Index

Note: Page numbers followed by “f” indicate figures, and “t” indicate tables.

A

afun( ) function 149–150
Algebra 
commands for 5–6
Fundamental Theorem of 158
linear 7
of random variables 41
Algebraic eigenvalue problem 168
Aliased datasets 119
Aliasing 118, 118f
Amplitude 113–114
peak, significance of 284–289
spectral density 120, 121f, 124, 250, 251f
Approximation 
polynomial 240–241
precomputation of function 253
small number 242–245
and Taylor series 240–241
value of 239–240
Area under a function 128–129, 129f
areaofcircle( ) function 301
Arithmetic, commands for 5–6
Artifacts 225
Artificial neural networks 254–255
atan2( ) function 175, 302
Atlantic Rock dataset 
elements order in 180
sample order in 179–180
singular values of 171–172
factor analysis and 172
Autocorrelation 
computing by hand 193
convolution and 193–194
cross-correlation function generalized from 195
Fourier transform of, power spectral density and 194
function 189t
interpolation and prior information of 228
of Neuse River hydrograph 192, 192f
of smoothing filters on time series datasets 201–202
matrix 191
time series dataset 192
autofun( ) function 199
Auxiliary parameters in linear models 70
Axis xy command 29
axis( ) function 29

B

Back-propagation 261, 262f
Backslash operator 84
Backward in time 144
Bad data 85
Band-pass filters 204–208, 207f
Chebychev 208, 208f
correlation and 211, 212f
Bayes Theorem 52
conditional probability density function and 55, 56f
Bayesian inference 
prior information and 94–96, 96f
probability and 52–53
bicg( ) function 106–107, 149–151, 199–200
Biconjugate gradient method 106
Binned data 42
Binomial theorem 159
Bootstrap confidence intervals 290–293, 292–293f
Boxcar filter 203
Boxcar function 215
Bracketing observations 225
Bugs 17

C

Calibration test 
questions for 275–279
statistics for 276t
Cascades, filter 158–161
Causal filter 76, 144
Causality 140
Central Limit Theorem 48
Character string 14
Characteristic values 168
Characteristic vectors 168
Chebychev band-pass filter 208, 208f
Chi-squared probability density function 272–273, 272f
Chi-squared test 274
Clear all command 296
Climate Analysis Center dataset (CAC dataset) 180–181, 181–184f
Clipping vectors 12
Coefficients 
complex 123
correlation, matrix of 188, 189t
filter 76
time series datasets and 141
Coherence 189t
frequency-dependent 208–215, 210f, 212f, 214f
notes on 306
in time series datasets 208–209, 213–214
Color bar 26
Color-map 
black-and-white 31
data values converted to color values in 29–31, 31f
Column vectors 7
data kernel as 
concentration of 73–74, 73f
of its row vectors 74–75
grey-shaded, histogram as 26, 27f
input 167–168
output 167–168
Command Window navigation 4–5
Commands 3
for arithmetic and algebra 5–6
axis xy 29
clear all 296
conditional 11–12
function 107
Comments 18, 18f
Complex coefficients 123
Complex conjugation 123
Complex exponentials 122–124
with Fourier series 123
with positive and negative frequencies 122
ordering 124
Complex least squares 299–300
Complicated text files, reading 297–298
Conditional commands 11–12
Conditional probability 51–52, 51f
confusion with 52
Conditional probability density function 95
Bayes Theorem and 55, 56f
computing 56
Confidence intervals 
bootstrap 290–293, 292–293f
of mean 82
conv( ) function 147
Convolution 140, 189t
autocorrelation and 193–194
cross-correlation function compared to 195
discrete 145
filtering as 144–145
Fourier transform of 132–133, 194
integral 144
alternative form of 145
Convolution theorem 202–203
Convolve 147
Coordinated Universal Time (UTC) 296–297
Correlation 
in band-pass filters 211, 212f
coefficients, matrix of 188, 189t
as covariance 187–192
in elements of time series datasets 189–190, 191f
of joint probability density function 190–191
Counts 25–26
Covariance 
computing 57–58, 57f
correlation as 187–192
error propagation and 88
matrix 
of datasets 189t
posterior 93
prior 93
prior information on model parameters and 100–101
probability and 56–58
scatter plots as estimate of 188f
Cross-correlation function 189t, 194–195
autocorrelation generalizing to 195
convolution compared to 195
Fourier transform of 195
time series datasets aligned by 196–197, 196–198f
zero-lag 213
Cross-spectral density 195
Cubic interpolation 226–228, 226f
Cubic polynomial 226
Cubic splines 226–227, 228f
natural 227
cumsum( ) function 43, 292
Cumulative sum (running sum) 43
Curve fitting 70–72
polynomials and 70–71
Cut and paste, avoiding errors with 18

