold-italic k upper L EndLayout  (4.5)

Figure 4.1One-dimensional fluid system with two connections.
Source: Alexander Peiffer.

The difference (4.4) (4.5) e±jkL gives

StartLayout 1st Row 1st Column bold-italic upper A 2nd Column equals z 0 StartFraction bold-italic v Subscript x Baseline Subscript 1 Baseline e Superscript j bold-italic k upper L Baseline minus bold-italic v Subscript x Baseline Subscript 2 Baseline Over j Baseline 2 sine bold-italic k upper L EndFraction EndLayout  (4.6)
StartLayout 1st Row 1st Column bold-italic upper B 2nd Column equals z 0 StartFraction bold-italic v Subscript x Baseline Subscript 1 Baseline e Superscript minus j bold-italic k upper L Baseline minus bold-italic v Subscript x Baseline Subscript 2 Baseline Over j Baseline 2 sine bold-italic k upper L EndFraction EndLayout  (4.7)

and entering this into (4.1) at x=0,L we get the following expressions for p1 and p2 depending on the velocities

StartLayout 1st Row 1st Column bold-italic p 1 2nd Column equals bold-italic upper A plus bold-italic upper B equals z 0 left-parenthesis StartFraction 1 Over j tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction bold-italic v Subscript x Baseline Subscript 1 Baseline minus StartFraction 1 Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction bold-italic v Subscript x Baseline Subscript 2 Baseline right-parenthesis EndLayout  (4.8)
StartLayout 1st Row 1st Column bold-italic p 2 2nd Column equals minus bold-italic p Subscript upper L Baseline left-parenthesis upper L right-parenthesis equals minus left-parenthesis bold-italic upper A e Superscript minus j bold-italic k upper L Baseline plus bold-italic upper B e Superscript j bold-italic k upper L Baseline right-parenthesis equals z 0 left-parenthesis minus StartFraction 1 Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction bold-italic v Subscript x Baseline Subscript 1 Baseline plus StartFraction 1 Over j tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction bold-italic v Subscript x Baseline Subscript 2 Baseline right-parenthesis EndLayout  (4.9)

This provides the following 2DOF system matrix in impedance form

Start 2 By 2 Matrix 1st Row 1st Column StartFraction z 0 Over j tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction 2nd Column StartFraction minus z 0 Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction 2nd Row 1st Column StartFraction minus z 0 Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction 2nd Column StartFraction z 0 Over j tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction EndMatrix StartBinomialOrMatrix bold-italic v Subscript x Baseline Subscript 1 Baseline Choose bold-italic v Subscript x Baseline Subscript 2 Baseline EndBinomialOrMatrix equals StartBinomialOrMatrix bold-italic p 1 Choose bold-italic p 2 EndBinomialOrMatrix  (4.10)

This is the matrix description of the tube as a system with two (external) DOFs. If the velocities are given, the system response can be derived directly. For calculating the response to pressure excitation, the matrix must be inverted to give the mobility form

StartFraction 1 Over z 0 EndFraction Start 2 By 2 Matrix 1st Row 1st Column StartFraction 1 Over j tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction 2nd Column StartFraction 1 Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction 2nd Row 1st Column StartFraction 1 Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction 2nd Column StartFraction 1 Over j tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction EndMatrix StartBinomialOrMatrix bold-italic p 1 Choose bold-italic p 2 EndBinomialOrMatrix equals StartBinomialOrMatrix bold-italic v Subscript x Baseline Subscript 1 Baseline Choose bold-italic v Subscript x Baseline Subscript 2 EndBinomialOrMatrix  (4.11)

The pressure and velocity field can be derived from (4.1) and (4.2) and the solutions for A and B:

StartLayout 1st Row 1st Column bold-italic p left-parenthesis x right-parenthesis 2nd Column equals StartFraction z 0 Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction left-bracket bold-italic v Subscript x Baseline Subscript 1 Baseline cosine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis minus bold-italic v Subscript x Baseline Subscript 2 Baseline cosine left-parenthesis bold-italic k x right-parenthesis right-bracket EndLayout  (4.12)
StartLayout 1st Row 1st Column bold-italic v Subscript x Baseline left-parenthesis x right-parenthesis 2nd Column equals StartFraction 1 Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction left-bracket bold-italic v Subscript x Baseline Subscript 1 Baseline sine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis plus bold-italic v Subscript x Baseline Subscript 2 Baseline sine left-parenthesis bold-italic k x right-parenthesis right-bracket EndLayout  (4.13)

4.1.1 System Response

In order to interpret the above result we reduce our system to a 1DOF system by setting an impedance boundary condition at x=L. Thus,

p Subscript upper L Baseline left-parenthesis upper L right-parenthesis slash bold-italic v Subscript x Baseline Subscript 2 Baseline equals minus p Subscript upper R Baseline left-parenthesis upper L right-parenthesis slash bold-italic v Subscript x Baseline Subscript 2 Baseline equals bold-italic z 2  (4.14)

Using Equation (4.10) we get for a given velocity amplitude vx1 the pressure response at x=0

bold-italic p 1 equals z 0 StartFraction bold-italic z 2 cosine left-parenthesis bold-italic k upper L right-parenthesis plus j z 0 sine left-parenthesis bold-italic k upper L right-parenthesis Over z 0 cosine left-parenthesis bold-italic k upper L right-parenthesis plus j bold-italic z 2 sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction bold-italic v Subscript x Baseline Subscript 1  (4.15)

In a first step we consider a rigid boundary condition with |z2|z0 leading to

bold-italic p 1 equals StartFraction z 0 Over j tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction bold-italic v Subscript x Baseline Subscript 1  (4.16)

and from that the radiation impedance assuming a damping according to (2.59)

bold-italic z Subscript a comma 1 Baseline equals StartFraction z 0 Over j tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction with bold-italic k equals k left-parenthesis 1 minus j StartFraction eta Over 2 EndFraction right-parenthesis  (4.17)

The tan function is zero at kL=nπ for n=0,1,2, when we assume a real k. This is the case for L=nλ/2 when half wavelengths fit into the tube. The wave transmitted by the piston at x=0 is reflected at x=L and matches perfectly in phase at x=0. So, the pressure would add up to infinity without damping, and this is called the resonance or first mode of the tube.

Solving expression (4.17) for kL=nπ gives for the amplitude of za,1 at the resonances

bold-italic z Subscript a comma 1 Baseline equals z 0 hyperbolic cotangent left-parenthesis StartFraction n pi eta Over 2 EndFraction right-parenthesis  (4.18)

In Figure 4.2 the result is shown for values of kL. For low frequencies (kL1) we see a clear deterministic behavior. The impedance switches between the typical values. Going higher in frequency, the peaks are very close to each other. For high frequencies, kl100 there is no reflected wave because of the damping. Consequently, this is like radiation into half space and the impedance equals the characteristic impedance of air.

Figure 4.2Relative radiation impedance at x=0 for a one-dimensional fluid pipe for η=0.02.
Source: Alexander Peiffer.

4.1.2 Power Input

The power introduced to the subsystem is according to (2.45) the acoustic intensity times the surface area. For this we link the wavenumber to the damping loss k=k(1jη2) and separate the real from the imaginary part

bold-italic z Subscript a comma 1 Baseline equals StartFraction z 0 Over j tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction equals z 0 StartFraction hyperbolic sine left-parenthesis k eta upper L right-parenthesis minus j sine left-parenthesis 2 k upper L right-parenthesis Over hyperbolic cosine left-parenthesis k eta upper L right-parenthesis minus c o s left-parenthesis 2 k upper L right-parenthesis EndFraction  (4.19)

Thus the introduced power is

normal upper Pi equals StartFraction upper A Over 2 EndFraction upper R e left-parenthesis bold-italic z Subscript a comma 1 Baseline bold-italic v Subscript x Baseline Subscript 1 Baseline bold-italic v Subscript x Baseline Subscript 1 Superscript asterisk Baseline right-parenthesis equals StartFraction upper A Over 2 EndFraction StartFraction z 0 hyperbolic sine left-parenthesis k eta upper L right-parenthesis Over hyperbolic cosine left-parenthesis k eta upper L right-parenthesis minus c o s left-parenthesis 2 k upper L right-parenthesis EndFraction StartAbsoluteValue bold-italic v Subscript x Baseline Subscript 1 Baseline EndAbsoluteValue squared  (4.20)

and for kη the input power becomes

limit Underscript k eta right-arrow normal infinity Endscripts normal upper Pi equals StartFraction upper A Over 2 EndFraction z 0 StartAbsoluteValue bold-italic v Subscript x Baseline Subscript 1 Baseline EndAbsoluteValue squared  (4.21)

Due to the absence of reflection by damping the radiation into the tube equals radiation into the free field.

