Appendix A
Basic Mathematics

A.1 Fourier Analysis

We will start our introduction to the Fourier analysis with the series representation of periodic signals. The next step is moving towards the Fourier transform by the application of a limit process. We start with the analytical formulation of the theory: i.e. all signals are continuous, and we will later switch to digital signals in section A.2.

A.1.1 Fourier Series

Imagine a function f(t) of time with periodicity T, the fundamental frequency f0=1/T and angular frequency ω0=2π/T

f left-parenthesis t right-parenthesis equals f left-parenthesis t plus upper T right-parenthesis (A.1)

This function shall be synthesized by a series of sine and cosine functions, reading

f left-parenthesis t right-parenthesis equals a 0 plus sigma-summation Underscript n equals 1 Overscript normal infinity Endscripts left-parenthesis b Subscript n Baseline cosine left-parenthesis n omega 0 t right-parenthesis plus c Subscript n Baseline sine left-parenthesis n omega 0 t right-parenthesis right-parenthesis (A.2)

If (A.2) is integrated over the time interval t[T/2;T/2] and using the orthogonality of the sine and cosine functions, we get for the coefficients

StartLayout 1st Row 1st Column a 0 2nd Column equals StartFraction 1 Over upper T EndFraction integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline f left-parenthesis t right-parenthesis d t EndLayout (A.3)
StartLayout 1st Row 1st Column b Subscript n 2nd Column equals StartFraction 1 Over upper T EndFraction integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline f left-parenthesis t right-parenthesis cosine left-parenthesis n omega 0 t right-parenthesis d t EndLayout (A.4)
StartLayout 1st Row 1st Column c Subscript n 2nd Column equals StartFraction 1 Over upper T EndFraction integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline f left-parenthesis t right-parenthesis sine left-parenthesis n omega 0 t right-parenthesis d t EndLayout (A.5)

The first coefficient a0 is the mean value of the signal, the others are the cosine (bn) and sine (cn) coefficients . In order to illustrate this harmonic synthesis, we consider a rectangular periodic function

f left-parenthesis t right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column 1 2nd Column for 0 less-than-or-equal-to normal t mod normal upper T less-than normal upper T slash 2 2nd Row 1st Column negative 1 2nd Column for upper T slash 2 less-than-or-equal-to normal t mod normal upper T less-than normal upper T EndLayout (A.6)

Obviously the mean is zero (a0=0), and this function is an odd function f(t)=f(t); thus the coefficients bn corresponding to the even cosine function will vanish. The remaining coefficients cn read

c Subscript n Baseline equals StartLayout Enlarged left-brace 1st Row 1st Column StartFraction 4 Over pi n EndFraction 2nd Column for n equals 1 comma 3 comma 5 comma ellipsis 2nd Row 1st Column 0 2nd Column otherwise EndLayout (A.7)

In Figure A.1 the function and several Fourier series with an increasing number of coefficients are shown. We see that the function is better and better represented, but due to the infinite slope of the rectangular function, an infinite number of Fourier coefficients would be required for a perfect match.

Figure A.1 Rectangular function and its Fourier series representation using up to four non-zero coefficients. Source: Alexander Peiffer.

An entirely equivalent representation can also be formulated by a series of complex Euler functions, this time running from to

f left-parenthesis t right-parenthesis equals sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts bold-italic a Subscript n Baseline e Superscript j n omega 0 t (A.8)

The coefficients an for n>0 can be expressed in terms of the series coefficient from (A.2)

bold a Subscript n Baseline equals one-half left-parenthesis b Subscript n Baseline minus j c Subscript n Baseline right-parenthesis n greater-than 0 (A.9a)
bold a Subscript n Baseline equals one-half left-parenthesis b Subscript n Baseline plus j c Subscript n Baseline right-parenthesis n less-than 0 (A.9b)

It is quite illustrative to link these expressions to a harmonic signal with angular frequency ω0=2πf

f Subscript n Baseline left-parenthesis t right-parenthesis equals upper R e left-parenthesis bold-italic upper A Subscript n Baseline e Superscript j n omega 0 t Baseline right-parenthesis equals one-half left-parenthesis bold-italic upper A Subscript n Baseline e Superscript j n omega 0 t Baseline plus bold-italic upper A Subscript n Superscript asterisk Baseline e Superscript minus j n omega 0 t Baseline right-parenthesis (A.10)

Thus, for a given frequency nω we get with (A.8)

f Subscript n Baseline left-parenthesis t right-parenthesis equals bold-italic a Subscript n Baseline e Superscript j n omega 0 t Baseline plus bold-italic a Subscript negative n Baseline e Superscript minus j n omega 0 t Baseline right double arrow bold-italic a Subscript n Baseline equals StartFraction bold-italic upper A Subscript n Baseline Over 2 EndFraction bold-italic a Subscript negative n Baseline equals StartFraction bold-italic upper A Subscript n Superscript asterisk Baseline Over 2 EndFraction (A.11)

An alternative and instructive derivation of this equation can be found by applying an integration over the period for (A.8) multiplied by ejmω0t, leading to

f left-parenthesis t right-parenthesis e Superscript j m omega 0 t Baseline equals sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts a Subscript n Baseline e Superscript j left-parenthesis n minus m right-parenthesis omega 0 t (A.12)

