(8)Dualization law
((A,A)(B,B))C=(A,A)C(B,B)C((A,A)(B,B))C=(A,A)C(B,B)C((A,A)(B,B))C=(A,A)C(B,B)C((A,A)(B,B))C=(A,A)C(B,B)C

DF set does not satisfy the complementary law. The fundamental reason is that there is no clear boundary of DF set, that is, the boundary of the dynamic fuzzy.

8.1.3Cut set of dynamic fuzzy sets

In the transformation of DF set and common set, an important concept is the horizontal section set (λ,λ).(λ,λ).

Definition 8.4 Assume(A,A)DF(U),(λ,λ)[0,1]×[,],(A,A)DF(U),(λ,λ)[0,1]×[,], we note the following:

(1)AA={|u|uU,A(u)λ}orAλ={u|uU,A(u)λ},(0(λ,λ)<1),wenotethat(Aλ,Aλ)isthehorizontalsectionset(λ,λ)of(A,A).(2)AA={|u|uU,A(u)λ}orAλ={u|uU,A(u)λ},(0(λ,λ)<1),wenotethat(Aλ,Aλ)istheweaksectionset(λ,λ)of(A,A).(1)AA={uuU,A(u)λ}orAλ={uuU,A(u)λ},(0(λ,λ)<1),wenotethat(Aλ,Aλ)isthehorizontalsectionset(λ,λ)of(A,A).(2)AA={uuU,A(u)λ}orAλ={uuU,A(u)λ},(0(λ,λ)<1),wenotethat(Aλ,Aλ)istheweaksectionset(λ,λ)of(A,A).

According to definition, for (u,u)U,if(A(u),A(u))(λ,λ),then(u,u)(u,u)U,if(A(u),A(u))(λ,λ),then(u,u)(Aλ,Aλ).(Aλ,Aλ). That means, in the horizontal (λ,λ),(u,u)(λ,λ),(u,u) belongs to the DF set (A,A).(A,A). If (A(u),A(u))<(λ,λ),then(u,u)(Aλ,Aλ).(A(u),A(u))<(λ,λ),then(u,u)(Aλ,Aλ). That means, in the horizontal (λ,λ),(u,u)(λ,λ),(u,u) does not belong to the DF set (A,A).(A,A). Therefore, a DF set can be regarded as an unclear dynamic set with only moving boundary.

Property 8.1 Assume (A,A),(B,B)DF(U),(A,A),(B,B)DF(U),

then

((A,A)(B,B))(A,A)=(A,A)(A,A)(B,B)(A,A)((A,A)(B,B))(A,A)=(A,A)(A,A)(B,B)(A,A).((A,A)(B,B))(A,A)=(A,A)(A,A)(B,B)(A,A)((A,A)(B,B))(A,A)=(A,A)(A,A)(B,B)(A,A).

Obviously, for the finite number of DF set in DF(U), these conclusions still hold.

Namely:

(Ni=1(Aj,Ai))(λ,λ)=ni=1(Aiλ,Aiλ)(Ni=1(Aj,Ai))(λ,λ)=ni=1(Aiλ,Aiλ).(i=1N(Aj,Ai))(λ,λ)=i=1n(Aiλ,Aiλ)(i=1N(Aj,Ai))(λ,λ)=i=1n(Aiλ,Aiλ).

Property 8.2 If (At,At)(t,t)TDF(U),(At,At)(t,t)TDF(U), then

(t,t)T(At,At)(x,x)=((t,t)T(At,At))(x,x)(t,t)T(At,At)(x,x)=((t,t)T(At,At))(x,x).(t,t)T(At,At)(x,x)=(t,t)T(At,At)(x,x)(t,t)T(At,At)(x,x)=(t,t)T(At,At)(x,x).

Property 8.3 Assume (λ1,λ1),(λ2,λ2)[0,1]×[,];(A,A)DF(U).If(λ2,λ2)(λ1,λ1),(λ2,λ2)[0,1]×[,];(A,A)DF(U).If(λ2,λ2)(λ1,λ1),(λ1,λ1), then

(A,A)(λ2,λ2)(A,A)(λ1,λ1).(A,A)(λ2,λ2)(A,A)(λ1,λ1).

Property 8.4 Assume

(A,A)(tT(λt,λt))=tT(Aλt,Aλt).(A,A)(tT(λt,λt))=tT(Aλt,Aλt).