D

Damped least squares 99–100
prior information and 147–148
of smoothness 148–149
Darcy’s law 108
Data analysis 
interpolation problems with 224
in MatLab 2
organizing 3–4, 4f
probability and 39
purpose of 67–68
in single software environment 1–2
theory compared to practice for 1
vectors and matrices in 7
Data drop-outs 3, 18f
Data format conversion scripts 298
Data kernel 68
column vectors 
as concatenation of 73–74, 73f
of its row vectors 74–75
discrete Fourier 302–303
grey-shaded plot of 73f
for weighted averages 75–77, 76f
Datasets  See also specific datasets
aliased 119
bad 85
covariance matrix of 189t
examining 21–27
expectations for 22
in Microsoft Excel 2
noise and 39, 41
originality and 21–22
origins of 22
plotting 14–16
overlay for 29
scale enlargements for 24, 25f
side-by-side 29
populations of 37
prediction of 68–69
reality checks for 23
repeated 290
resampling, with duplications, 235 291
of sinusoidal oscillations 115–122
synthetic 109–110
techniques for 1
text file 
loading from 13–14, 14f
saving to 16–17
time series 34–35
autocorrelation 192
coherence in 208–209, 213–214
correlation in elements of 189–190, 191f
cross-correlation function aligning 196–197, 196–198f
filter coefficients and 141
as impulse response 141, 142f
polynomials from 158
power in 135
smoothing filters on 200–204, 201–204f
smoothing filters on, autocorrelation function of 201–202
smoothing filters on, power spectral density of 202
Date numbers 296
Degrees of freedom 84
effective 279
Delaunay triangulation 232, 233f
DelaunayTri( ) function 233–234
Derivation of generalized least squares 301
Derivative of a function 130–131, 131f
Derived quantities 41
Determinant 
calculating 168
Jacobian 59
Deuterium 39–40
Deviatoric quantities 100
diag( ) function 12
Difference due to random variation 269–270
Dirac delta function 127–128, 145
Directories  See Folders
Discharge rate 32
datasets segregated by 33
scatter plot of discharge against 33, 34f
Discrete convolution 145
Discrete Fourier data kernel 302–303
Discrete Fourier transform (DFT) 115, 205
Diurnal oscillations 25
Division-by-zero error 72
Drop-outs, data 3, 18f

E

eda_draw( ) function 298–299, 299f
Edge effects 200
Effective degrees of freedom 279
Eigenvalues 168
algebraic eigenvalue problem 168
distinct 169
Eigenvectors 168
perpendicular 169
Elements 
Atlantic Rock dataset order of 180
counts 25–26
in factors 166–167
high variance in 173
squares of 173
terminology of 166
of time series datasets, correlation in 189–190, 191f
of vectors and matrices 8–9
loop for 11–12
Empirical orthogonal functions (EOFs) 180, 182f
Error vector 77
Errors 
covariance and behavior of 88
cut and paste avoiding 18
division-by-zero 72
examining 77–79
generalized 95–96, 98
observational 84
plots of 77, 78f
for outliers 77
prediction error filter 154, 155–156f
in prior information 93
rule for propagation of 61, 298
shape of 79, 80f
total 77, 95
distribution of 270–272, 271–272f
logarithm of 79–80f
shape of 88
Euler’s formulas 122
eye( ) function 148