If we integrate (A.12) over the period [T/2;T/2], we get

integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline f left-parenthesis t right-parenthesis e Superscript j m omega 0 t Baseline d t equals sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline bold-italic a Subscript n Baseline e Superscript j left-parenthesis n minus m right-parenthesis omega 0 t Baseline d t period (A.13)

We see that the right hand side is only non-zero for m=n. This is called the orthogonality property of the e-function in the integration, hence

integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline f left-parenthesis t right-parenthesis e Superscript j n omega 0 t Baseline d t equals bold-italic a Subscript n Baseline upper T (A.14)

This shows in an instructive way how the orthogonality relation is used to derive an alternative expression for an to (A.9a)-(A.9b)

bold-italic a Subscript n Baseline equals StartFraction 1 Over upper T EndFraction integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline f left-parenthesis t right-parenthesis e Superscript j n omega 0 t Baseline d t (A.15)

If we replace ex=cosx+jsinx the former Equations (A.2) and (A.8) as far as the related coefficients a0,bn and cn can also be derived. The squared value of the periodic function would have the following consequence for Fourier series

mathematical left-angle f squared left-parenthesis t right-parenthesis mathematical right-angle equals StartFraction 1 Over upper T EndFraction integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline f left-parenthesis t right-parenthesis squared d t equals StartFraction 1 Over upper T EndFraction integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline f left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis Superscript asterisk Baseline d t (A.16)

With (A.8) we get

mathematical left-angle f squared left-parenthesis t right-parenthesis mathematical right-angle equals StartFraction 1 Over upper T EndFraction integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline left-parenthesis sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts bold-italic a Subscript n Baseline e Superscript j n omega 0 t Baseline right-parenthesis left-parenthesis sigma-summation Underscript m equals negative normal infinity Overscript normal infinity Endscripts bold-italic a Subscript m Superscript asterisk Baseline e Superscript minus j m omega 0 t Baseline right-parenthesis (A.17)

Performing the integration and using the orthogonality relationship giving zero for mn we get and the total squared signal power is equal to the sum of the square of all coefficients.

mathematical left-angle f squared left-parenthesis t right-parenthesis mathematical right-angle equals sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts StartAbsoluteValue bold-italic a Subscript n Baseline EndAbsoluteValue squared (A.18)

A.1.2 Fourier Transformation

For stationary periodic processes the Fourier series is the perfect tool to investigate the harmonic content of a signal. The frequency resolution – the difference between two frequencies – is restricted by Δω=ω0=2πT because of the periodicity.

In practical applications many nonperiodic or transient signals occur. For the frequency analysis of such signals we require a finer resolution and a different approach. This can be achieved if we perform the limit process for T to infinity for the Fourier series

f left-parenthesis t right-parenthesis equals sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts bold-italic a Subscript n Baseline e Superscript j n omega 0 t Baseline with bold-italic a Subscript n Baseline equals limit Underscript upper T right-arrow normal infinity Endscripts StartFraction 1 Over upper T EndFraction integral Subscript negative upper T slash 2 Superscript upper T slash 2 Baseline f left-parenthesis t right-parenthesis e Superscript minus j n omega 0 t Baseline d t (A.19)

Now we let Δω0. Arranging (A.19) in such a way that we eliminate all T by 2πΔω and ω0 by Δω

table attributes columnalign right left columnspacing 0em 2em end attributes row cell f left parenthesis t right parenthesis end cell cell equals sum from n equals negative straight infinity to straight infinity of fraction numerator 2 pi bold italic a subscript n over denominator straight capital delta omega end fraction stack stack e to the power of j n straight capital delta omega t end exponent with underbrace below with not stretchy rightwards arrow e to the power of j omega t end exponent below fraction numerator straight capital delta omega over denominator 2 pi end fraction end cell end table
 (A.20)
table attributes columnalign right left columnspacing 0em 2em end attributes row cell stack stack fraction numerator 2 pi bold italic a subscript n over denominator straight capital delta omega end fraction with underbrace below with not stretchy rightwards arrow F left parenthesis omega right parenthesis below end cell cell equals integral subscript negative straight infinity end subscript superscript straight infinity f left parenthesis t right parenthesis e to the power of negative j omega t end exponent d t end cell end table (A.21)

where we have also used ω=nω0. Finally, we get the expression for the pair of Fourier transforms by performing the limit process T and Δω0

StartLayout 1st Row 1st Column f left-parenthesis t right-parenthesis equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative infinity Superscript infinity Baseline bold-italic upper F left-parenthesis omega right-parenthesis e Superscript j omega t Baseline d omega 2nd Column equals script upper F Superscript negative 1 Baseline left-brace bold-italic upper F left-parenthesis omega right-parenthesis right-brace EndLayout (A.22a)
StartLayout 1st Row 1st Column bold-italic upper F left-parenthesis omega right-parenthesis equals integral Subscript negative infinity Superscript infinity Baseline f left-parenthesis t right-parenthesis e Superscript minus j omega t Baseline d t 2nd Column equals script upper F left-brace f left-parenthesis t right-parenthesis right-brace EndLayout (A.22b)

