List of Figures

Figure 2.1 A first (and not very useful) circuit. 7
Figure 2.2 The ideal op amp. 10
Figure 2.3 The noninverting op amp. 10
Figure 2.4 The inverting op amp. 11
Figure 2.5 The adder circuit. 12
Figure 2.6 The differential amplifier. 13
Figure 2.7 Differential amplifier with common-mode input signal. 14
Figure 2.8 T network in feedback loop. 14
Figure 2.9 Thevenin's theorem applied to T network. 15
Figure 2.10 Impedance matching amplifier. 16
Figure 2.11 Low-pass filter. 17
Figure 2.12 High-pass filter. 17
Figure 3.1 Split-supply inverting gain op amp circuit. 21
Figure 3.2 Single-supply op amp inverting gain circuit. 22
Figure 3.3 Single-supply op amp inverting gain circuit with internal DC operating point. 23
Figure 3.4 Single-supply op amp inverting gain circuit with external DC operating point. 24
Figure 3.5 Incorrect voltage reference buffering. 25
Figure 3.6 Correct voltage reference buffering. 25
Figure 3.7 Incorrect noninverting single-supply stage. 26
Figure 3.8 Another incorrect noninverting single-supply stage. 27
Figure 4.1 A simple transducer interface example. 32
Figure 4.2 Split-supply op amp circuit with common-mode voltage. 32
Figure 4.3 Inverting op amp with DC offset. 34
Figure 4.4 Inverting op amp with VCC bias. 35
Figure 4.5 Transfer curve for inverting op amp with VCC bias. 36
Figure 4.6 Noninverting op amp. 36
Figure 4.7 Transfer curve for noninverting op amp. 37
Figure 4.8 Schematic for Case 1: VOUT = +mVIN + b. 40
Figure 4.9 Case 1 example circuit. 42
Figure 4.10 Case 1 example circuit measured transfer curve. 43
Figure 4.11 Schematic for Case 2: VOUT = +mVIN  b. 44
Figure 4.12 Case 2 example circuit. 45
Figure 4.13 Case 2 example circuit measured transfer curve. 46
Figure 4.14 Schematic for Case 3: VOUT = mVIN + b. 46
Figure 4.15 Case 3 example circuit. 48
Figure 4.16 Case 3 example circuit measured transfer curve. 48
Figure 4.17 Schematic for Case 4: VOUT = mVIN  b. 49
Figure 4.18 Case 4 example circuit. 50
Figure 4.19 Case 4 example circuit measured transfer curve. 51
Figure 5.1 Noninverting attenuator. 54
Figure 5.2 Noninverting attenuation with positive offset. 55
Figure 5.3 Noninverting attenuation with negative offset. 55
Figure 5.4 Inverting attenuation with zero offset. 56
Figure 5.5 Noninverting attenuation with positive offset. 56
Figure 5.6 Noninverting attenuation with negative offset. 57
Figure 5.7 Inverting unity gain buffer. 57
Figure 6.1 Definition of blocks. (A) Input/output impedance (B) signal flow arrows (C) block multiplication (D) blocks perform functions as indicated. 60
Figure 6.2 Summary points. (A) Additive summary point (B) subtractive summary point (C) multiple input summary points. 61
Figure 6.3 Definition of control system terms. 61
Figure 6.4 Definition of an electronic feedback circuit. 61
Figure 6.5 Multiloop feedback system. 62
Figure 6.6 Block diagram transforms. 63
Figure 6.7 Comparison of control and electronic canonical feedback systems. (A) Control system terminology (B) electronics terminology (C) feedback loop is broken to calculate the loop gain. 64
Figure 6.8 Low-pass filter. 66
Figure 6.9 Bode plot of low-pass filter transfer function. 66
Figure 6.10 Band reject filter. 67
Figure 6.11 Individual pole zero plot of band reject filter. 67
Figure 6.12 Combined pole zero plot of band reject filter. 68
Figure 6.13 The ideal op amp Bode plot, when no pole exists in Eq. (6.12). 69
Figure 6.14 When Eq. (6.12) has a single pole. 70
Figure 6.15 Magnitude and phase plot of Eq. (6.14). 72
Figure 6.16 Magnitude and phase plot of the loop gain increased to (K + C). 73
Figure 6.17 Magnitude and phase plot of the loop gain with pole spacing reduced. 73
Figure 6.18 Phase margin and overshoot versus damping ratio. 75
Figure 7.1 Feedback system block diagram. 79
Figure 7.2 Feedback loop broken to calculate loop gain. 80