4.1.3 Pressure Field

In order to derive the interior pressure field inside the tube, we replace vx2 in Equation (4.5) by

bold-italic v Subscript x Baseline Subscript 2 Baseline equals StartFraction 1 Over bold-italic z 2 EndFraction left-parenthesis bold-italic upper A e Superscript minus j bold-italic k upper L Baseline plus bold-italic upper B e Superscript j bold-italic k upper L Baseline right-parenthesis

After some algebra we get for the two amplitudes

StartLayout 1st Row 1st Column bold-italic upper A 2nd Column equals z 0 bold-italic v Subscript x Baseline Subscript 1 Baseline StartFraction left-parenthesis bold-italic z 2 plus z 0 right-parenthesis e Superscript j bold-italic k upper L Baseline Over j Baseline 2 bold-italic z 2 sine left-parenthesis bold-italic k upper L right-parenthesis plus 2 z 0 cosine left-parenthesis bold-italic k upper L right-parenthesis EndFraction EndLayout  (4.22)
StartLayout 1st Row 1st Column bold-italic upper B 2nd Column equals z 0 bold-italic v Subscript x Baseline Subscript 1 Baseline StartFraction left-parenthesis bold-italic z 2 minus z 0 right-parenthesis e Superscript minus j bold-italic k upper L Baseline Over j Baseline 2 bold-italic z 2 sine left-parenthesis bold-italic k upper L right-parenthesis plus 2 z 0 cosine left-parenthesis bold-italic k upper L right-parenthesis EndFraction less-than l a b e l greater-than 4.22 less-than slash l a b e l greater-than EndLayout  (4.23)

Entering this into (4.1) and (4.2) we get

StartLayout 1st Row 1st Column bold-italic p left-parenthesis x right-parenthesis 2nd Column equals z 0 bold-italic v Subscript x Baseline Subscript 1 Baseline StartFraction bold-italic z 2 cosine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis plus j z 0 sine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis Over z 0 cosine left-parenthesis bold-italic k upper L right-parenthesis plus j bold-italic z 2 sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction EndLayout  (4.24)
StartLayout 1st Row 1st Column bold-italic v Subscript x Baseline left-parenthesis x right-parenthesis 2nd Column equals bold-italic v Subscript x Baseline Subscript 1 Baseline StartFraction j bold-italic z 2 sine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis plus z 0 cosine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis Over z 0 cosine left-parenthesis bold-italic k upper L right-parenthesis plus j bold-italic z 2 sine left-parenthesis k upper L right-parenthesis EndFraction EndLayout  (4.25)

and for a rigid end z2z0 this yields

StartLayout 1st Row 1st Column bold-italic p left-parenthesis x right-parenthesis 2nd Column equals z 0 bold-italic v Subscript x Baseline Subscript 1 Baseline StartFraction cosine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction EndLayout  (4.26)
StartLayout 1st Row 1st Column bold-italic v Subscript x Baseline left-parenthesis x right-parenthesis 2nd Column equals bold-italic v Subscript x Baseline Subscript 1 Baseline StartFraction sine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction period EndLayout  (4.27)

In Figure 4.3 the pressure and velocity amplitudes along the tube axis are shown.

Figure 4.3Pressure and velocity amplitude in the tube for multiples of half wavelengths.
Source: Alexander Peiffer.

4.1.4 Modes

In Chapter 1 it was shown that every dynamic and closed system has natural states of vibration: the modes of the system. For the harmonic oscillator that was the resonance of the system, and for a system of connected springs and masses that was the modal solution (1.104). Continuous and bounded systems also have modes and natural shapes of vibration linked to a certain frequency.

4.1.4.1 Rigid Boundaries

Here, we are looking for the mode shapes of our system with given boundary conditions, eg. rigid conditions such as vx(0)=vx(L)=0. So, the solution (4.2) must fulfil these conditions:

StartLayout 1st Row 1st Column bold-italic v Subscript x Baseline left-parenthesis 0 right-parenthesis 2nd Column equals StartFraction 1 Over z 0 EndFraction left-parenthesis bold-italic upper A minus bold-italic upper B right-parenthesis equals 0 EndLayout  (4.28)
StartLayout 1st Row 1st Column bold-italic v Subscript x Baseline left-parenthesis upper L right-parenthesis 2nd Column equals StartFraction 1 Over z 0 EndFraction left-parenthesis bold-italic upper A e Superscript minus j k upper L Baseline minus bold-italic upper B e Superscript j k upper L Baseline right-parenthesis equals 0 EndLayout  (4.29)

The first equation gives A=B. Inserting this in the second equation leads to the following solutions for pressure and velocity

StartLayout 1st Row 1st Column bold-italic v Subscript x Baseline Subscript n Baseline left-parenthesis x right-parenthesis 2nd Column equals StartFraction j ModifyingAbove p With caret Subscript n Baseline Over z 0 EndFraction sine left-parenthesis k Subscript n Baseline x right-parenthesis EndLayout  (4.30)
StartLayout 1st Row 1st Column p Subscript n Baseline left-parenthesis x right-parenthesis 2nd Column equals ModifyingAbove p With caret Subscript n Baseline cosine left-parenthesis k Subscript n Baseline x right-parenthesis 3rd Column for k Subscript n Baseline 4th Column equals StartFraction n pi Over upper L EndFraction with n equals 0 comma 1 comma ellipsis EndLayout  (4.31)

The choice n=0 corresponds to a static pressure. These wave numbers correspond to modal frequencies and wave lengths

StartLayout 1st Row 1st Column omega Subscript n 2nd Column equals StartFraction n pi c 0 Over upper L EndFraction 3rd Column lamda Subscript n Baseline equals StartFraction upper L Over 2 pi n EndFraction EndLayout  (4.32)

4.1.4.2 Modal Coordinates and Matrix Representation

Mode shapes are natural shapes of the system. That means the system tends to vibrate in this form at the specific frequency. We know that the mode shapes can be used for coordinate transformations such as when the state of the system is given in modal coordinates pn

bold-italic p left-parenthesis x right-parenthesis equals sigma-summation Underscript n equals 0 Overscript normal infinity Endscripts bold-italic p prime Subscript n Baseline normal upper Psi Subscript p comma n Baseline left-parenthesis x right-parenthesis  (4.33)

Entering this into the one-dimensional inhomogeneous Helmholtz Equation (2.123) gives

sigma-summation Underscript n Endscripts left-parenthesis k Subscript n Superscript 2 Baseline minus k squared right-parenthesis bold-italic p prime Subscript n Baseline normal upper Psi Subscript p comma n Baseline left-parenthesis x right-parenthesis equals minus bold-italic f Subscript q Baseline left-parenthesis x right-parenthesis  (4.34)

For the derivation of the modal coordinates pn we need the orthogonality relations according to equations (1.111) and (1.112). As we don’t have a discrete system the vector product is replaced by a scalar product of the continuous mode

normal upper Psi Subscript p comma m Superscript asterisk Baseline times normal upper Psi Subscript p comma n Baseline equals integral Subscript 0 Superscript upper L Baseline normal upper Psi Subscript p comma m Superscript asterisk Baseline left-parenthesis x right-parenthesis normal upper Psi Subscript p comma n Baseline left-parenthesis x right-parenthesis d x equals StartLayout Enlarged left-brace 1st Row 1st Column 0 2nd Column for m not-equals normal n 2nd Row 1st Column StartFraction ModifyingAbove p With caret Subscript n Superscript 2 Baseline upper L Over 2 EndFraction 2nd Column for m equals normal n EndLayout  (4.35)

The complex conjugate does not have any effect, as the mode shape is supposed to be real. But in later application we may have complex modes that require the scalar product in complex form. For practical reasons we normalize the modes with

normal upper Phi Subscript p comma n Baseline equals StartRoot StartFraction upper Lamda Subscript n Baseline Over upper L EndFraction EndRoot cosine left-parenthesis k Subscript n Baseline x right-parenthesis with upper Lamda 0 equals 1 and upper Lamda Subscript n Baseline equals 2 for-all n greater-than 0  (4.36)

so that

integral Subscript 0 Superscript upper L Baseline normal upper Phi Subscript p comma m Superscript asterisk Baseline left-parenthesis x right-parenthesis normal upper Phi Subscript p comma n Baseline left-parenthesis x right-parenthesis d x equals delta Subscript m n  (4.37)

We make use of the orthogonality by multiplying Equation (4.34) from the left with Φp,m*, and keeping in mind that the source term fq contains the volume source strength density qs, so that we have to multiply with the tube cross-section A to get the dimensions right