F

Factor analysis 37
Factor loadings 166
Factor matrix, rows of 167
Factors 
elements in 166–167
high variance in 173
squares of 173
minimum number of 167–171
samples as mixtures with two possible 167, 168f
spiky 172–176
minerals and 173
terminology of 166
Fast Fourier transform (FFT) 122
fclose( ) function 297–298
fft( ) function 124
fgetl( ) function 297–298
Figure Window zoom feature 24
filterfun( ) function 149–151
Filters 
band-pass 204–208, 207f
Chebychev 208, 208f
boxcar 203
cascades 158–161
casual 76, 144
coefficients 76
time series datasets and 141
as convolution 144–145
design of 207–208
high-pass 204, 206f
inefficiency and 149–150
Infinite Impulse Response (IIR) 204–205
inverse 158–161
Fourier transform and 160
of short filters 159, 160f
z-transform of 158–159
length-two 159
low-pass 204, 206f
minimum phase 159
notch 204, 207f
polynomials and 157–158
prediction error 154, 155–156f
principle of least squares estimation of 198–200
problems solved with 145–152
recursion and 161–162
short, inverse filters of 159, 160f
smoothing 162, 163f
three-point 200
on time series datasets 200–204, 201–204f
on time series datasets, autocorrelation function of 201–202
on time series datasets, power spectral density of, 182 202
uniform 201, 203
find( ) function 12, 24–25, 85
Finite Impulse Response (FIR) 161–162
Fisher-Snedecor F-probability density function 273
fliplr( ) function 12
Floating-point placeholders 36
floor ( ) function 27, 108
Folders (directories) 4, 4f
navigating 4–5
fopen( ) function 297–298
For loops 11–12
nested 35
omitting 12
Format string placeholders 35–36
Forward in time 144
Fourier analysis 72
grey-shaded plot of 73f
Fourier data kernel, discrete 302–303
Fourier series 115
complex exponentials with 123
Fourier transform compared to 125–126
linear equation form of 119
Fourier transform 189t See also Discrete Fourier transform
area under a function and 128–129, 129f
of autocorrelation, power spectral density and 194
of convolution 132–133, 194
of cross-correlation function 195
derivative of a function and 130–131, 131f
fast 122
Fourier series compared to 125–126
integral of a function and 131, 132f
inverse filters and 160
lessons learned from 125–126
manipulation of 126
Normal curve and 126, 127f
phase ramp and 129–130
power spectral density and 136
of spikes 127–128, 128f
time-delayed function and 129–130, 130f
in two-dimensions 234–236, 236f
window function before 215–216
F-probability density function 273–274
Frequency 113–114
coherence dependent on 208–215, 210f, 212f, 214f
complex exponentials with positive and negative 122
equivalent 118, 118f
frequencies higher than 117–119
ordering 123–124
F-test 274, 283
Function command 107
Function handle 107
Functions  See also Probability density function
area under a 128–129, 129f
autocorrelation 189t
interpolation and prior information of 228
of Neuse River hydrograph 192, 192f
of smoothing filters on time series datasets 201–202
boxcar 215
cross-correlation 189t, 194–195
autocorrelation generalizing to 195
convolution compared to 195
Fourier transform of 195
time series datasets aligned by 196–197, 196–198f
zero-lag 213
derivative of a 130–131, 131f
Dirac delta 127–128, 145
empirical orthogonal 180, 182f
generalized 127
integral of a function 131, 132f
MatLab defining 301–302
notes on 298–299, 301–302
time arithmetic 296
time-delayed 129–130, 130f
time-variable 179–184
window 
before Fourier transforms 215–216
Hamming 215–216, 217f
optimal 217–221
Fundamental Theorem of Algebra 158
Future, predicting 154–156

G

Gaps in information 
modified principle of least squares and 92
filling in 93
smoothness information for 102–103
Generalized error 95–96, 98
Generalized function 127
Generalized least squares 98–100
derivation of 301
for estimation 223
ginput( ) function 24–25
Global Positioning System (GPS) 296–297
Global variables 151
Gradient method 250–253
Graphics, MatLab 28–32
Grey-shaded column vector, histogram as 26, 27f
Grey-shaded matrix 32
Grid search 
in MatLab 78–79
for model parameter estimation 77–78, 79f
griddata( ) function 232