Figure 7.3 Noninverting op amp. 81
Figure 7.4 Open-loop noninverting op amp. 82
Figure 7.5 Inverting op amp. 82
Figure 7.6 Inverting op amp: feedback loop broken for loop gain calculation. 83
Figure 7.7 Differential amplifier circuit. 84
Figure 7.8 Bode response of a typical op amp. 85
Figure 7.9 Bode response representation of safe operating region. 87
Figure 8.1 Miller effect compensation. 90
Figure 8.2 TL03X frequency- and time-response plots. 91
Figure 8.3 Phase margin and percent overshoot versus damping ratio. 92
Figure 8.4 TL07X frequency- and time-response plots. 93
Figure 8.5 TL08X frequency- and time-response plots. 93
Figure 8.6 TLV277X frequency-response plots. 94
Figure 8.7 TLV227X time-response plots. 94
Figure 8.8 Capacitively loaded op amp. 96
Figure 8.9 Capacitively loaded op amp with loop broken for loop gain (Aβ) calculation. 96
Figure 8.10 Possible Bode plot of the op amp described in Eq. (8.7). 98
Figure 8.11 Dominant-pole compensation plot. 98
Figure 8.12 Gain compensation. 100
Figure 8.13 Lead-compensation circuit. 100
Figure 8.14 Lead-compensation Bode plot. 101
Figure 8.15 Inverting op amp with lead compensation. 102
Figure 8.16 Noninverting op amp with lead compensation. 103
Figure 8.17 Op amp with stray capacitance on the inverting input. 103
Figure 8.18 Compensated attenuator circuit. 104
Figure 8.19 Compensated attenuator bode plot. 105
Figure 8.20 Lead-lag compensated op amp. 106
Figure 8.21 Bode plot of lead-lag compensated op amp. 106
Figure 8.22 Closed-loop plot of lead-lag compensated op amp. 107
Figure 9.1 Current-feedback amplifier model. 110
Figure 9.2 Stability analysis circuit. 111
Figure 9.3 Stability analysis circuit. 111
Figure 9.4 Noninverting current-feedback amplifier. 112
Figure 9.5 Inverting current-feedback amplifier. 114
Figure 9.6 Bode plot of stability equation. 116
Figure 9.7 Plot of current-feedback amplifier RF, G, and BW. 118
Figure 9.8 Effects of stray capacitance on current-feedback amplifiers. 120
Figure 9.9 Bode plot with CF. 121
Figure 10.1 Long-tailed pair. 124
Figure 10.2 Ideal current-feedback amplifier. 125
Figure 10.3 Voltage-feedback amplifier gain versus frequency. 126
Figure 10.4 Current-feedback amplifier gain versus frequency. 127
Figure 11.1 Single-ended op amp schematic symbol. 133
Figure 11.2 Fully differential op amp schematic symbol. 134
Figure 11.3 Closing the loop on a single-ended op amp. 135
Figure 11.4 Closing the loop on a fully differential op amp. 135
Figure 11.5 Single ended to differential conversion. 136
Figure 11.6 Relationship between VIN, VOUT+, and VOUT. 137
Figure 11.7 Electrical model of Vocm. 138
Figure 11.8 Mechanical model of Vocm. 138
Figure 11.9 A mechanical fully differential amplifier. 138
Figure 11.10 Using a fully differential op amp to drive a analog-to-digital converter 139
Figure 11.11 Instrumentation amplifier. 140
Figure 11.12 Single-pole differential low-pass filter. 141
Figure 11.13 Single-pole differential high-pass filter. 141
Figure 11.14 Differential low-pass filter. 142
Figure 11.15 Differential high-pass filter. 142
Figure 11.16 Differential speech filter. 143
Figure 11.17 Differential speech filter response. 143
Figure 11.18 Differential biquad filter. 144
Figure 12.1 Undercompensated op amp. 145
Figure 12.2 Instrumentation amplifier. 146
Figure 12.3 High-precision differential amplifier. 147
Figure 12.4 Difference amplifier. 148
Figure 12.5 High side current monitor. 149
Figure 12.6 Commercial difference amplifier. 150
Figure 12.7 A better way to use a buffer amplifier. 151
Figure 12.8 Paralleling buffer amplifiers. 152
Figure 13.1 Simple method to isolate coaxial cable capacitance. 156
Figure 13.2 50 Ω transmission method. 157
Figure 13.3 50 Ω transmission method, with DC blocking capacitor. 157
Figure 13.4 Simple method to reject RF 158
