The prior of (5) is proved. The after is similar. Having

Having(a,a)(a,a),(a,a)(a,a)(b,b),then(a,a)(a,a)Λ((a,a)(b,b))(a,a);thus,(a,a)Λ((a,a)(b,b))=(a,a).Corollaries:(a,a)Λ((a,a)Λ(b,b))=(a,a)Having(a,a)(a,a),(a,a)(a,a)(b,b),then(a,a)(a,a)Λ((a,a)(b,b))(a,a);thus,(a,a)Λ((a,a)(b,b))=(a,a).Corollaries:(a,a)Λ((a,a)Λ(b,b))=(a,a)

Definition 8.22 We call partial order set ((L,L),)((L,L),) semilattice; when (α,α),(α,α),(β,β)(L,L),wehave(α,α)(β,β)(L,L)or(L,L)or(α,α)(β,β)(L,L).(β,β)(L,L),wehave(α,α)(β,β)(L,L)or(L,L)or(α,α)(β,β)(L,L).

When (α,α),(β,β)(L,L),wehave(α,α)(β,β)(L,L),(α,α)(α,α),(β,β)(L,L),wehave(α,α)(β,β)(L,L),(α,α)(β,β)(L,L),(β,β)(L,L), then we call the partial order set ((L,L),)((L,L),) as lattice.

Theorem 8.15 The necessary and sufficient conditions of set (L,L)(L,L) are a lattice:

(1)There are two operations ,,forany(a,a),(b,b)(L,L),,,forany(a,a),(b,b)(L,L), satisfying (a,a)(a,a)
(b,b)(L,L),(a,a)(b,b)(L,L).(b,b)(L,L),(a,a)(b,b)(L,L).

(2)(a,a)(b,b)=(b,b)(a,a),(b,b)(a,a)=(a,a)(b,b)(a,a)(b,b)=(b,b)(a,a),(b,b)(a,a)=(a,a)(b,b) (Commutative law)

(3)((a,a)(b,b))(c,c)=(a,a)((b,b)(c,c))((a,a)(b,b))(c,c)=(a,a)((b,b)(c,c))
(a,a)((b,b)(c,c))=((a,a)(b,b))(c,c)(a,a)((b,b)(c,c))=((a,a)(b,b))(c,c) (Associative law)

(4)(a,a)((a,a)(b,b))=(a,a)(a,a)((a,a)(b,b))=(a,a)
(a,a)((a,a)(b,b))=(a,a)(a,a)((a,a)(b,b))=(a,a) (Absorption law)

Proof: (sufficient)

(1): By known, we have ((L,L),)((L,L),) is lattice, according the definition of lattice. We prove (1).

(2): Assume (a,a)(b,b),then(a,a)(b,b)=(b,b)=(b,b)(a,a)=(b,b)(a,a)(b,b),then(a,a)(b,b)=(b,b)=(b,b)(a,a)=(b,b)(a,a)(b,b)=(b,b)(a,a);(a,a)(b,b)=(b,b)(a,a); in the same way, (b,b)(a,a)=(a,a)(b,b)(a,a)=(a,a)(b,b).(b,b).

When (b,b)(a,a),(b,b)(a,a), in the same way, we can prove (2).

(3)(4):Corollaries, according to the method in (2) (necessary):

(1)For any (a,a),(b,b)(L,L),(a,a),(b,b)(L,L), Then,
(a,a)(b,b)=(b,b)(a,a)(a,a)=(b,b).(a,a)(b,b)=(b,b)(a,a)(a,a)=(b,b).
According to (2), (a,a)(b,b)=(b,b)(a,a)(a,a)=(b,b),(a,a)(b,b)=(b,b)(a,a)(a,a)=(b,b),
Then, set ((L,L),)((L,L),) is antisymmetry.

(2)Assume (a,a)(b,b)and(b,b)(a,a).Then,(a,a)(b,b)and(b,b)(a,a).Then,
(a,a)(b,b)(a,a)(b,b)=(b,b)(b,b)(a,a)(b,b)(a,a)=(a,a)Accordingto(2),(a,a)(b,b)=(b,b)(a,a)(a,a)=(b,b).Then, set((L,L),)isantisymmetry.(a,a)(b,b)(a,a)(b,b)=(b,b)(b,b)(a,a)(b,b)(a,a)=(a,a)Accordingto(2),(a,a)(b,b)=(b,b)(a,a)(a,a)=(b,b).Then, set((L,L),)isantisymmetry.