H

Hamming window function 215–216, 216f
Hermitian transpose 299–300
Hertz 113–114
High-pass filters 204, 206f
hist( ) function 25–26
Histogram 26f
computing 25
as grey-shaded column vector 26, 27f
moving-window 26–27, 28f
probability as 40, 41f
rate information and 32–34
Hypothesis testing 
one-sided 275
with probability density function 272–274
scenario for 274–280
two-sided 275

I

ifft( ) function 124
Ill-conditioned matrix 92
imagesc( ) function 32
Impulse response 
of heat flow 146f
Normal curve proportional to 146
problematic 146–147
time series datasets as 141, 142f
Infinite Impulse Response (IIR) 161–162
Information  See Prior information
Information flow, neural net 256–259, 258–260f
Input column vectors 167–168
Installing MatLab 3
Integral convolution 144
alternative form of 145
Integral of a function 131, 132f
International Earth Rotation and Reference Systems Service (IERS) 296–297
Interpolant 224
Interpolation 
cubic 226–228, 228f
data analysis problems of 224
Kriging 228–231
linear 225, 226f
prior information for 223–225, 224f
prior information of autocorrelation function for 228
spline 232
traditional approach to 224
triangular meshes used in 232–233
in two-dimensions 232–234, 233–234f
Inverse discrete Fourier transform 115
Inverse filters 
Fourier transform and 160
of short filters 159, 160f
z-transform of 158–159
Iterative least squares 247–248

J

Jacobian determinant 59, 271
Joint probability 50–52, 50–51f
Joint probability density function 53–56
correlation of 190–191
in MatLab 53–54
univariate probability density function from 54f

K

Kernel  See Data kernel
Krige, D. G 229–230
Kriging 228–231
Kronecker delta symbol 81, 169

L

Lagrange Multipliers, Method of 218–221, 306–307, 307f
Laplace's equation 109
Latin names for MatLab 147
Leap seconds 296–297
Least squares  See Principle of least squares
Length-two filter 159
Linear algebra 7
Linear function-emulating network 264–265, 265f
Linear interpolation 225, 226f
Linear models  See also Model parameters; Quantitative models
auxiliary parameters in 70
examples of 82
simplest 69
weighted averages and 74–77
load( ) function 14, 22, 297
Local quantities 225
Loops 
for elements of vectors and matrices 11
for loops 12
omitting 12
nested 11
scatter plots and 35
Low-pass filters 204, 206f

M

Mathematical constants, MatLab 6
The MathWorks MatLab  See MatLab
MatLab 
data analysis in 2
functions defined in 301
graphics 28–32
grid search in 77–78
installing 3
joint probability density function in 54
Latin names for 147
mathematical constants in 6
organizing 3–4
practical considerations of 3
purpose of 1–3
syntax of 12
Matrices 
autocorrelation 191–192
of correlation coefficients 188, 189t
covariance 93
of datasets 189t
posterior 93
prior 93
data analysis and 7
elements of 8–9
loop for 11–12
factor, rows of 167
grey-shaded 32
ill-conditioned 92
multiplication of 7–8
reorganizing 302
rotation 173–174
sample, rows of 167
singular value decomposition of 170–171, 305
of singular values 170–171
sparse 105–107
biconjugate gradient method solving 106
square 13
Toeplitz 76
unary 174
unwrap 107–108
varimax procedure for 173–174, 174f
Matrix inverse 13
max( ) function 25–26
Maximum likelihood point 42 See also Mode
Maximum number of iterations 106
Mean 41–44
confidence intervals of 82
formula for 43–44
probability density function and 43–44, 43f
random variables and 44
sample 44
of model parameter 69–70
variance of 82
univariate probability density function computing 53–54
Median 41–44
calculating 43
probability and 43, 43f
Method of Lagrange Multipliers 218–221, 306–307, 307f
Microsoft Excel 297
dataset in 2
min( ) function 25–26
Minimum phase filters 159
Mistakes  See Bugs
Mixtures 
of datasets 73–74
model parameters in 74
quantitative models and 74
samples as 165–167
two-factor example of 167, 168f
Mode 41–44
calculating 42
deceptiveness of 42
probability density function and 42, 42f
Model parameters 48, 67–69
datasets as function of 67–69
estimating 69
grid search for 77–78, 79f
observed data compared with 77
grids of, reorganizing 107–111, 108f, 110f
in mixtures 74
poorly determined 92
principle of least squares and 81
failure of 92
prior information on 92–94
covariance and 100–101
generalized least squares and 98–100
roughness and 102
smoothness as 102–104
as random variable function 48–50
sample mean of 69–70
weighted averages of 75
Moving-window histogram 26–27, 28f
m-script 6
Multiplication of vectors and matrices 7–8
Multitaper method 221
Multivariate Normal probability density function 59–60
Multivariate probability density function 58
linear functions of 61–64
Normal distributions of 58–60