Figure 13.5 Typical op amp input stage. 159
Figure 13.6 External slew rate reduction capacitor. 160
Figure 13.7 Power supply rejection ratio. 161
Figure 13.8 Decoupling technique to reduce PSRR. 162
Figure 13.9 Op amp package with offset null pins. 163
Figure 13.10 One possible offset null correction. 163
Figure 13.11 Method to balance input bias current. 164
Figure 13.12 Noninverting gain circuit with input bias current balancing. 165
Figure 13.13 Noninverting gain circuit with low DC offset. 165
Figure 14.1 Focusing on the power supply characteristics. 169
Figure 14.2 Focusing on the input signal. 170
Figure 14.3 Focusing on the analog to digital converter. 171
Figure 14.4 Focusing on the operational amplifiers. 172
Figure 14.5 Single-ended to fully differential AC coupled interface. 174
Figure 14.6 Preferred single-ended to fully differential AC coupled interface. 174
Figure 15.1 Resistor ladder D/A converter. 178
Figure 15.2 Binary weighted D/A converter. 179
Figure 15.3 R/2R resistor array. 180
Figure 15.4 R/2R D/A converter. 181
Figure 15.5 Sigma delta D/A converter. 182
Figure 15.6 Total harmonic distortion. 185
Figure 15.7 D/A offset error. 187
Figure 15.8 D/A gain error. 188
Figure 15.9 Differential nonlinearity error. 189
Figure 15.10 Integral nonlinearity error. 189
Figure 15.11 Spurious-free dynamic range. 191
Figure 15.12 Intermodulation distortion. 191
Figure 15.13 D/A settling time. 192
Figure 15.14 D/A deglitch circuit. 193
Figure 15.15 Compensating for CMOS DAC output capacitance. 193
Figure 15.16 D/A output current booster. 195
Figure 15.17 Incorrect method of increasing voltage swing of D/A converters. 196
Figure 15.18 Correct method of increasing voltage range. 197
Figure 15.19 Single-supply DAC operation. 198
Figure 16.1 Second-order passive low-pass and second-order active low-pass. 200
Figure 16.2 First-order passive RC low-pass. 200
Figure 16.3 Fourth-order passive RC low-pass with decoupling amplifiers. 201
Figure 16.4 Frequency and phase responses of a fourth-order passive RC low-pass filter. 202
Figure 16.5 Amplitude responses of Butterworth low-pass filters. 204
Figure 16.6 Gain responses of Tschebyscheff low-pass filters. 205
Figure 16.7 Comparison of phase responses of fourth-order low-pass filters. 206
Figure 16.8 Comparison of normalized group delay (tgr) of fourth-order low-pass filters. 206
Figure 16.9 Comparison of gain responses of fourth-order low-pass filters. 207
Figure 16.10 Graphical presentation of quality factor Q on a 10th-order Tschebyscheff low-pass filter. 208
Figure 16.11 Cascading filter stages for higher-order filters. 209
Figure 16.12 First-order noninverting low-pass filter. 210
Figure 16.13 First-order inverting low-pass filter. 210
Figure 16.14 First-order noninverting low-pass filter with unity gain. 211
Figure 16.15 General Sallen–Key low-pass filter. 212
Figure 16.16 Unity-gain Sallen–Key low-pass filter. 212
Figure 16.17 Second-order unity-gain Tschebyscheff low-pass with 3 dB ripple. 214
Figure 16.18 Adjustable second-order low-pass filter. 214
Figure 16.19 Second-order multiple feedback low-pass filter. 215
Figure 16.20 First-order unity-gain low-pass. 217
Figure 16.21 Second-order unity-gain Sallen–Key low-pass filter. 217
Figure 16.22 Fifth-order unity-gain Butterworth low-pass filter. 218
Figure 16.23 Low-pass to high-pass transition through components exchange. 219
Figure 16.24 Developing the gain response of a high-pass filter. 219
Figure 16.25 First-order noninverting high-pass filter. 220
Figure 16.26 First-order inverting high-pass filter. 220
Figure 16.27 General Sallen–Key high-pass filter. 221
Figure 16.28 Unity-gain Sallen–Key high-pass filter. 222
Figure 16.29 Second-order multiple feedback high-pass filter. 223
Figure 16.30 Third-order unity-gain Bessel high-pass. 225
Figure 16.31 Low-pass to band-pass transition. 225