Obviously, the Fourier transform (FT) of a harmonic signal does not converge because the infinite integration requires f(t)0 for large arguments. The Fourier transform is a mathematical tool to investigate transient or pulse shaped signals. In order to illustrate some applications of the Fourier transform we investigate a function of rectangular shape

f left-parenthesis t right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column upper A 2nd Column for negative tau less-than-or-equal-to normal t less-than-or-equal-to tau 2nd Row 1st Column 0 2nd Column for t less-than tau normal t greater-than tau EndLayout (A.23)

with the following Fourier transform

bold-italic upper F left-parenthesis omega right-parenthesis equals upper A integral Subscript negative tau Superscript tau Baseline e Superscript minus j omega t Baseline d t equals StartFraction upper A Over j omega EndFraction left-parenthesis e Superscript j omega tau Baseline minus e Superscript minus j omega tau Baseline right-parenthesis equals 2 upper A tau left-parenthesis StartFraction s i n left-parenthesis omega tau right-parenthesis Over omega tau EndFraction right-parenthesis (A.24)

A.1.3 Dirac Delta Function

Based on this rectangular pulse the δ-function is derived, which is a very powerful tool for the description of mechanical and acoustical systems. We use the rectangular pulse with slightly adjusted parameters

StartLayout 1st Row 1st Column 2 upper A tau 2nd Column equals 1 3rd Column tau 4th Column right-arrow 0 5th Column f left-parenthesis t right-parenthesis 6th Column right-arrow delta left-parenthesis t right-parenthesis EndLayout (A.25)

Figure A.2 Rectangular pulse function and its Fourier transform. Source: Alexander Peiffer.

The delta function is not a function in the classical sense, because is has infinite values A at t=0 due to τ0. But, it is very useful due to the properties that are presented next. If we integrate the delta function with the above derivation from the rectangular pulse, we find

delta left-parenthesis t right-parenthesis equals 0 for-all t not-equals 0 integral Subscript negative normal infinity Superscript normal infinity Baseline delta left-parenthesis t right-parenthesis d t equals 1 (A.26)

If the delta function is centred at t0, the same properties read

delta left-parenthesis t minus t 0 right-parenthesis equals 0 for-all t not-equals t 0 integral Subscript negative normal infinity Superscript normal infinity Baseline delta left-parenthesis t minus t 0 right-parenthesis d t equals 1 (A.27)

The use of the delta function is given by its so-called sifting property that extracts any function if it occurs in the integral over a product with the delta function, such as

integral Subscript negative normal infinity Superscript normal infinity Baseline f left-parenthesis t right-parenthesis delta left-parenthesis t minus t 0 right-parenthesis d t equals f left-parenthesis t 0 right-parenthesis integral Subscript negative normal infinity Superscript normal infinity Baseline delta left-parenthesis t minus t 0 right-parenthesis d t equals f left-parenthesis t 0 right-parenthesis (A.28)

The first term of the above equation is called the convolution of f(t) and the δ-function. Using this the Fourier transform of the delta function reads as

bold-italic upper F left-parenthesis omega right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline delta left-parenthesis t minus t 0 right-parenthesis e Superscript minus j omega t Baseline d t equals e Superscript minus j omega t 0 (A.29)

Thus, the frequency content of the delta function extends from negative to positive infinity with a constant value. On the other hand the inverse Fourier transform of the exponential function gives

delta left-parenthesis t minus t 0 right-parenthesis equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline e Superscript j omega left-parenthesis t minus t 0 right-parenthesis Baseline d omega (A.30)

Exchanging ω by ω0 and t by t0 provides the FT of the exponential function.

StartLayout 1st Row 1st Column 2 pi delta left-parenthesis omega minus omega 0 right-parenthesis 2nd Column equals integral Subscript negative normal infinity Superscript normal infinity Baseline e Superscript j omega 0 t Baseline e Superscript minus j omega t Baseline d t 2nd Row 1st Column e Superscript j omega 0 t 2nd Column equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline 2 pi delta left-parenthesis omega minus omega 0 right-parenthesis e Superscript j omega t Baseline d omega EndLayout (A.32)

A.1.4 Signal Power

The signal power in the time domain is related to the FT similar to (A.18). With

integral Subscript negative normal infinity Superscript normal infinity Baseline f squared left-parenthesis t right-parenthesis d t equals integral Subscript negative normal infinity Superscript normal infinity Baseline left-parenthesis StartFraction 1 Over 2 pi EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline bold-italic upper F left-parenthesis omega 1 right-parenthesis e Superscript j omega 1 t Baseline d omega 1 right-parenthesis left-parenthesis StartFraction 1 Over 2 pi EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline bold-italic upper F left-parenthesis omega 2 right-parenthesis e Superscript j omega 2 t Baseline d omega 2 right-parenthesis Superscript asterisk Baseline d t (A.33)

and change of the integration order we get

integral Subscript negative normal infinity Superscript normal infinity Baseline f squared left-parenthesis t right-parenthesis d t equals StartFraction 1 Over 4 pi squared EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline integral Subscript negative normal infinity Superscript normal infinity Baseline bold-italic upper F left-parenthesis omega 1 right-parenthesis bold-italic upper F Superscript asterisk Baseline left-parenthesis omega 2 right-parenthesis left-parenthesis e Superscript j left-parenthesis omega 1 minus omega 2 right-parenthesis t Baseline d t right-parenthesis d omega 1 d omega 2 (A.34)