N

Named variables 2
Natural cubic splines 227
N-dimensional Normal probability density function 58–59
Nested loops 11
scatter plots and 35
Neural net 
information flow 256–259
nonlinear response 263–267, 266f
training 256–259
Neuse River hydrograph 13
autocorrelation function of 192, 192f
derivative of 32
plot of 14f
prediction error filter for 155f
Newton’s method 247
Noise 
datasets and 39, 41
Normal probability density function measuring 47
as random variable 269
Nonspiky orthogonal vectors 174–175
Nontransient signals 134–137
power of 134–135
power spectral density of 135
Normal curve 
Fourier transform and 126, 127f
impulse response proportional to 145–146
Normal probability density function 47, 47f
Central Limit Theorem and 48
limitations of 48
mean and variance, angular frequency 244–245, 245f
multivariate 59–60
N-dimensional 58–59
noisy data measured with 47
outliers and 48
product of 95–96, 96f
Normalization factor 95, 97–98
normcdf( ) function 275
Notch filter 204, 207f
Null Hypothesis 269–270
rejection of 270
scenario for testing 274–280
Nyquist frequency 115–116, 135, 205–207
frequencies higher than 117, 119
Nyquist's Sampling Theorem 115–116

O

Objects, vectors compared to 233
Observational error 84
Observed periodicities 136–137
One-sided test 275
Orthogonal vectors, nonspiky 174f
Orthonormality of discrete Fourier data kernel 302–303
Oscillatory behavior 113 See also Sinusoidal oscillations
start times in, 104 
Outliers  See also Errors
error plots for 77
Normal probability density function and 48
Output column vectors 167–168
Overlay 29
Ozone 
solar radiation and 196–197, 198f
in stratosphere 196–197
tropospheric 196–197

P

Parseval's Theorem 135
Past condition 
behavior sensitive to 139–143
recent 140–141, 154
Period 113–114
Periodicities 
nomenclature for 113–114
observed 136–137
in two-dimensions 234–235
Phase 114
minimum 159
ramp 129–130
Placeholders 35
floating-point 36
in format string 35–36
Plotting data 14–16 See also Histogram; Scatter plots
overlay for 29
scale enlargements for 24, 25f
side-by-side 29
Polynomials 
cubic 226–228
curve fitting and 70–72
filters and 157–158
from time series datasets 158
Populations of data 37
Posterior covariance matrix 93
Posterior estimate of variance 84
Power 
of nontransient signals 134–137
spectral density 120
Fourier transform and 135
Fourier transform of autocorrelation and 194
of nontransient signal 135
of smoothing filters on time series datasets 202
in time series datasets 135
Preconceptions, in world 93 See also Prior information
Prediction 
of datasets 113
error filter 154, 155–156f
future 154–156
Principle of least squares 77
complex 299–300
damped 99–100
prior information and 147
prior information of smoothness and 148
failure of 91
model parameters and 92
for filter estimation 198–200
gaps in information and modified 92
filling in 93
generalized 98–100
derivation of 301
for estimation 223
model parameters and 80
simple 37
weighted 101
Prior covariance matrix 93
Prior estimate of variance 84
Prior information 
of autocorrelation function for interpolation 228
Bayesian inference and 94–96, 96f
damped least squares and 148
of smoothness 148–149
error in 93
for interpolation 223–225, 224f
of model parameters 92–94
covariance and 100–101
generalized least squares and 98–100
roughness and 102
smoothness as 102–104
probability density function and 93
smallness 148–149
Probability 
Bayesian inference and 52–53
conditional 51–52, 51f
confusion with 52
covariance and 56–58
data analysis and 39
as histogram 40
median and 43, 44f
methods for representing 39–40
upper-case and lower-case letters for 40–41
Probability density function 40, 273
behavior of 41
chi-squared 272–273, 272f
conditional 95
Bayes Theorem and 55, 56f
computing 56f
Fisher-Snedecor F- 273
of function of random variable 49, 50f
hypothesis testing with 272–274
joint 53–56
correlation of 190–191
in MatLab 54
univariate probability density function from 54f
mean and 44, 44f
measuring width of 45, 45f
mode and 42, 42f
multivariate 58
linear functions of 61–64
normal distributions of 58–60
negatively correlated 57–58, 57f
Normal 47, 47f
Central Limit Theorem and 48
limitations of, 44 48
multivariate 58–60
N-dimensional 58–59
noisy data measured with 47
outliers and 48
product of 96–98, 97f
positively correlated 57–58, 57f
prior information and 93
spatially variable 55
Student's t- 273, 274f
Student’s t- 273, 274f
uncorrelated 56–57, 57f
uniform 46–47, 49, 272
computing 53–54
univariate 
from joint probability density function 54f
mean and variance computed to 53–54
Properties 233