StartLayout 1st Row 1st Column upper A integral Subscript 0 Superscript upper L Baseline normal upper Phi Subscript p comma m Superscript asterisk Baseline left-parenthesis x right-parenthesis left-parenthesis sigma-summation Underscript n Endscripts left-parenthesis k Subscript n Superscript 2 Baseline minus k squared right-parenthesis p prime Subscript n Baseline normal upper Phi Subscript p comma n Baseline left-parenthesis x right-parenthesis right-parenthesis d x 2nd Column equals upper A left-parenthesis k Subscript m Superscript 2 Baseline minus k squared right-parenthesis p Subscript m Superscript prime Baseline 2nd Row 1st Column Blank 2nd Column equals minus integral Subscript 0 Superscript upper L Baseline normal upper Phi Subscript p comma m Superscript asterisk Baseline left-parenthesis x right-parenthesis bold-italic f Subscript q Baseline left-parenthesis x right-parenthesis d x EndLayout  (4.38)

providing an expression similar to (1.28) and (1.126)

p prime Subscript m Baseline equals minus StartFraction integral Subscript 0 Superscript upper L Baseline normal upper Phi Subscript p comma m Superscript asterisk Baseline left-parenthesis x right-parenthesis bold-italic f Subscript q Baseline left-parenthesis x right-parenthesis d x Over upper A left-parenthesis k Subscript m Superscript 2 Baseline minus k squared right-parenthesis EndFraction equals plus j omega rho 0 c 0 squared StartFraction integral Subscript 0 Superscript upper L Baseline normal upper Phi Subscript p comma m Superscript asterisk Baseline left-parenthesis x right-parenthesis bold-italic q Subscript s Baseline left-parenthesis x right-parenthesis Over upper A left-parenthesis omega Subscript m Superscript 2 Baseline minus omega squared right-parenthesis EndFraction  (4.39)

An equivalent relationship can be found with the free boundary modes.

4.1.4.3 Modal Density

When systems are excited by broadband signals, it is relevant how many modes are in the frequency range of interest. The more modes are available, the higher the probability for the exciting force to excite resonators. We define the number of modes until frequency ω as

upper N equals StartFraction omega Over normal upper Delta omega Subscript n Baseline EndFraction equals StartFraction omega upper L Over pi c 0 EndFraction  (4.40)

Δωn is the distance between each modal frequency as shown in Figure 4.4. The modal density is the number of modes per band given by

StartLayout 1st Row 1st Column n Subscript 1 upper D Baseline left-parenthesis omega right-parenthesis 2nd Column equals StartFraction normal upper Delta upper N Over normal upper Delta omega EndFraction 3rd Column limit Underscript normal upper Delta omega right-arrow 0 Endscripts n Subscript 1 upper D 4th Column equals StartFraction d upper N Over d omega EndFraction equals StartFraction upper L Over pi c 0 EndFraction EndLayout  (4.41)

Figure 4.4 Modal frequencies along frequency and wavenumber axes.
Source: Alexander Peiffer.

These quantities are indicators of the dynamic complexity. A high number of modes in a band may denote high dynamic complexity. In addition they are criteria for the probability to excite a mode when excited by signals with a specific bandwidth.

4.1.4.4 Damping

Damping is considered with Equation (2.59) by using a complex wavenumber

bold-italic k Subscript n Baseline equals k Subscript n Baseline left-parenthesis 1 minus j StartFraction eta Over 2 EndFraction right-parenthesis right double arrow bold-italic k Subscript n Superscript 2 Baseline equals k Subscript n Baseline left-parenthesis 1 plus j eta minus eta squared slash 4 right-parenthesis almost-equals k Subscript n Superscript 2 Baseline left-parenthesis 1 plus j eta right-parenthesis  (4.42)

With this assumption we end up with a modal damping according to (1.63) and (1.127). So, the damping in the wave propagation is in line with the modal damping expressions from Chapter 1.

4.1.4.5 Modal Frequency Response

The first example with a piston excitation at x=0 is taken as first application of the modal method. According to Equation (4.39) the response is

bold-italic p prime Subscript n Baseline equals j omega rho 0 StartFraction integral Subscript 0 Superscript upper L Baseline normal upper Phi Subscript p comma m Superscript asterisk Baseline left-parenthesis x right-parenthesis bold-italic q Subscript s Baseline left-parenthesis x right-parenthesis d x Over upper A left-parenthesis k Subscript n Superscript 2 Baseline minus k squared right-parenthesis EndFraction  (4.43)

We assume a piston vibrating with v^x at x=0, so the volumetric source strength density would be qs(x)=Q^δ(xx0)=δ(xx0)Av^x1. Using the sifting property of the delta function the result is

bold-italic p prime Subscript n Baseline equals StartRoot StartFraction upper Lamda Subscript n Baseline Over upper L EndFraction EndRoot StartFraction j omega rho 0 ModifyingAbove upper Q With caret Over upper A left-parenthesis k Subscript n Superscript 2 Baseline minus k squared right-parenthesis EndFraction equals StartRoot StartFraction upper Lamda Subscript n Baseline Over upper L EndFraction EndRoot StartFraction j omega rho 0 bold-italic v Subscript x Baseline Over left-parenthesis k Subscript n Superscript 2 Baseline minus k squared right-parenthesis EndFraction  (4.44)

and transforming back into real space with (4.33) gives

bold-italic p left-parenthesis x right-parenthesis equals sigma-summation Underscript n equals 0 Overscript normal infinity Endscripts StartFraction upper Lamda Subscript n Baseline Over upper L EndFraction StartFraction j omega rho 0 bold-italic v Subscript x Baseline Over k Subscript n Superscript 2 Baseline minus k squared EndFraction cosine left-parenthesis k Subscript n Baseline x right-parenthesis  (4.45)

Obviously, in numerical implementation the infinite series must be replaced by a certain number N of modes. As we now the exact solution from Equation (4.26), we can calculate the error

delta p left-parenthesis x right-parenthesis equals sigma-summation Underscript n equals 0 Overscript upper N Endscripts StartFraction 2 Over upper L EndFraction StartFraction j omega bold-italic v Subscript x Baseline Subscript 1 Baseline Over k Subscript n Superscript 2 Baseline minus k squared EndFraction cosine left-parenthesis k Subscript n Baseline x right-parenthesis minus z 0 bold-italic v Subscript x Baseline Subscript 1 Baseline StartFraction cosine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction  (4.46)

A modal solution may require a large number of modes to synthesize the exact solution similar to the Fourier transform of a rectangular signal. If the solution is similar to a mode, saying that k is chosen as k=kn, the approximation is naturally exact if the damping is not too high. In Figure 4.5 six modes (N=6) in the sum of Equation (4.45) are shown. On the left hand side the system is excited at resonance frequencies, the upper two are well represented, but the case n=8 shows that six modes are not sufficient. The required shape to represent the solution is simply not available in the used mode set. When the system is excited out of resonance as shown on the right hand side, even for low frequencies the representation is not perfect, the different colors show increasing numbers of modes. Investigating the absolute value of the modal coordinates as shown in Figure 4.6 the above considerations are confirmed. The out-of-resonance excitation requires a reasonable number of modes, with decreasing contribution, the more the modal frequency is separated from the frequency of excitation.

Figure 4.5Modal reconstruction of system response to frequencies at resonance (LHS) and out of resonance (RHS).
Source: Alexander Peiffer.

Figure 4.6Modal coefficients for different wavenumbers.
Source: Alexander Peiffer.

Choosing a high value of n=50 we see that due to large damping even the result of resonance frequencies N=6 leads to visible deviations, but for N=100 both curves coincide. Consequently for out-of-resonance frequencies 100 modes are required for reasonable precision. In other words, for systems large compared to the wavelength and with damping, a larger number of modes is required to describe the dynamics correctly.

Figure 4.7Exact and modal solutions for different total mode number, resonant and anti-resonant case, and high frequencies.
Source: Alexander Peiffer.

4.2 Three-dimensional Systems

In this section we deal with large three-dimensional cavities or rooms. We focus on simple geometries to describe the principle behavior over the full frequency range and for being able to work out the details on analytical solutions. Treatments on room acoustics can be found for example in Morse and Ingard (1968), Pierce (1991) and Jacobsen (2008).

4.2.1 Modes

We consider a room of rectangular shape as shown in Figure 4.8. We solve the Helmholtz Equation (2.42) in Cartesian coordinates with rigid boundary conditions vn=0. With (2.35) this yields

StartLayout 1st Row 1st Column StartFraction partial-differential bold-italic p Over partial-differential x EndFraction 2nd Column equals 0 at x equals 0 comma upper L Subscript x Baseline EndLayout  (4.47)
StartLayout 1st Row 1st Column StartFraction partial-differential bold-italic p Over partial-differential y EndFraction 2nd Column equals 0 at y equals 0 comma upper L Subscript y Baseline EndLayout  (4.48)
StartLayout 1st Row 1st Column StartFraction partial-differential bold-italic p Over partial-differential z EndFraction 2nd Column equals 0 at z equals 0 comma upper L Subscript z Baseline EndLayout  (4.49)

Figure 4.8 Rectangular room and dimensions.
Source: Alexander Peiffer.