Using (A.30) enables us to replace the parentheses by 2πδ(ω1ω2), and then using the sifting property (A.28) gives

integral Subscript negative normal infinity Superscript normal infinity Baseline f squared left-parenthesis t right-parenthesis d t equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline bold-italic upper F left-parenthesis omega 1 right-parenthesis bold-italic upper F Superscript asterisk Baseline left-parenthesis omega 1 right-parenthesis d omega 1 equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline StartAbsoluteValue bold-italic upper F left-parenthesis omega right-parenthesis EndAbsoluteValue squared d omega (A.35)

This is known as Parseval’s formula. The total energy in the signal is associated with the integral over all frequency components. If we switch back to the frequency f and dω=2πdf we get rid of the normalization by 1/2π

integral Subscript negative normal infinity Superscript normal infinity Baseline f squared left-parenthesis t right-parenthesis d t equals integral Subscript negative normal infinity Superscript normal infinity Baseline StartAbsoluteValue bold-italic upper F left-parenthesis f right-parenthesis EndAbsoluteValue squared d f (A.36)

A.1.5 Fourier Transform of Real Harmonic Signals

Even if the FT of harmonic signals will not provide a finite result, the delta function enables us to apply the FT even to harmonic signals. The cosine function is linked to the exponential function by

cosine left-parenthesis omega 0 t right-parenthesis equals one-half left-parenthesis e Superscript j omega 0 t Baseline plus e Superscript minus j omega 0 t Baseline right-parenthesis (A.37)

Using (A.32) we get for the FT of the cosine function

integral Subscript negative normal infinity Superscript normal infinity Baseline cosine left-parenthesis omega 0 t right-parenthesis e Superscript j omega t Baseline d t equals pi delta left-parenthesis omega minus omega 0 right-parenthesis plus pi delta left-parenthesis omega minus omega 0 right-parenthesis (A.38)

Applying the infinite integration interval of the FT to the cosine function leads consequently to infinity spectra in the frequency domain, here given by two symmetric delta functions with peaks at ω=±ω0.

A.1.6 Useful Properties of the Fourier Transform

Working with Fourier transforms is much easier when specific relationships are used that link the time domain with the frequency domain. We start with the partial derivative with regard to time.

StartFraction partial-differential f left-parenthesis t right-parenthesis Over partial-differential t EndFraction equals StartFraction partial-differential script upper F Superscript negative 1 Baseline left-brace bold-italic upper F left-parenthesis omega right-parenthesis right-brace Over partial-differential t EndFraction equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline left-bracket j omega bold-italic upper F left-parenthesis omega right-parenthesis right-bracket e Superscript j omega t Baseline d omega equals script upper F Superscript negative 1 Baseline left-brace j omega bold-italic upper F left-parenthesis omega right-parenthesis right-brace (A.39)

Thus, the derivative in time domain corresponds to the multiplication by a factor of jω in the frequency domain. This is the same factor that we would get if the time derivative is taken from harmonic signals (1.26) with time factor ejωt. Both conventions are in agreement when we choose ejωt for the time dependence of the harmonic function and ejωt for the exponential function in the Fourier transform.

Time reversal in the time domain means complex conjugate in frequency domain.

table attributes columnalign right left columnspacing 0em 2em end attributes row cell calligraphic F left curly bracket f left parenthesis negative t right parenthesis text end text right curly bracket end cell cell equals integral subscript negative straight infinity end subscript superscript straight infinity f left parenthesis negative t right parenthesis e to the power of negative omega t end exponent d t equals with t to the power of apostrophe equals t on top integral subscript negative straight infinity end subscript superscript straight infinity f left parenthesis t to the power of apostrophe right parenthesis e to the power of omega t to the power of apostrophe end exponent d t to the power of apostrophe end cell end table (A.40)
table attributes columnalign right left columnspacing 0em 2em end attributes row cell bold italic F left parenthesis omega right parenthesis end cell cell equals calligraphic F left curly bracket f left parenthesis t right parenthesis right curly bracket not stretchy rightwards double arrow bold italic F left parenthesis omega right parenthesis to the power of asterisk times equals calligraphic F left curly bracket f left parenthesis negative t right parenthesis right curly bracket end cell end table (A.41)

A further important theorem is the shift theorem which states

integral Subscript negative normal infinity Superscript normal infinity Baseline f left-parenthesis t minus tau right-parenthesis e Superscript j omega t Baseline d t equals bold-italic upper F left-parenthesis omega right-parenthesis e Superscript j omega tau (A.42)

This can be easily proven by exchanging variables. A time delay τ creates a specific phase change for every frequency.