Q

Quantitative models 67–69
abstract understanding of 68
mixtures and 73–74
simplest 69

R

Radians per unit distance 113–115
Random time series 286, 287f
Random variables 39–41
algebra of 41
difference due to 269–270
functions of 48–50
mean and 43–44
model parameters as function of 48–50
noise as 269
probability density function of function of 49, 50f
in scatter plots 187
random( ) function 110
Rate curve 32–33
Rate information, histograms and 32–34
Reality checks 23
Recursion 161–162
Relative time 139–140
Repeated datasets 290
Response time 140–141
Reynolds Channel water quality dataset 208–215
Riemann sum 125–126
Rotation matrix 174
Roughness information 102
Row vectors 7
data kernel as column vector of its 74
Rows 
of factor matrix 167
of sample matrix 167
Rule for error propagation 61
Running sum 43

S

Sample matrix 167
Sample mean 44
of model parameter 69
variance of 82
Samples 
Atlantic Rock dataset order of 179–180
as mixtures 165–167
two-factor example of 167, 168f
Saving 
dataset to text file 16–17
old scripts 17
Scatter plots 
as covariance estimate 188f
of discharge rate against discharge 32–33, 33f
effectiveness of 35, 36f, 37
limitations of 34–37
nested for loops and 35
random variables in 187
Scripting language software environment 2 See also MatLab
advice for 
comments 18
cut and paste used sparingly in 18
naming variables 17
saving old script 17
start small 18
testing 18
think before you type 17
syntax of 12
Side-by-side plots 29
Sidelobes 203
Simple least squares 98–100
Singular value decomposition of matrix 170–171, 305
Singular values 
of Atlantic Rock dataset 171–172
of CAC dataset 181–182
factor analysis and 172
matrix of 170
Sinusoidal oscillations 113–115
aliasing and 118f, 119
models composed of 115–122
Small number approximations 
covariance 246–247
distance on sphere 243, 244f
variance 243–245
Smallness information 148–149
Smoothing filter 162, 163f
three-point 200
on time series datasets 200–204, 201–204f
autocorrelation function of 201–202
power spectral density of 202
Smoothness information 
damped least squares and prior 148–149
for gaps in information 102–103
as prior information on model parameters 102–104
Software environment 
data analysis in single 1–2
scripting language 2
spreadsheet 2
Solar radiation 196–197, 197f
spalloc( ) function 151
Sparse matrices 105–107
biconjugate gradient method solving 106
Spatial cycles 113–114
Spatially variable probability density function 55
Spectral density 
amplitude 120, 121f, 124
cross- 195
power 120
Fourier transform of autocorrelation and 194
of smoothing filters on time series datasets 202
Spectral division 161
Spectral hole 160–161
Spectral peak significance testing 284–289, 287f
Spikes 141
Fourier transform of 127, 128f
time-delayed 130
Spiky factors 172–176
minerals and 173
Splines 
cubic 226–228, 228f
natural 227
interpolation 232
triangular meshes and 232, 233f
types of 225
Spreadsheet software environment 2
sprintf( ) function 35, 297–298
Square matrices 13
sscanf( ) function 297–298
Start time 296
Statistics 270
for calibration test 276t
Stochastic gradient method 252–253
Storm events 32
Straight line, fit to many points 91, 92f
Stratosphere, ozone in 196–197
String print formatted 35
Student's t-probability density function 273, 274f
Subfolders (sub-directories) 4, 4f
sum() function 44
svd( ) function 171–172
Swayze, Patrick 52
Synthetic data 12