We assume that the solution can be factorized, meaning that the solution of p can be expressed as the product of three independent functions of x, y and z such as

bold-italic p left-parenthesis x comma y comma z right-parenthesis equals bold-italic p Subscript x Baseline left-parenthesis x right-parenthesis bold-italic p Subscript y Baseline left-parenthesis y right-parenthesis bold-italic p Subscript z Baseline left-parenthesis z right-parenthesis  (4.50)

Entering this into (2.42) gives

StartFraction 1 Over p Subscript x Baseline left-parenthesis x right-parenthesis EndFraction StartFraction d squared p Subscript x Baseline left-parenthesis x right-parenthesis Over d x squared EndFraction plus StartFraction 1 Over p Subscript y Baseline left-parenthesis y right-parenthesis EndFraction StartFraction d squared p Subscript y Baseline left-parenthesis y right-parenthesis Over d y squared EndFraction plus StartFraction 1 Over p Subscript z Baseline left-parenthesis z right-parenthesis EndFraction StartFraction d squared p Subscript z Baseline left-parenthesis z right-parenthesis Over d z squared EndFraction plus k squared equals 0  (4.51a)

All terms must be independent from the other space variables, e.g. the term with px is independent from y,z and equals kx.

StartFraction d squared bold-italic p Subscript x Baseline left-parenthesis x right-parenthesis Over d x squared EndFraction plus k Subscript x Superscript 2 Baseline bold-italic p left-parenthesis x right-parenthesis equals 0  (4.52a)
StartFraction d squared bold-italic p Subscript y Baseline left-parenthesis y right-parenthesis Over d y squared EndFraction plus k Subscript y Superscript 2 Baseline bold-italic p left-parenthesis y right-parenthesis equals 0  (4.52b)
StartFraction d squared bold-italic p Subscript z Baseline left-parenthesis y right-parenthesis Over d z squared EndFraction plus k Subscript z Superscript 2 Baseline bold-italic p left-parenthesis z right-parenthesis equals 0  (4.52c)

From Equation (4.51a) follows the constraint

k Subscript x Superscript 2 Baseline plus k Subscript y Superscript 2 Baseline plus k Subscript z Superscript 2 Baseline equals k squared  (4.53)

The solutions for the equations can be adapted from the tube case

bold-italic p Subscript x Baseline left-parenthesis x right-parenthesis equals bold-italic upper A e Superscript minus j k Super Subscript x Superscript x Baseline plus bold-italic upper B e Superscript j k Super Subscript x Superscript x  (4.54a)
bold-italic p Subscript y Baseline left-parenthesis y right-parenthesis equals bold-italic upper C e Superscript minus j k Super Subscript y Superscript y Baseline plus bold-italic upper D e Superscript j k Super Subscript y Superscript y  (4.54b)
bold-italic p Subscript z Baseline left-parenthesis z right-parenthesis equals bold-italic upper E e Superscript minus j k Super Subscript z Superscript z Baseline plus bold-italic upper F e Superscript j k Super Subscript z Superscript z  (4.54c)

and the factorisation leads to

bold-italic p left-parenthesis x comma y comma z right-parenthesis equals left-parenthesis bold-italic upper A e Superscript minus j k Super Subscript x Superscript x Baseline plus bold-italic upper B e Superscript j k Super Subscript x Superscript x Baseline right-parenthesis left-parenthesis bold-italic upper C e Superscript minus j k Super Subscript y Superscript y Baseline plus bold-italic upper D e Superscript j k Super Subscript y Superscript y Baseline right-parenthesis left-parenthesis bold-italic upper E e Superscript minus j k Super Subscript z Superscript z Baseline plus bold-italic upper F e Superscript j k Super Subscript z Superscript z Baseline right-parenthesis  (4.55)

The rigid boundary condition at x=0,y=0 and z=0 implies that A=B and C=D and E=F leading to a set of cosine functions

bold-italic p left-parenthesis x comma y comma z right-parenthesis equals 2 bold-italic upper A cosine left-parenthesis k Subscript x Baseline x right-parenthesis 2 bold-italic upper C cosine left-parenthesis k Subscript y Baseline y right-parenthesis 2 bold-italic upper E cosine left-parenthesis k Subscript z Baseline z right-parenthesis  (4.56)

The boundary conditions at the opposite walls x=Lx,y=Ly and z=Lz require that a natural multiple of half-wavelength fit into the room dimensions

k Subscript x Baseline upper L Subscript x Baseline equals n Subscript x Baseline pi comma k Subscript y Baseline upper L Subscript y Baseline equals n Subscript y Baseline pi comma k Subscript z Baseline upper L Subscript z Baseline equals n Subscript z Baseline pi  (4.57)

with ni=0,1,2,3, and i=x,y,z. Finally, we denote every mode Ψ of the room with (nx,ny,nz)

normal upper Psi Subscript n Sub Subscript x Subscript n Sub Subscript y Subscript n Sub Subscript z Baseline left-parenthesis x comma y comma z right-parenthesis equals upper Lamda Subscript n Sub Subscript x Subscript n Sub Subscript y Subscript n Sub Subscript z Baseline cosine left-parenthesis StartFraction n Subscript x Baseline pi x Over upper L Subscript x Baseline EndFraction right-parenthesis cosine left-parenthesis StartFraction n Subscript y Baseline pi y Over upper L Subscript y Baseline EndFraction right-parenthesis cosine left-parenthesis StartFraction n Subscript z Baseline pi z Over upper L Subscript z Baseline EndFraction right-parenthesis  (4.58)

and the solution in modal coordinates pnxnynz is

bold-italic p left-parenthesis x comma y comma z right-parenthesis equals sigma-summation Underscript n Subscript x Baseline equals 0 Overscript upper N Subscript x Baseline Endscripts sigma-summation Underscript n Subscript y Baseline equals 0 Overscript upper N Subscript y Baseline Endscripts sigma-summation Underscript n Subscript z Baseline equals 0 Overscript upper N Subscript z Baseline Endscripts bold-italic p prime Subscript n Sub Subscript x Subscript n Sub Subscript y Subscript n Sub Subscript z Baseline normal upper Psi Subscript n Sub Subscript x Subscript n Sub Subscript y Subscript n Sub Subscript z Baseline left-parenthesis x comma y comma z right-parenthesis  (4.59)

Here, we have to include static modes in any direction. Thus Λ is defined as

upper Lamda Subscript n Sub Subscript x Subscript n Sub Subscript y Subscript n Sub Subscript z Subscript Baseline equals StartRoot epsilon Subscript n Sub Subscript z Subscript Baseline epsilon Subscript n Sub Subscript z Subscript Baseline epsilon Subscript n Sub Subscript z Subscript Baseline EndRoot with epsilon 0 equals 1 and epsilon Subscript n Baseline equals 2 for-all n greater-than 0 period  (4.60)

For simplicity the three indexes are combined into one index n

bold-italic p left-parenthesis x comma y comma z right-parenthesis equals sigma-summation Underscript n equals 0 Overscript upper N Endscripts bold-italic p prime Subscript n Baseline normal upper Psi Subscript n Baseline left-parenthesis x comma y comma z right-parenthesis  (4.61)

where n represents the three integers nx,ny and nz. Using Equation (4.53) and (4.57) we get an expression for the natural frequencies of the room

omega Subscript n Baseline equals k Subscript n Baseline c 0 equals c 0 StartRoot left-parenthesis StartFraction n Subscript x Baseline pi Over upper L Subscript x Baseline EndFraction right-parenthesis squared plus left-parenthesis StartFraction n Subscript y Baseline pi Over upper L Subscript y Baseline EndFraction right-parenthesis squared plus left-parenthesis StartFraction n Subscript z Baseline pi Over upper L Subscript z Baseline EndFraction right-parenthesis squared EndRoot  (4.62)

The modes are orthogonal as will be shown by entering (4.58) into the Helmholtz Equation (2.42)

StartLayout 1st Row 1st Column normal upper Delta normal upper Psi Subscript m plus k Subscript m Superscript 2 Baseline normal upper Psi Subscript m 2nd Column equals 0 3rd Column normal upper Delta normal upper Psi Subscript n plus k Subscript n Superscript 2 Baseline normal upper Psi Subscript n 4th Column equals 0 EndLayout  (4.63)