A very important relationship results from the FT of the convolution of two time signals. This is the infinite integral over the product with time delay τ for one function

integral Subscript negative normal infinity Superscript normal infinity Baseline f left-parenthesis t minus tau right-parenthesis g left-parenthesis tau right-parenthesis d tau equals f left-parenthesis t right-parenthesis asterisk g left-parenthesis x right-parenthesis (A.43)

The Fourier transform of the convolution gives:

StartLayout 1st Row integral Subscript negative normal infinity Superscript normal infinity Baseline left-parenthesis integral Subscript negative normal infinity Superscript normal infinity Baseline f left-parenthesis t minus tau right-parenthesis g left-parenthesis tau right-parenthesis d tau right-parenthesis e Superscript j omega t Baseline d t 2nd Row equals integral Subscript negative normal infinity Superscript normal infinity Baseline left-parenthesis integral Subscript negative normal infinity Superscript normal infinity Baseline f left-parenthesis t minus tau right-parenthesis e Superscript j omega t Baseline d t right-parenthesis g left-parenthesis tau right-parenthesis d tau 3rd Row equals integral Subscript negative normal infinity Superscript normal infinity Baseline left-parenthesis bold-italic upper F left-parenthesis omega right-parenthesis e Superscript j omega tau Baseline right-parenthesis g left-parenthesis tau right-parenthesis d tau 4th Row equals bold-italic upper F left-parenthesis omega right-parenthesis integral Subscript negative normal infinity Superscript normal infinity Baseline g left-parenthesis tau right-parenthesis e Superscript j omega tau Baseline d tau 5th Row equals bold-italic upper F left-parenthesis omega right-parenthesis bold-italic upper G left-parenthesis omega right-parenthesis EndLayout (A.44)

or

script upper F left-brace f left-parenthesis t right-parenthesis asterisk g left-parenthesis t right-parenthesis right-brace equals script upper F left-brace f left-parenthesis t right-parenthesis right-brace script upper F left-brace g left-parenthesis t right-parenthesis right-brace equals bold-italic upper F left-parenthesis omega right-parenthesis bold-italic upper G left-parenthesis omega right-parenthesis (A.45)

Thus, the Fourier transform of the convolution of two signals is the product of the Fourier transform of each function. It can be further shown that the inverse Fourier transform of a product of spectra is also a convolution in frequency domain.

script upper F left-brace f left-parenthesis t right-parenthesis g left-parenthesis t right-parenthesis right-brace equals bold-italic upper F left-parenthesis omega right-parenthesis asterisk bold-italic upper G left-parenthesis omega right-parenthesis right-parenthesis equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline bold-italic upper F left-parenthesis omega 1 right-parenthesis bold-italic upper G left-parenthesis omega minus omega 1 right-parenthesis d omega 1 (A.46)

A.1.7 Fourier Transformation in Space

The Fourier presentation of time signals can be converted to the wave forms in space. We apply the pair of Fourier transformations from (A.22a) and (A.22b) to the space domain

StartLayout 1st Row 1st Column f left-parenthesis x right-parenthesis equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative infinity Superscript infinity Baseline bold-italic upper F left-parenthesis k right-parenthesis e Superscript j k x Baseline d k 2nd Column equals script upper F Superscript negative 1 Baseline left-brace upper F left-parenthesis k right-brace EndLayout (A.47a)
StartLayout 1st Row 1st Column bold-italic upper F left-parenthesis k right-parenthesis equals integral Subscript negative infinity Superscript infinity Baseline f left-parenthesis x right-parenthesis e Superscript minus j k t Baseline d x 2nd Column equals script upper F left-brace f left-parenthesis x right-parenthesis right-brace EndLayout (A.47b)

This can be further extended to multidimensional applications, for example two dimensional surfaces

StartLayout 1st Row 1st Column f left-parenthesis x comma y right-parenthesis equals StartFraction 1 Over 4 pi squared EndFraction integral Subscript negative infinity Superscript infinity Baseline integral Subscript negative infinity Superscript infinity Baseline bold-italic upper F left-parenthesis k Subscript x Baseline comma k Subscript y Baseline right-parenthesis e Superscript j left-parenthesis k Super Subscript x Superscript x plus k Super Subscript y Superscript y Baseline d k Subscript x Baseline d k Subscript y Baseline 2nd Column equals script upper F Superscript negative 1 Baseline left-brace bold-italic upper F left-parenthesis k Subscript x Baseline comma k Subscript y Baseline right-parenthesis right-brace EndLayout (A.48a)
StartLayout 1st Row 1st Column bold upper F left-parenthesis k Subscript x Baseline comma k Subscript y Baseline right-parenthesis equals integral Subscript negative infinity Superscript infinity Baseline integral Subscript negative infinity Superscript infinity Baseline f left-parenthesis x comma y right-parenthesis e Superscript minus j left-parenthesis k Super Subscript x Superscript x plus k Super Subscript y Superscript y right-parenthesis Baseline d x d y 2nd Column equals script upper F left-brace f left-parenthesis x comma y right-parenthesis right-brace EndLayout (A.48b)

A.2 Discrete Signal Analysis

Today, most acquisition systems and consumer electronics are based on digital systems. The digital representation of analog or continuous signals is advantageous, because the information can be easily stored and transmitted without losses. This is not the case for analog systems such as, for example, the transmission of frequency modulated radio signals. In addition the results of numerical simulation are also digital. However, the digital analysis and especially the spectral analysis of discrete signals leads to specific effects that must be carefully considered if you would like to avoid mistakes or misinterpretations. The most popular and well known effect is the under-sampling of high frequency data that creates artefacts, e.g. wheels in movies that rotate in the wrong direction. The impact of digital signal analysis is separated into two steps:

  1. What is the impact of sampling?
  2. What is the impact of limited signal length or limited number of samples?

We will not consider the discretization effect of sampling. Analog to digital (AD) converters cannot present the samples in a continuous way. However, due to the vast development of AD converters and digital systems, 24 bit is used even for consumer electronics. This corresponds to a dynamics larger than 16 million or 140 dB, which is often higher than the signal to noise ratio of the sensor–amplifier system.