T

Tapering process 136–137
Tapers 215–216
Taylor series 88
multiple dimensions 245–246
and polynomial approximations 240–241
tcdf( ) function 278
Temperature 
anomaly 181f
plotting data for time against 23, 23f
Temporal cycles 113–114
Ternary diagram 165–166, 166f
Testing 
calibration 
questions for 275, 279
statistics for 276t
Chi-squared test 274
F-test 274, 283
hypothesis 
one-sided 275
with probability density function 272–274
scenario for 274–280
two-sided 275
improvement in fit 283–284, 283–284f
scripting language software environment 17
scripts 17
spectral peak significance 284–289, 287–288f
t-test 274–278
Z-test 274
Text file 
complicated, reading 297–298
dataset 
loading from 13–14, 14f
saving to 16–17
Text Import Wizard 297
Time 
backward in 144
forward in 144
notes on 297–298
relative 139–140
response 140f
Time arithmetic function 296
Time series datasets 34–35, 115
autocorrelation 192
coherence in 208–215
correlation in elements of 190–191f, 196–197
cross-correlation function aligning 196–197, 196–198f
filter coefficients and 141
as impulse response 141, 142f
polynomials from 157–158
power in 135
random 286, 287f
similarity in 211
smoothing filters on 200–204, 201–204f
autocorrelation function of 201–202
power spectral density of 202
Time-delayed function 129–130, 130f
Time-delayed spikes 130
Time-shift invariance 140
Time-variable functions 179–184
Toeplitz matrix 76
Tolerance 106
Total error 77, 95
distribution of 270–272, 271–272f
logarithm of 79–80f
shape of 85
t-probability density function 273, 274f
Transient signals 134
Triangular meshes 
interpolation uses of 233f
splines and 232, 233f
TriScatteredInterp( ) function 232
Tropospheric ozone 196–197
Two-dimensional Fourier transform 234–236, 236f
Two-dimensional interpolation 232–234, 233–234f
Two-sided test 275

U

Ultraviolet light (UV) 196–197
Unary matrix 174
unidrnd( ) function 291
Uniform filter 201, 203
Uniform probability density function 46–49, 272
computing 54f
Unit impulse 141
Univariate probability density function 
from joint probability density function 54f
mean and variance computed to 53–54
Unwrap matrices 107–108

V

Variables 6
naming 17
persistence of 295–296
random 39–41
algebra of 41
difference due to 269–270
noise as 269
in scatter plots 166
Variance 45–46
calculation of 45–46, 46f
disadvantage of 45–46
high, elements of factors having 173
posterior estimate of 84
prior estimate of 84
of sample mean 82
univariate probability density function computing 53–56
Varimax procedure 173–174, 174f, 292–293
Vectors 
characteristic 168
clipping 12
column 7
input 167–168
output 167–168
data analysis and 7
eigenvectors 168
perpendicular 169
elements of 8–9
loop for 11–12
grey-shaded column, histogram as 26, 27f
multiplication of 7–8
nonspiky orthogonal 174–175
objects compared to 233
row 7

W

Wavelength 113–114
Wavenumber 113–114
Weighted averages 
causal filter as 76
data kernel corresponding to 74–77, 76f
linear models and 74–77
of model parameters 75
three-point 75
Weighted least squares 101
Window function 
before Fourier transforms 215–216
Hamming 215–216, 216f
optimal 217–221

X

xcorr( ) function 192, 195

Z

Zero-lag cross-correlation function 213
zeros ( ) function 27
Z-test 274
z-transform 158
of inverse filter 158–161
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.17.79.206