Multiplying the first with Ψn and the second with Ψm leads to the difference

normal upper Psi Subscript n Baseline left-parenthesis normal upper Delta plus k Subscript m Superscript 2 Baseline right-parenthesis normal upper Psi Subscript m Baseline minus normal upper Psi Subscript m Baseline left-parenthesis normal upper Delta plus k Subscript n Superscript 2 Baseline right-parenthesis normal upper Psi Subscript n Baseline equals 0  (4.64)

that can be rewritten as

nabla left-parenthesis upper Psi Subscript n Baseline nabla upper Psi Subscript m Baseline minus upper Psi Subscript m Baseline nabla upper Psi Subscript n Baseline right-parenthesis plus left-parenthesis k Subscript m Superscript 2 Baseline minus k Subscript n Superscript 2 Baseline right-parenthesis upper Psi Subscript m Baseline upper Psi Subscript n Baseline equals 0  (4.65a)

In accordance with the one-dimensional system we integrate over the volume and apply Gauss's theorem on the first term

integral Underscript partial-differential upper V Endscripts left-parenthesis normal upper Psi Subscript n Baseline nabla normal upper Psi Subscript m Baseline minus normal upper Psi Subscript m Baseline nabla normal upper Psi Subscript n Baseline right-parenthesis d bold upper S plus left-parenthesis k Subscript m Superscript 2 Baseline minus k Subscript n Superscript 2 Baseline right-parenthesis integral Underscript upper V Endscripts normal upper Psi Subscript m Baseline normal upper Psi Subscript n Baseline d upper V equals 0  (4.66)

with V denoting the room surface. At rigid walls any normal component of the gradient is zero according to (4.47)–(4.49), so the functions are orthogonal regarding the three-dimensional functional

integral Underscript upper V Endscripts normal upper Psi Subscript m Baseline normal upper Psi Subscript n Baseline d upper V equals 0 for all m not-equals n period  (4.67)

It can be shown as in (4.35) that the modes can be normalized with the following expression

normal upper Phi Subscript n Baseline equals StartFraction 1 Over StartRoot upper V EndRoot EndFraction normal upper Psi Subscript n Baseline with integral Underscript upper V Endscripts normal upper Phi Subscript m Baseline normal upper Phi Subscript n Baseline equals delta Subscript m n Baseline  (4.68)

4.2.1.1 Modal Density

The number of modes in a three-dimensional system must be naturally higher than for one-dimensional systems. We can count the possible modes below a specific frequency using Equation (4.62). As the mode count becomes important when the system gets complex and thus many modes exist, we need a more appropriate way to estimate the number of modes that occur until frequency ω or k=ω/c0.

A geometrical approach is used to estimate the mode count with some corrections as proposed by Maa (1939). In Figure 4.9 the plane of modal wavenumbers for the tangential modes nz=0 is shown. Each oblique mode occupies a full rectangle of area kxky=π2/(LxLy) in the quarter circle of radius k=ω/c0. The number of modes would be the quarter circle area divided by the rectangle area. However, the axial modes with additionally nx=0 or ny=0 are not correctly considered. Only half of their occupied area is taken into account by the quarter circle. This is corrected by adding half-rectangles of area kπ/(2Lx) and kπ/(2Ly). The static mode is covered by one quarter through the quarter circle, but two quarters are already compensated by rectangular area. So, only a correction by π2/(4LxLy) is necessary.

Figure 4.9 Wavenumber pattern for mode count determination in the kx,ky plane.
Source: Alexander Peiffer.

The total area is given by sum of

  1. Quarter circle of area πk2/4.
  2. Two rectangles of size πk/(2Lx) and πk/(2Ly).
  3. A quarter rectangle of size π2/(4LxLy).

The total area of all these components divided by the area of one oblique mode area provides an estimate for two-dimensional systems.

For the three-dimensional wavenumber grid in k-space a similar compensation is required. See Figure 4.10 for details. The octant of radius k is divided by the cube space any oblique mode is occupying, i.e. ΔV=π3/(LxLyLz) to estimate the mode count. The oblique modes with all ni0 are considered correctly.

Figure 4.10Wavenumber grid in three-dimensional space.
Source: Alexander Peiffer.

The cubes corresponding to the tangential modes are cut in half; this is compensated by three quarter slabs. Only the quarter of the axial modes is covered by the octant, but one half is already considered by the two adjacent quarter slabs. So, we compensate by the columns with length k and quarter area. To be fully consequent the static mode is considered by one-eighth from the octant and two times the contribution of the three slabs and columns. Finally, a missing one-eighth must be added to the full volume.

The summarized total mode count volume has the following components:

  1. An octant of a sphere of radius k=ω/c0 with Vobl=πk36 .
  2. The sum of the volume of three quarter slabs of radius k and with thicknesses π/(2Lx),π/(2Ly) and π/(2Lz) respectively.
  3. The sum of the volume of three rectangular columns of length k and cross-sectional area π2/(4LxLy), π2/(4LyLz) and π2/(4LxLz).
  4. A volume π3/(8LxLyLz) for the static mode.

Thus, the total volume divided by the volume on one mode π3/(LxLyLz)=π3/V is

upper N left-parenthesis omega right-parenthesis almost-equals StartFraction upper V k cubed Over 6 pi squared EndFraction plus StartFraction pi k squared Over 8 pi squared EndFraction left-parenthesis upper L Subscript y Baseline upper L Subscript z Baseline plus upper L Subscript x Baseline upper L Subscript z Baseline plus upper L Subscript x Baseline upper L Subscript y Baseline right-parenthesis plus StartFraction k pi squared Over 4 pi cubed EndFraction left-parenthesis upper L Subscript z Baseline plus upper L Subscript x Baseline plus upper L Subscript y Baseline right-parenthesis plus one-eighth  (4.69)

Introducing the quantities perimeter P=4(Lx+Ly+Lz) and surface S=2(LxLy+LyLz+LxLz) we get the approximate expression for the mode count formulated for basic geometric quantities V, S, and P

upper N Subscript 3 upper D Baseline left-parenthesis omega right-parenthesis almost-equals StartFraction upper V omega cubed Over 6 pi squared c 0 cubed EndFraction plus StartFraction upper S omega squared Over 16 pi c 0 squared EndFraction plus StartFraction upper P omega Over 16 pi c 0 EndFraction plus one-eighth  (4.70)

and for the modal density

n Subscript 3 upper D Baseline left-parenthesis omega right-parenthesis equals StartFraction d n upper N left-parenthesis omega right-parenthesis Over d omega EndFraction equals StartFraction upper V omega squared Over 2 pi squared c 0 cubed EndFraction plus StartFraction upper S omega Over 8 pi c 0 squared EndFraction plus StartFraction upper P Over 16 pi c 0 EndFraction  (4.71)

In Figure 4.11 the exact curves derived by counting all modes with ωnω and the estimated curves from function (4.70) are shown. At high mode count the estimation is precise enough. The more irregular the cavity the worse the estimation becomes. Irregular cavities mean having a large perimeter and surface compared to the volume, hence flat and column shaped cavities.

Figure 4.11 Mode count of different room configurations: cubic, flat and lengthy.
Source: Alexander Peiffer.

Figure 4.12 shows precise and estimated modal density for the same rooms. Here, the derivative leads to more sensitivity to small errors. Irregular cavities lead to inaccurate modal density estimations.

Figure 4.12Modal density of different room configurations, Δω=40πHz.
Source: Alexander Peiffer.

4.2.2 Modal Frequency Response

The mode shapes of the room can be used to calculate the solution of the inhomogeneous Helmholtz Equation (2.123) similar to the one-dimensional case in this chapter. For consideration of absorbing boundaries we include the treatment on non-rigid cavity surfaces. We start with

StartLayout 1st Row left-parenthesis k squared plus normal upper Delta right-parenthesis bold-italic p left-parenthesis bold r comma omega right-parenthesis equals minus j omega rho 0 bold-italic q Subscript s Baseline plus nabla bold f Superscript prime Baseline equals minus bold-italic f Subscript q Baseline left-parenthesis bold r right-parenthesis EndLayout  (2.123)

Multiplying from the left with Φn(r) and integrating over the room volume leads to

integral Underscript upper V Endscripts normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis left-parenthesis bold-italic k squared plus normal upper Delta right-parenthesis bold-italic p left-parenthesis bold r right-parenthesis d upper V equals minus integral Underscript upper V Endscripts normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis bold-italic f Subscript q Baseline left-parenthesis bold r right-parenthesis d upper V  (4.72)

With the Green identity, the first term on the left hand side can be converted and we get