A.2.1 Fourier Transform of Discrete Signals

For dealing with this phenomena, a mathematical formulation of the sampling process is required. The sampling can be represented by multiplying the continuous signal by a sum of delta functions

f left-bracket n right-bracket equals f left-parenthesis n normal upper Delta upper T right-parenthesis identical-to f Subscript s Baseline left-parenthesis t right-parenthesis equals f left-parenthesis t right-parenthesis sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts delta left-parenthesis t minus n normal upper Delta upper T right-parenthesis (A.49)

called a delta comb. Here, ΔT is the sampling period. The rectangular bracket denotes the discrete argument n here. In order to derive the effect of this sampling process to the spectrum we apply the Fourier transformation (A.22a) to (A.49)

bold-italic upper F left-parenthesis e Superscript j omega normal upper Delta upper T Baseline right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline left-parenthesis f left-parenthesis t right-parenthesis sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts delta left-parenthesis t minus n normal upper Delta upper T right-parenthesis right-parenthesis e Superscript minus j omega t Baseline d t (A.50)

and get with the sifting property

bold-italic upper F left-parenthesis e Superscript j omega normal upper Delta upper T Baseline right-parenthesis equals sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts f left-bracket n right-bracket e Superscript minus j omega n normal upper Delta upper T (A.51)

In Figure A.3 the results of Equation (A.49) are presented graphically. The continuous function is now represented by an infinite train of delta functions. The area of each delta peak at nΔT equals the function value at this time according to Equation (A.28), and it is denoted by the length of the arrow.1

Figure A.3 Process of sampling by a delta comb function. Source: Alexander Peiffer.

The sampling has a very peculiar effect on the Fourier transform. Note that the discrete FT has an argument of the form ejωΔT. In order to understand the effect of sampling in the frequency domain, we interpret the delta comb as a periodic signal with period ΔT and the fundamental sampling frequency ωs=2πΔT. The Fourier series in exponential form (A.8) is applied to the delta comb, giving

sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts delta left-parenthesis t minus n normal upper Delta t right-parenthesis equals sigma-summation Underscript m equals negative normal infinity Overscript normal infinity Endscripts a Subscript m Baseline e Superscript j m omega Super Subscript s Superscript t (A.52)

In the Equation (A.15) for the complex Fourier coefficients am, there is only one delta peak in the integration interval.

a Subscript m Baseline equals StartFraction 1 Over normal upper Delta upper T EndFraction integral Subscript minus normal upper Delta upper T slash 2 Superscript normal upper Delta upper T slash 2 Baseline delta left-parenthesis t right-parenthesis e Superscript j m omega Super Subscript s Superscript t Baseline d t equals StartFraction 1 Over normal upper Delta upper T EndFraction (A.53)

With these coefficients the Fourier series of the delta comb is given by

sigma-summation Underscript n equals negative normal infinity Overscript normal infinity Endscripts delta left-parenthesis t minus n normal upper Delta upper T right-parenthesis equals sigma-summation Underscript m equals negative normal infinity Overscript normal infinity Endscripts StartFraction 1 Over normal upper Delta upper T EndFraction e Superscript j m omega Super Subscript s Superscript t (A.54)

Entering this into (A.50)

bold-italic upper F left-parenthesis e Superscript j omega normal upper Delta upper T Baseline right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline left-parenthesis f left-parenthesis t right-parenthesis sigma-summation Underscript m equals negative normal infinity Overscript normal infinity Endscripts StartFraction 1 Over normal upper Delta upper T EndFraction e Superscript j m omega Super Subscript s Superscript t Baseline right-parenthesis e Superscript minus j omega t Baseline d t (A.55)

as far as rearranging sum and integration of the Fourier spectrum of the sampled signal leads to the following expression

bold-italic upper F left-parenthesis e Superscript j omega normal upper Delta upper T Baseline right-parenthesis equals StartFraction 1 Over normal upper Delta upper T EndFraction sigma-summation Underscript m equals negative normal infinity Overscript normal infinity Endscripts left-parenthesis integral Subscript negative normal infinity Superscript normal infinity Baseline f left-parenthesis t right-parenthesis e Superscript minus j left-parenthesis omega minus m omega Super Subscript s Superscript right-parenthesis t Baseline d t right-parenthesis (A.56)

This term in parentheses is the Fourier transform with frequency argument ωmωs in the exponential function, hence

bold-italic upper F left-parenthesis e Superscript j omega normal upper Delta upper T Baseline right-parenthesis equals StartFraction 1 Over normal upper Delta upper T EndFraction sigma-summation Underscript m equals negative normal infinity Overscript normal infinity Endscripts bold-italic upper F left-parenthesis omega minus m omega Subscript s Baseline right-parenthesis (A.57)

Thus, the sampling of the function f(t) leads to a periodic repetition of the spectrum F(ω) at nωs with nZ. This effect is illustrated in Figure A.4. The periodic summation of the original spectrum requires a band limited spectrum. If the original spectrum has contributions above ωs/2 or below ωs/2 there will be an overlap. When sampling continuous signals the sampling rate must be at least twice the maximum frequency content of the analog signal to avoid this effect called aliasing. In signal acquisition systems low pass filters make sure that there is no spectral content in the critical range.

