Definition 8.17 A variable of DF proposition is the variable of closed interval [0, 1] × [←, →]. We call that as DF proposition variable. We usually use lower case letters to express this.

For DF variable (x,x),(y,y)[0,1]×[,],(x,x),(y,y)[0,1]×[,], the rules are as follows: (notes: (x,x)=xorx,max(x,x)x,min(x,x)x)(x,x)=xorx,max(x,x)x,min(x,x)x)

(1)Negation “—”.
For example: The negation of (x,x)is¯(x,x),and¯(x,x)((1x),(1x));(x,x)is(x,x)¯¯¯¯¯¯¯¯¯¯¯¯,and(x,x)¯¯¯¯¯¯¯¯¯¯¯¯((1x),(1x));

(2)Disjunction “ V ”.
For example: The disjunction of (x,x)and(y,y)is(x,x)(y,y)(x,x)and(y,y)is(x,x)(y,y)max((x,x),(y,y));max((x,x),(y,y));

(3)Conjunction “ ⋀ ”.
For example: The conjunction of (x,x)and(y,y)is(x,x)(y,y)(x,x)and(y,y)is(x,x)(y,y)min((x,x),(y,y));min((x,x),(y,y));

(4)Condition “ ← ”.
For example: (x,x)(y,y)¯(x,x)(y,y)max(¯(x,x),(y,y));(x,x)(y,y)(x,x)¯¯¯¯¯¯¯¯¯¯¯¯(y,y)max((x,x)¯¯¯¯¯¯¯¯¯¯¯¯,(y,y));

(5)Bi-condition “ ↔ ”.
For example:(x,x)(y,y)((x,x)(y,y))((y,y)(x,x))((x,x)(y,y))((y,y)(x,x))min(max(x,x),(y,y)),max((y,y),(x,x)).For example:(x,x)(y,y)((x,x)(y,y))((y,y)(x,x))((x,x)(y,y))((y,y)(x,x))min(max(x,x),(y,y)),max((y,y),(x,x)).

For any DF proposition (x,x)P,(y,y)Q,¯(x,x)P,(x,x)P(y,y)Q,(x,x)P(x,x)P,(y,y)Q,(x,x)P¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯,(x,x)P(y,y)Q,(x,x)P(y,y)Q(y,y)Q is a DF proposition.

Definition 8.18 We can define dynamic fuzzy calculus logic formation as

(1)Single DF proposition is a well-formed formula.

(2)If (x,x)P(x,x)P is a well-formed formula, then ¯(x,x)P(x,x)P¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ also is well-formed formula.

(3)If (x,x)Pand(y,y)Q(x,x)Pand(y,y)Q is a well-formed formula, then
(x,x)P(y,y)Q,(x,x)P(y,y)Q,(x,x)P(y,y)Q,(x,x)P(y,y)Q(x,x)P(y,y)Q,(x,x)P(y,y)Q,(x,x)P(y,y)Q,(x,x)P(y,y)Q are also well-formed formula.

(4)A symbol string is a well-formed formula if and only if the symbol is constituted of variable coupling words, brackets and proposition which is obtained by finitely applying (1)(2) and (3).

The main law of DFL is as follows:

(1)Idempotent law
(x,x)A(x,x)A=(x,x)A(x,x)A(x,x)A=(x,x)A(x,x)A(x,x)A=(x,x)A(x,x)A(x,x)A=(x,x)A

(2)Law of commutation
(x,x)A(y,y)B=(y,y)B(x,x)A(x,x)A(y,y)B=(y,y)B(x,x)A(x,x)A(y,y)B=(y,y)B(x,x)A(x,x)A(y,y)B=(y,y)B(x,x)A

(3)Law of association
(x,x)A((y,y)B(c,c)C)=((x,x)A(y,y)B)(c,c)C(x,x)A((y,y)B(c,c)C)=((x,x)A(y,y)B)(c,c)C(x,x)A((y,y)B(c,c)C)=((x,x)A(y,y)B)(c,c)C(x,x)A((y,y)B(c,c)C)=((x,x)A(y,y)B)(c,c)C

(4)Absorption law
(x,x)A((y,y)B(x,x)A)=(x,x)A(x,x)A((y,y)B(x,x)A)=(x,x)A(x,x)A((y,y)B(x,x)A)=(x,x)A(x,x)A((y,y)B(x,x)A)=(x,x)A

(5)De Morgan Rule
¯(x,x)A(y,y)B=¯(x,x)A¯(y,y)B¯(x,x)A(y,y)B=¯(x,x)A¯(y,y)B(x,x)A(y,y)B¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯=(x,x)A¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(y,y)B¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(x,x)A(y,y)B¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯=(x,x)A¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(y,y)B¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

(6)Operational Rule of Constant
A(x,x)A=AA(x,x)A=(x,x)AA(x,x)A=AA(x,x)A=(x,x)A

Definition 8.19 Assume P is a DFL formula; if for all the variables in P there are T(p)(a,a),(a,a)[0,1]×[,],T(p)(a,a),(a,a)[0,1]×[,], then we call that the DFL formula P is constant true formula of (a,a).(a,a).

