Assume (X,X)={(x,x),...,(xn,xn)t},(Y,Y)={(y1,y1),...(ym,ym)},((L,L),(X,X)={(x,x),...,(xn,xn)t},(Y,Y)={(y1,y1),...(ym,ym)},((L,L), ≤) is a DF grid, and that 0 and 1 respectively represent the minimum and maximum elements of (L,L).(L,L).

Definition 6.7 If (R,R):(X,X)×(Y,Y)(L,L),(R,R):(X,X)×(Y,Y)(L,L), we say that (R,R)(R,R) is an (L,L)(L,L)-type DF matrix, written as

(R,R)=((r11,r11)(r12,r12)(r1m,r1m)(r21,r21)(r22,r22)(r2m,r2m)(rn1,rn1)(rn2,rn2)(rnm,rnm)),(R,R)=(r11,r11)(r21,r21)(rn1,rn1)(r12,r12)(r22,r22)(rn2,rn2)(r1m,r1m)(r2m,r2m)(rnm,rnm),

where (rij,rij)=(R,R)((xi,xi),(yj,yj))(in,jm).(rij,rij)=(R,R)((xi,xi),(yj,yj))(in,jm).

In particular, (R,R):(X,X)×(Y,Y)[0,1]×[,](R,R):(X,X)×(Y,Y)[0,1]×[,] is a DF matrix.

Obviously, an L-type DF matrix is an L-type DF relationship, and a DF matrix is a DF relationship.

Write DFL((X,X)×(Y,Y))={(R,R);(R,R):(X,X)×(Y,Y)(L,L)}.DFL((X,X)×(Y,Y))={(R,R);(R,R):(X,X)×(Y,Y)(L,L)}. If (R,R),(S,S)DFL((X,X)×(Y,Y)),(R,R)=(rij,rij),(S,S)=(sij,sij).(R,R),(S,S)DFL((X,X)×(Y,Y)),(R,R)=(rij,rij),(S,S)=(sij,sij). If

in,jm,(rij,rij)(sij,sij),(R,R)in,jm,(rij,rij)(sij,sij),(R,R) is contained in (S,S),(S,S), which we write as (R,R)(S,S).(R,R)(S,S).

Obviously, DFL(((X,X)×(Y,Y)),)DFL(((X,X)×(Y,Y)),) is a poset.

Assume (L,S,T,N) is a module system, and write

(R,R)(S,S)=((S,S)(rij,rij),(sij,sij));in,jm(R,R)(S,S)=((S,S)(rij,rij),(sij,sij));in,jm(R,R)c=(N,N)((rij,rij);ln,jm).(R,R)(S,S)=((S,S)(rij,rij),(sij,sij));in,jm(R,R)(S,S)=((S,S)(rij,rij),(sij,sij));in,jm(R,R)c=(N,N)((rij,rij);ln,jm).

Then, DFL(((X,X)×(Y,Y)),,,c)DFL(((X,X)×(Y,Y)),,,c) is also a module system, (0,0)=((oij,oij))=(0,0)=((oij,oij))=(0,0);in,jm)and(E,E)=((eij,eij)=(1,1);in,jm)(0,0);in,jm)and(E,E)=((eij,eij)=(1,1);in,jm) are the minimum element and maximum element of DFL((X,X)×(Y,Y)).DFL((X,X)×(Y,Y)).

Definition 6.8 Assume (R,R)(R,R) is an L-type DF matrix and (R,R)=((rij,rij);(R,R)=((rij,rij);in,jm).in,jm). If there exists an L-type DF matrix (Q,Q)=((qij,qij);jm,in)(Q,Q)=((qij,qij);jm,in) such that (R,R)(Q,Q)(R,R)=(R,R),wecall(R,R)(R,R)(Q,Q)(R,R)=(R,R),wecall(R,R) regular and say that (Q,Q)(Q,Q) is the general type-T matrix of

If there is some (Q,Q)(R,R)(Q,Q)=(Q,Q),then (Q,Q)(Q,Q)(R,R)(Q,Q)=(Q,Q),then (Q,Q) is the T inverse matrix of (R,R)(R,R)

Theorem 6.1 Assume (Q,Q)(Q,Q) is the general T inverse matrix of (R,R).Then,(S,S)=(R,R).Then,(S,S)=(Q,Q)(R,R)(Q,Q)(Q,Q)(R,R)(Q,Q) is the T inverse matrix of (R,R)(R,R) where T is a distribution grid.