Figure A.4 The Fourier transform of the sampled signal with its periodically repeated continuous spectrum at intervals of ωs. Source: Alexander Peiffer.

In Figure A.5 the spectrum of the sampled signal is shown when the analog signal has frequency contributions above the maximum frequency ωs/2.

Figure A.5 The Fourier transform of a sampled signal with overlapping spectra due to spectral content above the maximum sampling frequency. Source: Alexander Peiffer.

We can conclude on the first question: What is the effect of sampling? The sampling process gives a discrete set of data values approximating the continuous signal. The frequency domain of the original spectrum is converted into a periodic spectrum with frequency interval ωs=2π/ΔT.

A.2.2 The Discrete Fourier Transform

As digital signals will not contain an unlimited number of samples, the infinite sum has to be replaced by a sum over N samples, and we get the discrete Fourier transform (DFT).

ModifyingAbove upper F With caret left-parenthesis e Superscript j omega normal upper Delta upper T Baseline right-parenthesis equals sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts f left-bracket n right-bracket e Superscript j omega n normal upper Delta t (A.58)

From this formula all continuous values of ω can be calculated. But, there is evidence that a spectrum derived from N samples cannot contain more information as is given by these N samples. So, we have to select N points in the spectrum. A natural choice for this is to select N samples in the spectrum between 0 and ωs

omega Subscript k Baseline equals k normal upper Delta omega equals k StartFraction 2 pi Over upper N normal upper Delta upper T EndFraction with k equals 0 ellipsis upper N minus 1 (A.59)

and the discrete Fourier transform reads

upper F left-bracket k right-bracket equals sigma-summation Underscript n equals 0 Overscript upper N minus 1 Endscripts f left-bracket n right-bracket e Superscript j Baseline 2 pi n k slash upper N (A.60)

It can be proven (see e.g. Oppenheim et al., 1999) that we can exactly recover the samples f[n] by

f left-bracket n right-bracket equals StartFraction 1 Over upper N EndFraction sigma-summation Underscript k equals 0 Overscript upper N minus 1 Endscripts upper F left-bracket k right-bracket e Superscript j Baseline 2 pi n k slash upper N Baseline for-all 0 less-than-or-equal-to n less-than upper N minus 1 (A.61)

To conclude, the finite number of samples (and not the sampling procedure) causes a finite number of samples in the Discrete Fourier transform. In numerical tools the above formulas of the DFT are implemented in a numerically more efficient way: the Fast Fourier transform (FFT). A special algorithm is implemented that recursively calculates the DFT but only for N=2M. Newer developments allow for arbitrary lengths by using the FFTW algorithm (Frigo and Johnson, 2005). We don’t care about the details, because most signal analysis packages in Matlab or NumPy provide methods for calculating the FFT efficiently.

A.2.3 Windowing

In principle we have all the means to investigate time signals and their spectral content numerically. There is one remaining issue that is worth mentioning. The spectrum is sampled at discrete values. What happens when we analyze a harmonic signal of frequency ω that is, for example, between two sampling points ωk and ωk+1?

In order to illustrate this, we switch back to continuous signals. The finite number of samples of the DFT can be interpreted as a rectangular window function. So we multiply the time signal with a function w(t).

f Subscript w Baseline left-parenthesis t right-parenthesis equals f left-parenthesis t right-parenthesis w left-parenthesis t right-parenthesis (A.62)

According to (A.46) this results in a convolution in frequency domain

upper F Subscript w Baseline left-parenthesis omega right-parenthesis equals StartFraction 1 Over 2 pi EndFraction integral Subscript negative normal infinity Superscript normal infinity Baseline upper F left-parenthesis omega 1 right-parenthesis upper W left-parenthesis omega minus omega 1 right-parenthesis d omega 1 (A.63)

In other words, the spectrum of a windowed function is the convolution of the FT with the FT of the window function. The FT of a rectangular window that is defined as follows

w Subscript r Baseline left-parenthesis t right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column 1 2nd Column minus StartFraction upper T Subscript w Baseline Over 2 EndFraction less-than-or-equal-to t less-than-or-equal-to StartFraction upper T Subscript w Baseline Over 2 EndFraction 2nd Row 1st Column 0 2nd Column t less-than minus StartFraction upper T Subscript w Baseline Over 2 EndFraction semicolon t greater-than StartFraction upper T Subscript w Baseline Over 2 EndFraction EndLayout (A.64)

has the FT in the form of a sinc function

upper W left-parenthesis omega right-parenthesis equals upper T Subscript w Baseline StartFraction sine left-parenthesis omega upper T Subscript w Baseline slash 2 right-parenthesis Over omega upper T Subscript w Baseline slash 2 EndFraction equals upper T Subscript w Baseline normal s normal i normal n normal c left-parenthesis omega upper T Subscript w Baseline slash 2 right-parenthesis (A.65)

Consider now the spectrum of a cosine function (A.38) that consists of two symmetric peaks. When convoluted with the FT of a window function, the spectrum looks as shown in Figure A.6 where the FT of the window appears at the positions of the delta function. The peak of the window function is given by

upper W left-parenthesis 0 right-parenthesis equals integral Subscript negative normal infinity Superscript normal infinity Baseline w left-parenthesis t right-parenthesis d t (A.66)

Figure A.6 Effect of windowing on the spectrum of the cosine function. Source: Alexander Peiffer.

being Tw for the rectangular window. So, the amplitude of the cosine function can be derived from the peak value if the maximum is divided by W(0)/π.