StartLayout 1st Row integral Underscript upper V Endscripts bold-italic p left-parenthesis bold r right-parenthesis left-parenthesis bold-italic k squared plus normal upper Delta right-parenthesis normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis d upper V plus integral Underscript partial-differential upper V Endscripts normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis nabla bold-italic p left-parenthesis bold r right-parenthesis minus bold-italic p left-parenthesis bold r right-parenthesis nabla normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis d upper S 2nd Row equals minus integral Underscript upper V Endscripts normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis bold-italic f Subscript q Baseline left-parenthesis bold r right-parenthesis d upper V EndLayout  (4.73)

The second term in the surface integral is zero because of the boundary conditions in the mode shape determination. The pressure gradient can be replaced with (2.35)

nabla bold-italic p left-parenthesis bold r right-parenthesis Subscript partial-differential upper V Baseline equals StartFraction partial-differential bold-italic p Over partial-differential n EndFraction equals minus j omega rho 0 bold-italic v Subscript n  (4.74)

and ΔΦn(r)=kn2Φn(r) This equation can be used for implementing boundary conditions, for example vibrating surfaces. Here we consider a locally reacting surface with

StartFraction partial-differential bold-italic p Over partial-differential n EndFraction equals minus j omega rho 0 StartFraction bold-italic p Over bold-italic z EndFraction equals minus j omega bold-italic k z 0 StartFraction bold-italic p Over bold-italic z EndFraction  (4.75)

Using this in (4.73) and the modal sum for the pressure

bold-italic p left-parenthesis bold r right-parenthesis equals sigma-summation Underscript n equals 0 Overscript normal infinity Endscripts bold-italic p prime Subscript n Baseline normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis  (4.76)

we get

StartLayout 1st Row 1st Column Blank 2nd Column integral Underscript upper V Endscripts sigma-summation Underscript m Overscript normal infinity Endscripts bold-italic p prime Subscript m Baseline normal upper Phi Subscript m Baseline left-parenthesis bold r right-parenthesis left-parenthesis bold-italic k squared minus k squared right-parenthesis normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis d upper V 2nd Row 1st Column Blank 2nd Column minus j k integral Underscript partial-differential upper V Endscripts normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis StartFraction z 0 Over bold-italic z left-parenthesis bold r right-parenthesis EndFraction sigma-summation Underscript m Overscript normal infinity Endscripts bold-italic p prime Subscript m Baseline normal upper Phi Subscript m Baseline left-parenthesis bold r right-parenthesis d upper S 3rd Row 1st Column Blank 2nd Column equals minus integral Underscript upper V Endscripts normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis bold-italic f Subscript q Baseline left-parenthesis bold r right-parenthesis d upper V EndLayout  (4.77)

and by using the orthogonality relationship (4.68) this reads as

bold-italic p prime Subscript n Baseline left-parenthesis bold-italic k squared minus k Subscript n Superscript 2 Baseline right-parenthesis minus j k integral Underscript partial-differential upper V Endscripts sigma-summation Underscript m Overscript normal infinity Endscripts normal upper Phi Subscript n Baseline StartFraction z 0 Over bold-italic z EndFraction normal upper Phi Subscript m Baseline d upper S equals minus integral Underscript upper V Endscripts normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis bold-italic f Subscript q Baseline left-parenthesis bold r right-parenthesis d upper V  (4.78)

The surface integral leads to mode coupling, meaning that all modes contribute to the n-th modal coordinate. We define

upper B Subscript n m Baseline equals integral Underscript partial-differential upper V Endscripts sigma-summation Underscript m Overscript normal infinity Endscripts normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis StartFraction z 0 Over bold-italic z EndFraction normal upper Phi Subscript m Baseline left-parenthesis bold r right-parenthesis d upper S  (4.79)

In rooms with nearly rigid surfaces the off-diagonal components can be neglected and only Bnn is considered. Using this leads to

bold-italic p prime Subscript n Baseline left-parenthesis bold-italic k squared minus k Subscript n Superscript 2 Baseline minus j k upper B Subscript n n Baseline right-parenthesis equals minus integral Underscript upper V Endscripts normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis bold-italic f Subscript q Baseline left-parenthesis bold r right-parenthesis d upper V  (4.80)

From the source term fq(r)=δ(rr0) we would get the modal coordinates of the Green’s function of rectangular rooms:

upper G prime Subscript n Baseline equals minus StartFraction normal upper Phi Subscript n Baseline left-parenthesis bold r 0 right-parenthesis Over k squared minus k Subscript n Superscript 2 Baseline minus j k upper B Subscript n n Baseline EndFraction  (4.81)

or the Green’s function as a series

upper G left-parenthesis bold r comma bold r 0 right-parenthesis equals minus sigma-summation Underscript n Endscripts StartFraction normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis normal upper Phi Subscript n Baseline left-parenthesis bold r 0 right-parenthesis Over bold-italic k squared minus k Subscript n Superscript 2 Baseline minus j k upper B Subscript n n Baseline EndFraction  (4.82)

This is the generalized Green’s function of the rectangular room, because it provides the point source response under given boundary conditions. Using acoustic point sources fq(r)=jωρoQδ(rr0) and equations (4.80) and (4.76) we get the modal response of the rectangular room with point source of strength Q(r0) located at r0

bold-italic p left-parenthesis bold r right-parenthesis equals minus j omega rho 0 bold-italic upper Q sigma-summation Underscript n Endscripts StartFraction normal upper Phi Subscript n Baseline left-parenthesis bold r right-parenthesis normal upper Phi Subscript n Baseline left-parenthesis bold r 0 right-parenthesis Over k squared minus k Subscript n Superscript 2 Baseline minus j k upper B Subscript n n Baseline EndFraction  (4.83)

The practical aspect of the above equation is that it considers damping due to surface absorption and propagation simultaneously. For rigid walls Bnn vanishes and the equation corresponds again to the usual modal response form.

4.2.3 System Responses

Whether the Green’s function or the modal response form (4.83) is used we may calculate the response of the system. For the understanding of low- and high-frequency behavior we investigate the source characteristics and wave field of point sources. They can by located in the room volume, at the walls, edges, or corners. In our first considerations we neglect wall absorption and apply an overall modal damping.

bold-italic p left-parenthesis bold r right-parenthesis equals minus j omega rho 0 bold-italic upper Q sigma-summation Underscript n Endscripts StartFraction normal upper Phi Subscript n Superscript asterisk Baseline left-parenthesis bold r right-parenthesis normal upper Phi Subscript n Baseline left-parenthesis bold r 0 right-parenthesis Over k squared minus k Subscript n Superscript 2 Baseline left-parenthesis 1 plus j eta right-parenthesis EndFraction  (4.84)

4.2.3.1 Point Sources

A point source at the wall is represented by a small piston with Rλ as shown in Figure 4.14. In this case the velocity at the wall leads to the following volume source

bold-italic v left-parenthesis bold r right-parenthesis equals bold-italic v for all StartAbsoluteValue bold r minus bold r 0 EndAbsoluteValue less-than-or-equal-to upper R right double arrow bold-italic upper Q equals pi upper R squared bold-italic v  (4.85)

Figure 4.14 Point source and rectangular piston in room wall.
Source: Alexander Peiffer.

Together with (4.84) the response can be calculated. This expression can also be derived by introducing the vibration as a boundary condition applying p(r0)=jωρ0v. As we need the radiation impedance for later applications the mechanical impedance is derived by using the source area A.

bold-italic upper Z equals StartFraction bold-italic upper F Over bold-italic v EndFraction equals StartFraction bold-italic p upper A Over bold-italic v EndFraction equals minus j omega rho 0 upper A squared sigma-summation Underscript m Endscripts StartFraction normal upper Phi Subscript m Baseline left-parenthesis bold r 0 right-parenthesis normal upper Phi Subscript m Baseline left-parenthesis bold r 0 right-parenthesis Over k squared minus k Subscript m Superscript 2 Baseline EndFraction  (4.86)

This impedance can be used when vibrating surfaces are described by discrete meshes. Every vibrating node is related to a specific area and thus experiences a mechanical radiation impedance from the fluid. In Figure 4.13 the mechanical impedance of a point source in the room wall is shown and compared to the impedance of the circular piston. In the range of validity for the point source, i.e. λR or kR<1 the real part of the room point impedance equals the piston result.

Figure 4.13 Mechanical impedance of point radiator in the room wall r=(0,1,0.7).
Source: Alexander Peiffer.