Especially, when T(P)(12,12),T(P)(12,12), we call the above formula P as a DF constant true formula. When T(P)<(12,12),T(P)<(12,12), we call the formula P as a DF constant false formula.

We call variable (x,x)and¯(x,x)(x,x)and(x,x)¯¯¯¯¯¯¯¯¯¯¯¯ as word (note as L), and the disjunction of word L1L2L3 ⋁ ... Lr as clause; we note C, the conjunction of word L1L2L3 ⋀...⋀ Lr as word group, and we note that ø

Theorem 8.12 The necessary and sufficient condition of clause C is DF true is clause C contains variable pair ((x,x),¯(x,x)).((x,x),(x,x)¯¯¯¯¯¯¯¯¯¯¯¯). The necessary and sufficient condition of word group ø is DF false is word group ø contains variable pair ((x,x),¯(x,x)).((x,x),(x,x)¯¯¯¯¯¯¯¯¯¯¯¯).

Definition 8.20 If DF formula f represents disjunction of word group øi, i = 1, 2, 3,..., p, namely:

f=ϕ1ϕ2ϕp,f=ϕ1ϕ2ϕp,

then we call the formula as the disjunction normal form of f.

If the DF formula f represents conjunction of clause, namely,

f=C1ΛC2ΛCp,f=C1ΛC2ΛCp,

then we call the formula as the conjunction normal form of f.

Theorem 8.13 The necessary and sufficient condition of disjunction normal form P = ø1⋀ ø2⋀ ... ⋀ øi is false is all word group are DF false.

The necessary and sufficient condition of conjunction normal form Q = C1C2 ⋁ ... ⋁Cp is DF true is all clause Ci are DF true.

8.4Dynamic fuzzy lattice and its property

Definition 8.21 We call ((K,K),)((K,K),) as sub-ordered set if the relations “ ≤ ” on (K,K)(K,K) meet the following conditions:

(1)Reflexivity: (α,α)(α,α)(α,α)(α,α)

(2)Transitive: (α,α)(β,β),(β,β)(y,y)(α,α)(y,y).(α,α)(β,β),(β,β)(y,y)(α,α)(y,y).
We call ((P,P),))((P,P),)) as partial order set. If it is sub-ordered set and meets (1) and (2):

(3)Anti symmetry: (α,α)(β,β),(β,β)(α,α)(α,α)=(β,β).(α,α)(β,β),(β,β)(α,α)(α,α)=(β,β).

In a partial order set (P,P),(P,P), there not necessarily is (α,α)(β,β)or(β,β)(α,α)(β,β)or(β,β)(α,α).(α,α). If for any (α,α)(β,β)(P,P),(α,α)(β,β)(P,P), there must be (α,α)(β,β)or(β,β)(α,α)(β,β)or(β,β)(α,α),(α,α), we call that (P,P)(P,P) is linear order set.

For a partial order set ((P,P),),if(H,H)(P,P),(u,u)(P,P),(h,h)((P,P),),if(H,H)(P,P),(u,u)(P,P),(h,h)(H,H),(H,H), let satisfy (h,h)(u,u),(h,h)(u,u), then we call (u,u)(u,u) as the upper bound of (H,H);(H,H); if the upper bound set of (H,H)(H,H) has a minimum element, then we call that as the minimum upper bound of (H,H).(H,H). We note that as

sup(H,H)or(h,h)(H,H)(h,h).sup(H,H)or(h,h)(H,H)(h,h).

If (v,v)(P,P),(h,h)(H,H),(v,v)(h,h),wecall(v,v)(v,v)(P,P),(h,h)(H,H),(v,v)(h,h),wecall(v,v) as the lower bound of (H,H);(H,H); if the lower bound set of (H,H)(H,H) has a maximum element, we call that as the maximum lower bound of (H,H).(H,H). We note that as

inf(H,H)orΛ(h,h)(H,H)(h,h).inf(H,H)orΛ(h,h)(H,H)(h,h).

Especially, we note the minimum upper bound of two elements (a,a)and(b,b)(a,a)and(b,b) as (a,a)(b,b),(a,a)(b,b), and the maximum lower bound as (a,a)(b,b).(a,a)(b,b).

Thus, we have:

Theorem 8.14 Assume ((P,P),)((P,P),) is partial order set; the minimum upper bound and the maximum lower bound have the following properties:

(1)(a,a)Λ(b,b)(a,a)(a,a)Λ(b,b)(b,b)(a,a)(a,a)(b,b)(b,b)(a,a)(b,b)(2)(a,a)Λ(b,b)=(b,b)Λ(a,a)(a,a)(b,b)=(b,b)(a,a)(1)(a,a)Λ(b,b)(a,a)(a,a)Λ(b,b)(b,b)(a,a)(a,a)(b,b)(b,b)(a,a)(b,b)(2)(a,a)Λ(b,b)=(b,b)Λ(a,a)(a,a)(b,b)=(b,b)(a,a)

Proof: (1), (2), and (3) are obvious.

Now we prove (4): if (a,a)(b,b),then(a,a) is the lower bound of (a,a) and (b,b).Thus,(a,a)(a,a)(b,b) according to (1): (a,a)(b,b)(a,a).

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.137.220.92