In Figure A.6b the shape of the windows FT is shown, and the sampling of the related discrete FT is denoted by blue dots. The sampling occurs exactly at the zeros of the sinc function. Thus, when the frequencies of the cosine function fit exactly to one spectral sampling value, you get a single peak. What happens if this is not the case? In this case the sampling occurs at the sides of the window peak that is very steep so that the amplitude is underestimated. This is called spectral leakage.

For avoiding this there are two options:

  1. We increase the spectral sampling rate by extending the time interval artificially by adding zero values to the time signals, the so-called zero-padding.
  2. We use a window function with a broader peak in the frequency domain to mitigate the leakage effect.

An often used window function is the Hanning window given by

w Subscript normal h normal a normal n normal n Baseline left-parenthesis t right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column cosine squared left-parenthesis StartFraction pi t Over upper T Subscript w Baseline EndFraction right-parenthesis 2nd Column minus StartFraction upper T Subscript w Baseline Over 2 EndFraction less-than-or-equal-to t less-than-or-equal-to StartFraction upper T Subscript w Baseline Over 2 EndFraction 2nd Row 1st Column 0 2nd Column t less-than minus StartFraction upper T Subscript w Baseline Over 2 EndFraction semicolon t greater-than StartFraction upper T Subscript w Baseline Over 2 EndFraction EndLayout (A.67)

The effect of this broader window is sketched in Figure A.7. The leakage is reduced, but a certain underestimation of the amplitude is still possible.

Figure A.7 Cosine function spectrum with Hanning windowing function. Source: Alexander Peiffer.

Mitigating spectral leakage requires compromises; either you need fine spectral resolution, but then you accept high leakage. When choosing a broad peak you reduce the leakage but you loose spectral resolution. A further option is to take a higher number of samples or increase the time length Tw of the window. However, this is not always possible.

The sample interval in the spectrum is Δω=2πNΔT=2πTw, and this doesn’t depend on the sampling rate of the time signal but on the size of the time window Tw=NΔT. The highest considerable frequency sample is ωs/2=π/ΔT. The sampling rate influences the width of the spectrum or the maximum frequency value that can be considered.

A.3 Coordinate Transformation of Discrete Equation of Motion

The conversion between coordinate systems is a useful means to reduce the size of the numerical problem, for example to change from global coordinates to local dynamic coordinates with an easier formulation of the dynamics.

The equation of motion in discrete form

Start 1 By 1 Matrix 1st Row bold-italic upper D EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic f EndMatrix (A.68)

shall be converted into the coordinates q defined by

Start 1 By 1 Matrix 1st Row bold-italic q EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Superscript prime Baseline EndMatrix and Start 1 By 1 Matrix 1st Row bold-italic q Superscript prime Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix Superscript negative 1 Baseline Start 1 By 1 Matrix 1st Row bold-italic q EndMatrix (A.69)

Here, [T] is the matrix of new base vectors, e.g. the mode shapes. Entering the left hand side of (A.69) into (A.68) reads

Start 1 By 1 Matrix 1st Row bold-italic upper D EndMatrix Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Superscript prime Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic f EndMatrix (A.70)

and multiplying from the left with [T]1 gives the final converted form:

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix Superscript negative 1 Baseline Start 1 By 1 Matrix 1st Row bold-italic upper D EndMatrix Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q prime EndMatrix 2nd Column equals Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix Superscript negative 1 Baseline Start 1 By 1 Matrix 1st Row bold-italic f EndMatrix EndLayout (A.71)
StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic upper D prime EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q prime EndMatrix 2nd Column equals Start 1 By 1 Matrix 1st Row bold-italic f prime EndMatrix EndLayout (A.72)

So, the matrix and force are converted into the new system by

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic upper D prime EndMatrix 2nd Column equals Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix Superscript negative 1 Baseline Start 1 By 1 Matrix 1st Row bold-italic upper D EndMatrix Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix 3rd Column Start 1 By 1 Matrix 1st Row bold-italic f prime EndMatrix 4th Column equals Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix Superscript negative 1 Baseline Start 1 By 1 Matrix 1st Row bold-italic f EndMatrix EndLayout (A.73)

Note that from Equation (A.69), the matrix must be invertible and therefore consist of linear independent vectors.

Bibliography

  1. M. Frigo and S. G. Johnson The Design and Implementation of FFTW3. Proceedings of the IEEE, 93(2): 216–231, 2005. ISSN 0018-9219.
  2. Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Prentice Hall Signal Processing Series. Prentice-Hall, Upper Saddle River, NJ, second edition, internat. 1999. ISBN 978-0-13-083443-0.

Notes

  1. 1 This is not the length of the delta peak, because this is infinite
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.143.1.57