2.3.2 Radiation Impedance and Power

With the above defined impedance the radiated power is given by

normal upper Pi equals one-half bold-italic upper F bold-italic v Superscript asterisk Baseline equals one-half bold-italic upper Z bold-italic p squared equals minus one-half j omega rho 0 upper A bold-italic v squared sigma-summation Underscript m Endscripts StartFraction normal upper Phi Subscript m Baseline left-parenthesis bold r right-parenthesis normal upper Phi Subscript m Baseline left-parenthesis bold r right-parenthesis Over k squared minus k Subscript m Superscript 2 Baseline EndFraction  (4.87)

From the considerations in section 2.4.1 we know that the radiation impedance is more appropriate to describe radiation of point sources. For the rectangular room this reads as

bold-italic upper Z Subscript a Baseline left-parenthesis bold r right-parenthesis equals StartFraction bold-italic p left-parenthesis bold r right-parenthesis Over bold-italic upper Q left-parenthesis bold r right-parenthesis EndFraction equals minus j omega rho 0 sigma-summation Underscript m Endscripts StartFraction ModifyingAbove normal upper Phi With caret Subscript m Superscript 2 Baseline left-parenthesis bold r right-parenthesis Over k squared minus k Subscript m Superscript 2 Baseline left-parenthesis 1 plus j eta right-parenthesis EndFraction  (4.88)

for the power radiated into the room we get

normal upper Pi Subscript rad Baseline left-parenthesis bold r right-parenthesis equals one-half upper R e left-parenthesis bold-italic p left-parenthesis bold r right-parenthesis bold-italic upper Q Superscript asterisk Baseline left-parenthesis bold r right-parenthesis right-parenthesis equals minus StartFraction j omega rho 0 Over 2 EndFraction sigma-summation Underscript m Endscripts StartFraction normal upper Phi Subscript m Superscript 2 Baseline left-parenthesis bold r right-parenthesis ModifyingAbove upper Q With caret squared left-parenthesis bold r right-parenthesis Over k squared minus k Subscript m Superscript 2 Baseline left-parenthesis 1 plus j eta right-parenthesis EndFraction  (4.89)

4.2.3.3Rectangular Piston in the Wall

The room itself is assumed to be source free, so f(r0)=0. Therefore, there is no contribution from the volume term in the Kirchhoff integral (2.137). We assume a rectangular piston in the wall at x=0; the dimensions are as shown in Figure 4.14.

bold-italic p left-parenthesis bold r right-parenthesis equals minus j omega rho 0 integral Underscript partial-differential upper V Endscripts upper G left-parenthesis bold r comma bold r 0 right-parenthesis bold-italic v left-parenthesis bold r 0 right-parenthesis d bold r 0  (4.90)

The surface integral over the room surface is zero except at the wall at x0=0 and the limit of the rectangular surface

integral Underscript partial-differential upper V Endscripts upper G left-parenthesis bold r comma bold r bold 0 right-parenthesis bold-italic v left-parenthesis bold r 0 right-parenthesis d bold r 0 equals bold-italic v integral Subscript y 1 Superscript y 2 Baseline integral Subscript z 1 Superscript z 2 Baseline upper G left-parenthesis bold r comma bold r bold 0 right-parenthesis d y 0 d z 0  (4.91)

This integral can be analytically solved for the modal Green’s function from Equation (4.82)

StartLayout 1st Row 1st Column bold-italic p left-parenthesis bold r right-parenthesis 2nd Column equals 3rd Column minus j omega rho 0 sigma-summation Underscript m Endscripts StartFraction bold-italic v normal upper Phi Subscript m Baseline left-parenthesis bold r right-parenthesis Over k Subscript m Superscript 2 Baseline minus k squared EndFraction integral Subscript y 1 Superscript y 2 Baseline integral Subscript z 1 Superscript z 2 Baseline normal upper Phi Subscript m Baseline left-parenthesis bold r bold 0 right-parenthesis d y 0 d z 0 2nd Row 1st Column Blank 2nd Column equals 3rd Column minus j omega rho 0 sigma-summation Underscript m Endscripts StartFraction bold-italic v normal upper Phi Subscript m Baseline left-parenthesis bold r right-parenthesis Over k Subscript m Superscript 2 Baseline minus k squared EndFraction upper A Subscript m EndLayout  (4.92)

Assuming x0=0 the solution for Am=Amx,my,mz is

StartLayout 1st Row upper A Subscript m Baseline equals StartFraction upper Lamda Subscript m Baseline Over upper V EndFraction StartFraction upper L Subscript y Baseline upper L Subscript z Baseline Over m Subscript y Baseline m Subscript z Baseline pi squared EndFraction 2nd Row left-bracket sine left-parenthesis StartFraction m Subscript y Baseline pi y 2 Over upper L Subscript y Baseline EndFraction right-parenthesis minus sine left-parenthesis StartFraction m Subscript y Baseline pi y 1 Over upper L Subscript y Baseline EndFraction right-parenthesis right-bracket left-bracket sine left-parenthesis StartFraction m Subscript z Baseline pi z 2 Over upper L Subscript z Baseline EndFraction right-parenthesis minus sine left-parenthesis StartFraction m Subscript z Baseline pi z 1 Over upper L Subscript z Baseline EndFraction right-parenthesis right-bracket EndLayout  (4.93)

With Equation (4.92) the pressure field due to the vibrating piston can be derived. But, we are interested in the radiation impedance to the piston, in order to get the power radiated into the room.

For this we have to integrate the pressure over the piston as in Equation (2.146)

StartLayout 1st Row 1st Column bold-italic upper Z 2nd Column equals minus j omega rho 0 sigma-summation Underscript m Endscripts StartFraction 1 Over bold-italic v EndFraction integral Subscript y 1 Superscript y 2 Baseline integral Subscript z 1 Superscript z 2 Baseline p left-parenthesis bold r right-parenthesis d y d z 2nd Row 1st Column Blank 2nd Column equals minus j omega rho 0 sigma-summation Underscript m Endscripts sigma-summation Underscript m Endscripts StartFraction upper A Subscript m Baseline Over k Subscript m Superscript 2 Baseline minus k squared EndFraction integral Subscript y 1 Superscript y 2 Baseline integral Subscript z 1 Superscript z 2 Baseline normal upper Phi Subscript m Baseline left-parenthesis bold r right-parenthesis d y d z 3rd Row 1st Column Blank 2nd Column equals minus j omega rho 0 sigma-summation Underscript m Endscripts StartFraction upper A Subscript m Superscript 2 Baseline Over k Subscript m Superscript 2 Baseline minus k squared EndFraction EndLayout  (4.94)

because we have to validate the same integral again. In Figure 4.15 the impedance is shown. Please note that the radiation impedance approaches za=ρ0c0 in the free field limit.

Figure 4.15Acoustic radiation impedance of rectangular piston in room with dimensions Lx=3,Ly=1.5,Lz=2 and piston dimensions y1=0.3,y2=0.8,z1=0.7,z2=1.2.
Source: Alexander Peiffer.

4.3 Numerical Solutions

For most cavity shapes and geometries an analytical expression of a closed form solution is not possible. This is the field of numerical solutions. Due to the homogenity of the fluid medium (or the existance of the Green’s function) there are two options for numerical solutions:

FEM Finite Element Method. Here the fluid is discretized into small fluid elements, of for example tetrahedal, pentahedral, or hexahedral shape. Most solvers discretize the wave equation for pressure.

BEM Boundary Element Method. The second option is, to make use of Equation (2.137) and to integrate over elements of a surface mesh. Thus, the mesh is a surface mesh, which makes the meshing procedure mush easier. But, the resulting matrices are numerically complex.

The theories of FEM and BEM are not part of this book, but it makes sense to create model conceptions about the meaning of acoustic finite elements.

4.3.1 Acoustic Finite Element Methods

In Chapter 1 we introduced a discrete equation of motion that was created automatically by using discrete elements as springs, dampers and masses. The discrete acoustic wave equation of a fluid looks similar to equations (1.89) or (1.103) but with a different meaning of the matrices.

Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript a Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic p EndMatrix equals left-bracket minus omega squared Start 1 By 1 Matrix 1st Row upper M Subscript a Baseline EndMatrix plus j omega Start 1 By 1 Matrix 1st Row upper C Subscript a Baseline EndMatrix plus Start 1 By 1 Matrix 1st Row upper K Subscript a Baseline EndMatrix plus j Start 1 By 1 Matrix 1st Row upper B Subscript a Baseline EndMatrix right-bracket Start 1 By 1 Matrix 1st Row bold-italic p EndMatrix equals j omega Start 1 By 1 Matrix 1st Row bold-italic upper Q EndMatrix  (4.95)

[Ma] is the acoustic mass matrix, but has nothing to do with masses. It is called the mass matrix because of the ω2 factor. The coefficients correspond to the inverse bulk modulus of the discrete fluid element. So, it is more a stiffness related quantity. The acoustic stiffness matrix [Ka] corresponds to the inertia of the fluid element. Thus, in contrast to mechanical systems where the discrete equations can be visualized by a set of point masses and springs we have to find a different model.