(3)Assume (a,a)(b,b),(b,b)(c,c).Then,(a,a)(b,b),(b,b)(c,c).Then,
((a,a)(b,b))(c,c)=(b,b)(c,c)=(c,c)(a,a)((b,b)(c,c))=(a,a)(c,c)Accordingto(3)((a,a)(b,b))(c,c)=(a,a)((b,b)(c,c))(a,a)(c,c)=(c,c)(a,a)(c,c)Namely(a,a)(b,b),(b,b)(c,c)(a,a)(c,c),Then,set((L,L),)istransitive.((a,a)(b,b))(c,c)=(b,b)(c,c)=(c,c)(a,a)((b,b)(c,c))=(a,a)(c,c)Accordingto(3)((a,a)(b,b))(c,c)=(a,a)((b,b)(c,c))(a,a)(c,c)=(c,c)(a,a)(c,c)Namely(a,a)(b,b),(b,b)(c,c)(a,a)(c,c),Then,set((L,L),)istransitive.

(4)According to (1), for any (a,a),(b,b)(L,L),(a,a),(b,b)(L,L), there are (a,a)(b,b)(a,a)(b,b)(L,L),(a,a)(b,b)(L,L).(L,L),(a,a)(b,b)(L,L). Namely, the maximum lower bound and the minimum upper bound of any two elements are in the set. By (1)–(4), we can know that set (L,L)(L,L) is lattice.
According to the necessary and sufficient condition, the theorem holds.

(Prove up).

Theorem 8.16 Assume ((L,L),)((L,L),) is lattice, then we have the following properties:

(1)(b,b)(c,c)=(a,a)Λ(b,b)(a,a)Λ(c,c)(b,b)(c,c)=(a,a)(b,b)(a,a)(c,c)(2)(a,a)(b,b)Λ(c,c)((a,a)(b,b))Λ((a,a)(c,c))(a,a)Λ(b,b)(c,c)((a,a)Λ(b,b))((a,a)Λ(c,c))(1)(b,b)(c,c)=(a,a)Λ(b,b)(a,a)Λ(c,c)(b,b)(c,c)=(a,a)(b,b)(a,a)(c,c)(2)(a,a)(b,b)Λ(c,c)((a,a)(b,b))Λ((a,a)(c,c))(a,a)Λ(b,b)(c,c)((a,a)Λ(b,b))((a,a)Λ(c,c))

(3)(a,a)(c,c)(a,a)((b,b)Λ(c,c))(a,a)((b,b)Λ(c,c))(a,a)((b,b)Λ(c,c))(a,a)((b,b)Λ(c,c))(3)(a,a)(c,c)(a,a)((b,b)Λ(c,c))(a,a)((b,b)Λ(c,c))(a,a)((b,b)Λ(c,c))(a,a)((b,b)Λ(c,c))

Proof: (1) By Theorem 8.14: (b,b)(c,c)(b,b)(c,c)=(b,b),(b,b)(c,c)(b,b)(c,c)=(b,b), then ((a,a)(b,b))((a,a)(c,c))=((a,a)(a,a))((b,b)(c,c))=(a,a)(b,b),thus(a,a)(b,b)(a,a)(c,c).((a,a)(b,b))((a,a)(c,c))=((a,a)(a,a))((b,b)(c,c))=(a,a)(b,b),thus(a,a)(b,b)(a,a)(c,c).
Corollaries: ((a,a)(b,b))((a,a)(c,c))((a,a)(b,b))((a,a)(c,c))

(2)Hence, (a,a)((a,a)(b,b))((a,a)(c,c))and((b,b)(c,c))((a,a)(b,b))((a,a)(c,c)); then the first part of (2) has been proved. In the same way, we can prove the second part.

(3)According to (a,a)(c,c)(a,a)(c,c)=(c,c)(a,a)(c,c)(a,a), namely (3).

[Prove up].

Definition 8.23 Lattice ((L,L),) is dense; when (α,α),(β,β)(L,L) and (α,α)<(β,β), there exists (γ,γ)(L,L),letsatisfy(α,α)<(γ,γ)<(β,β).

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.224.59.192