Proof: According to Definition 6.8,

(R,R)(S,S)(R,R)=(R,R)(Q,Q)(R,R)(Q,Q)(R,R)=(R,R)(Q,Q)(R,R)(R,R).(R,R)(S,S)(R,R)=(R,R)(Q,Q)(R,R)(Q,Q)(R,R)=(R,R)(Q,Q)(R,R)(R,R).

Thus,

(S,S)(R,R)(S,S)=(Q,Q)(R,R)(Q,Q)(R,R)(Q,Q)(R,R)(Q,Q)=(Q,Q)(R,R)(Q,Q)=(S,S),(S,S)(R,R)(S,S)=(Q,Q)(R,R)(Q,Q)(R,R)(Q,Q)(R,R)(Q,Q)=(Q,Q)(R,R)(Q,Q)=(S,S),

which completes the proof.

Theorem 6.2 Assume (R,R)(R,R) is a DF matrix, and the sufficient and necessary condition for (R,R)(R,R) to be regular is

(R,R)(X,X)(R,R)=(R,R).(R,R)(X,X)(R,R)=(R,R).

Now, (X,X)(X,X) is the biggest general DF inverse matrix. When (R,R)(Q,Q)(R,R)=(R,R)(Q,Q)(R,R)=(R,R),then(Q,Q)(X,X).(R,R),then(Q,Q)(X,X).

Proof: The sufficient condition is obviously true, so we need to prove the necessary condition.

Assume (R,R)(R,R) is regular and that there exists some (Q,Q)(Q,Q) satisfying (R,R)(R,R)(Q,Q)(R,R)=(R,R).(Q,Q)(R,R)=(R,R). Thus, there is

nk=1(mj=1((rie,rie)(qik,qik))(rkj,rkj)=(rij,rij)(in,jm),k=1n(j=1m((rie,rie)(qik,qik))(rkj,rkj)=(rij,rij)(in,jm),

that is,

nk=1(me=1((rie,rie)(qek,qek))(rkj,rkj)=(rij,rij)(in,jm).k=1n(e=1m((rie,rie)(qek,qek))(rkj,rkj)=(rij,rij)(in,jm).

Thus, for kn,em,kn,em, there is ((rie,rie)(qik,qik))(rkj,rkj)(rij,rij)(in,((rie,rie)(qik,qik))(rkj,rkj)(rij,rij)(in, jm).

We can conclude the following:

1.((rie,rie)(rkj,rkj))(rij,rij)0(qek,qel)1;2.((rie,rie)(rkj,rkj))>(rij,rij)0(qek,qel)(rij,rij)1.((rie,rie)(rkj,rkj))(rij,rij)0(qek,qel)1;2.((rie,rie)(rkj,rkj))>(rij,rij)0(qek,qel)(rij,rij)

Hence, 0(qek,qek){(rst,rst);(rst,rst)<((rst,rst)(rnt,rnt))}=0(qek,qek){(rst,rst);(rst,rst)<((rst,rst)(rnt,rnt))}=(xek,xek);(xek,xek); that is, (Q,Q)(X,X)and(R,R)(Q,Q)(R,R)(R,R)(X,X)(Q,Q)(X,X)and(R,R)(Q,Q)(R,R)(R,R)(X,X)(R,R)(R,R)

Assuming that (U,U)=(R,R)(X,X)(R,R)(U,U)=(R,R)(X,X)(R,R) and

uij=nk=1ne=1((rie,rie)(xek,xek)(rke,rke))(in,jm),uij=k=1ne=1n((rie,rie)(xek,xek)(rke,rke))(in,jm),

Thus, we can prove that uij ≤ rij(in, ≤ jm) is true.

In fact, when ((rie,rie)(rie,rie))(rij,rij)((rie,rie)(rie,rie))(rij,rij) is true, we have

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.226.185.87