This is because the pressure is the degree of freedom in the wave equation. When we would have chosen the displacements the discrete equation would be more alike to mechanical systems.

The sum of all three matrices is the acoustic dynamic stiffness matrix [Da]. It is frequency dependent and complex. However, it is helpful to develop physical models for the discrete presentation and the components of the discrete acoustic mass and stiffness matrix.

As shown in Figure 4.16 there are two elements to be considered. The fist element is a local compressible volume Vi. For the change in volume per pressure change we have

StartFraction partial-differential upper V Over partial-differential upper P EndFraction equals upper N Subscript a Baseline equals StartFraction upper V Over upper K EndFraction period  (4.96)

Figure 4.16Lumped components of a fluid acoustic network.
Source: Alexander Peiffer.

Expressing the change in volume and pressure by complex amplitudes and using V=Q/jω this reads as

bold-italic upper Q Subscript i Baseline equals j omega upper N Subscript a Baseline bold-italic p Subscript i Baseline equals j omega StartFraction upper V Subscript i Baseline Over upper K EndFraction bold-italic p Subscript i  (4.97)

and with the source term jωQi from (4.95) we get

minus omega squared StartFraction upper V Subscript i Baseline Over upper K EndFraction bold-italic p Subscript i Baseline equals j omega bold-italic upper Q Subscript i  (4.98)

Thus, the components of the mass matrix in Equation (4.95) correspond to element volume Vi and the compressibility or inverse bulk modulus.

Start 1 By 1 Matrix 1st Row upper M Subscript a Baseline EndMatrix equals Start 3 By 3 Matrix 1st Row 1st Column upper V 1 slash upper K 2nd Column ellipsis 3rd Column 0 2nd Row 1st Column 0 2nd Column upper V 2 slash upper K 3rd Column 0 3rd Row 1st Column ellipsis 2nd Column 0 3rd Column upper V 3 slash upper K EndMatrix  (4.99)

In contrast to this, the second lumped element we must deal with is an acoustical mass. In the simplified approach of the lumped acoustic network, we assume an incompressible fluid of mass mi. That means the wavelength in the fluid must be larger than the element length, to fulfill that condition. The relationship between the fluid velocity and pressures follow from Newton’s law

StartLayout 1st Row 1st Column bold-italic upper F 2nd Column equals m bold-italic a equals j omega m bold v with bold-italic upper F equals upper A left-parenthesis bold-italic p 1 minus bold-italic p 2 right-parenthesis and m equals rho 0 upper L upper A EndLayout  (4.100)

This reads as

bold-italic p 1 minus bold-italic p 2 equals j omega StartFraction rho 0 upper L Over upper A EndFraction bold-italic upper Q  (4.101)

using Q=Av. When we consider the external flow into the volumes is considered as positive and thus Q=Q1=Q2 the system of equations for the mass element is:

StartFraction upper A Over rho 0 upper L EndFraction Start 2 By 2 Matrix 1st Row 1st Column 1 2nd Column negative 1 2nd Row 1st Column negative 1 2nd Column 1 EndMatrix StartBinomialOrMatrix bold-italic p 1 Choose bold-italic p 2 EndBinomialOrMatrix equals j omega StartBinomialOrMatrix bold-italic upper Q 1 Choose bold-italic upper Q 2 EndBinomialOrMatrix  (4.102)

The stiffness matrix of the acoustic system is linked to the mass of the connecting fluid pipes.

The exchange of physical meaning results from the exchange of state and excitation variables. The mechanical equation of motion was defined for displacement and the excitation by forces; in acoustics the state variable is pressure (better related to forces) and the excitation given by volume flow (better linked to displacement).

The sum of all volume flows at each node must equal the externally introduced volume flow Qi. The final set of equations for the system shown in Figure 4.16 is as follows

left-parenthesis StartFraction upper A Over rho 0 upper L EndFraction Start 3 By 3 Matrix 1st Row 1st Column 1 2nd Column negative 1 3rd Column 0 2nd Row 1st Column negative 1 2nd Column 2 3rd Column negative 1 3rd Row 1st Column 0 2nd Column negative 1 3rd Column 1 EndMatrix minus omega squared StartFraction 1 Over upper K EndFraction Start 3 By 3 Matrix 1st Row 1st Column upper V 1 2nd Column Blank 3rd Column Blank 2nd Row 1st Column Blank 2nd Column upper V 2 3rd Column Blank 3rd Row 1st Column Blank 2nd Column Blank 3rd Column upper V 3 EndMatrix right-parenthesis Start 3 By 1 Matrix 1st Row bold-italic p 1 2nd Row bold-italic p 2 3rd Row bold-italic p 3 EndMatrix equals j omega Start 3 By 1 Matrix 1st Row bold-italic upper Q 1 2nd Row bold-italic upper Q 2 3rd Row bold-italic upper Q 3 EndMatrix  (4.103)

4.3.2Deterministic Acoustic Elements

When dealing with one-dimensional fluid systems such as air conditioning, mufflers, and hydraulic pipes the system can be described by frequency dependent system functions without discretisation. We learned above that the appropriate quantities for an acoustic network are pressure p and volume flow Q. Thus Equation (4.11) must be slightly modified to get this relationship for one-dimensional fluid pipes by multiplying both lines by jωA.

StartFraction upper A omega Over z 0 EndFraction Start 2 By 2 Matrix 1st Row 1st Column StartFraction 1 Over tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction 2nd Column StartFraction 1 Over sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction 2nd Row 1st Column StartFraction 1 Over sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction 2nd Column StartFraction 1 Over tangent left-parenthesis bold-italic k upper L right-parenthesis EndFraction EndMatrix StartBinomialOrMatrix bold-italic p 1 Choose bold-italic p 2 EndBinomialOrMatrix equals j omega StartBinomialOrMatrix bold-italic upper Q 1 Choose bold-italic upper Q 2 EndBinomialOrMatrix  (4.104)

The internal pressure and velocity field can be derived from (4.1) and (4.2) now solving A and B for the pressure, because this is the state variable in our network, or by simply multiplying (4.12) by z0 with consideration of the differing propagation directions of both waves.

StartLayout 1st Row 1st Column bold-italic p left-parenthesis x right-parenthesis 2nd Column equals StartFraction 1 Over j sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction left-bracket bold-italic p 1 sine left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis plus bold-italic p 2 sine left-parenthesis bold-italic k x right-parenthesis right-bracket EndLayout  (4.105)
StartLayout 1st Row 1st Column bold-italic v Subscript x Baseline left-parenthesis x right-parenthesis 2nd Column equals StartFraction 1 Over sine left-parenthesis bold-italic k upper L right-parenthesis EndFraction left-bracket bold-italic v Subscript x Baseline Subscript 1 Baseline left-parenthesis bold-italic k left-parenthesis upper L minus x right-parenthesis right-parenthesis plus bold-italic v Subscript x Baseline Subscript 2 Baseline sine left-parenthesis bold-italic k x right-parenthesis right-bracket EndLayout  (4.106)

4.4 Reciprocity

When inspecting equations (4.83) and (2.137) one can see that the source and receiver locations can be exchanged. That means that in an acoustic system that relates the relationship of a source strength Q(r) at location 1 to a pressure at location 2, source and receiver positions can be exchanged; hence

StartFraction bold-italic p left-parenthesis bold r 2 right-parenthesis Over bold-italic upper Q left-parenthesis bold r 1 right-parenthesis EndFraction equals StartFraction bold-italic p left-parenthesis bold r 1 right-parenthesis Over bold-italic upper Q left-parenthesis bold r 2 right-parenthesis EndFraction  (4.107)

Globally the reciprocity is a general principle for linear systems. Thus, the only restriction to the variables is that they must be conjugate, meaning their product is related to power; thus, we use here Q and p. The same principle holds for all linear networks, structures, etc. One conclusion from this principle is that the stiffness matrix from Equation (4.95) must be symmetric to fulfill the reciprocity relationship.

Bibliography

  1. Finn Jacobsen. THE SOUND FIELD IN A REVERBERATION ROOM. Technical Report Note no 31261, Danmarks Tekniske Universitet (DTU), Lyngby, Denmark, 2008.
  2. Dah-You Maa. Distribution of Eigentones in a Rectangular Chamber at Low Frequency Range. The Journal of the Acoustical Society of America, 10(3): 235–238, 1939. .
  3. P.M.C. Morse and K.U. Ingard. International Series in Pure and Applied Physics Theoretical Acoustics. Princeton University Press, 1968.
  4. Allan D. Pierce. Acoustics - An Introduction to Its Physical Principles and Applications. Acoustical Society of America (ASA), Woodbury, New York 11797, U.S.A., one thousand, nine hundred eighty-ninth edition, 1991.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.221.140.111