8.1.4Dynamic fuzzy sets decomposition theorem

According to the concept of horizontal section set the on the last section, we can get the following theorem:

Theorem 8.2 The horizontal section set (α,α)(α,α) and the weak horizontal section set have the following properties:

Theorem 8.3 If {(A,A)(t,t);(t,t)T}DF(X,X),(A,A)(t,t);(t,t)TDF(X,X), then we have the following properties:

Proof: If then it exits (t0,t0)T.(t0,t0)T. Let satisfied (x,x)((At0,At0))(α,α),Therefore,(At0,At0)(x,x)>(α,α),(x,x)((At0,At0))(α,α),Therefore,(At0,At0)(x,x)>(α,α), namely, Sup(t,t)T(At0,At0)(x,x)>(α,α);thus,(x,x)(t,t)T((At,At))(α,α).Sup(t,t)T(At0,At0)(x,x)>(α,α);thus,(x,x)(t,t)T((At,At))(α,α). So we prove property

(1). The rest of the situation is similar to the certificate. [Prove up].

Theorem 8.4 Assume (A,A)DF(X,X),{(at,at);(t,t)T}[(0,0),(1,1)].(A,A)DF(X,X),{(at,at);(t,t)T}[(0,0),(1,1)]. Then we have

where

(α,α)=(t,t)T(αt,αt),(β,β)=(t,t)T(αt,αt).(α,α)=(t,t)T(αt,αt),(β,β)=(t,t)T(αt,αt).

Proof: According to

(Aα,Aα)={(x,x);(A,A)(x,x)(t,t)T(αt,αt)}=(t,t)T(x,x);(A,A)(x,x)(αt,αt)=(t,t)T(Aαt,Aαt).(Aα,Aα)=(x,x);(A,A)(x,x)(t,t)T(αt,αt)=(t,t)T(x,x);(A,A)(x,x)(αt,αt)=(t,t)T(Aαt,Aαt).

Then we know

[Prove up].

(2) It is Similar to permit, so we omitted.

Theorem 8.5 For any (A,A)DF(X,X),(A,A)DF(X,X), we have

(1)(Aα,Aα)=(λ,λ)<(α,α)(Aλ,Aλ)(2)(Aα,Aα)=(λ,λ)>(α,α)(Aλ,Aλ)(1)(Aα,Aα)=(λ,λ)<(α,α)(Aλ,Aλ)(2)(Aα,Aα)=(λ,λ)>(α,α)(Aλ,Aλ)

Definition 8.5 Assume (α,α)[(0,0),(1,1)],(A,A)DF(X,X),(α,α)[(0,0),(1,1)],(A,A)DF(X,X), then the number product of (α,α)with(A,A)is((α,α)(A,A)(x,x)=(α,α)(A,A)(x,x)).(α,α)with(A,A)is((α,α)(A,A)(x,x)=(α,α)(A,A)(x,x)).

Theorem 8.6 (DF set decomposition theorem) For any we have

(A,A)=(α,α)(0,0),(˙1,1)(α,α)(A,A)(α,α)(A,A)=(α,α)(0,0),(˙1,1)(α,α)(A,A)(α,α).(A,A)=(α,α)(0,0),(1˙,1)(α,α)(A,A)(α,α)(A,A)=(α,α)(0,0),(1˙,1)(α,α)(A,A)(α,α).

Proof: Since

(A,A)(α,α)(x,x)={(1,1)(x,x)(Aα,Aα)(0,0)(x,x)(Aα,Aα),(A,A)(α,α)(x,x)=(1,1)(x,x)(Aα,Aα)(0,0)(x,x)(Aα,Aα),

then we have

((α,α[(0,0),(1,1)])(α,α)(A,A)(α,α))(x,x)=sup(α,α)((Aα,Aα)(x,x))=sup(x,x)(A,A)(α,α)(α,α)=sup(α,α)(Ax,Ax)(α,α)=(A,A)(x,x)).(α,α[(0,0),(1,1)])(α,α)(A,A)(α,α)(x,x)=sup(α,α)((Aα,Aα)(x,x))=sup(x,x)(A,A)(α,α)(α,α)=sup(α,α)(Ax,Ax)(α,α)=(A,A)(x,x)).

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.139.80.209