Figure 16.32 Gain response of a second-order band-pass filter. 227
Figure 16.33 Sallen–Key band-pass. 228
Figure 16.34 Multiple feedback band-pass. 229
Figure 16.35 Gain responses of a fourth-order Butterworth band-pass and its partial filters. 233
Figure 16.36 Low-pass to band-rejection transition. 234
Figure 16.37 Passive Twin-T filter. 235
Figure 16.38 Active Twin-T filter. 235
Figure 16.39 Passive Wien-Robinson bridge. 236
Figure 16.40 Active Wien-Robinson filter. 237
Figure 16.41 Comparison of Q between passive and active band-rejection filters. 238
Figure 16.42 Frequency response of the group delay for the first 10 filter orders. 240
Figure 16.43 First-order all-pass. 241
Figure 16.44 Second-order all-pass filter. 242
Figure 16.45 Seventh-order all-pass filter. 244
Figure 16.46 Dual-supply filter circuit. 244
Figure 16.47 Single-supply filter circuit. 245
Figure 16.48 Biasing a Sallen–Key low-pass. 245
Figure 16.49 Biasing a second-order multiple feedback low-pass filter. 246
Figure 16.50 Biasing a Sallen–Key and a multiple feedback high-pass filter. 247
Figure 16.51 Differences in Q and fC in the partial filters of an eighth-order Butterworth low-pass filter. 248
Figure 16.52 Modification of the intended Butterworth response to a Tschebyscheff-type characteristic. 248
Figure 16.53 Open-loop gain (AOL) and filter response (A). 250
Figure 17.1 Low-pass response—go to Section 17.3.1. 260
Figure 17.2 High-pass response—go to Section 17.3.2. 261
Figure 17.3 Narrow (single-frequency) band pass—go to Section 17.3.4. 261
Figure 17.4 Wide band pass—go to Section 17.3.5. 261
Figure 17.5 Notch filter—single frequency—go to Section 17.3.5. 262
Figure 17.6 Low-pass filter. 262
Figure 17.7 High-pass filter. 263
Figure 17.8 Narrow band-pass filter. 263
Figure 17.9 Wide band-pass filter. 264
Figure 17.10 Notch filter. 265
Figure 17.11 Variable frequency notch filter. 266
Figure 17.12 Three-pole low-pass filter. 267
Figure 17.13 Three-pole high-pass filter. 268
Figure 17.14 Twin-T band-pass filter response. 269
Figure 17.15 Modified Twin-T topology. 269
Figure 17.16 Two Twin-T networks inside the feedback loop. 270
Figure 17.17 Stagger-tuned filter response. 271
Figure 17.18 Multiple-peak band-pass filter. 272
Figure 17.19 Single-amplifier Twin-T notch filter. 273
Figure 17.20 Twin-T band reject filter. 274
Figure 17.21 Single-amplifier Twin-T notch and band-pass filter. 275
Figure 17.22 Universal filter schematic. 276
Figure 17.23 Universal filter calculator. 276
Figure 17.24 Universal filter board. 277
Figure 17.25 Notch filter calculator. 278
Figure 17.26 Notch filter PCB. 278
Figure 17.27 Twin-T filter calculator. 279
Figure 17.28 Twin-T PC board. 280
Figure 18.1 Open-loop response. 281
Figure 18.2 Band-pass response. 283
Figure 18.3 Notch filter response for 1 MHz center frequency. 284
Figure 18.4 Notch filter response for 100 kHz center frequency. 285
Figure 18.5 Notch filter response for 10 kHz center frequency. 285
Figure 18.6 Amplitude modulation reception with and without notch filter. 286
Figure 18.7 Effect of heterodyning and the notch filter. 287
Figure 19.1 A traditional RF stage. 290
Figure 19.2 Noninverting RF op amp gain stage. 291
Figure 19.3 Frequency response peaking. 293
Figure 19.4 Noise bandwidth. 295
Figure 19.5 Typical GSM cellular base station receiver block diagram. 296
Figure 19.6 Broadband RF IF amplifier. 297
Figure 19.7 Wideband response. 297
Figure 19.8 IF amplifier response. 300
Figure 19.9 Single-ended to differential output drive circuit. 301
Figure 20.1 Rail-to-rail output stage. 304
Figure 20.2 Input circuit of a non rail-to-rail input op amp. 306
Figure 20.3 Input circuit of a rail-to-rail input op amp. 306
Figure 20.4 Input offset voltage and bias current changes with input common-mode voltage. 307
Figure 22.1 Voltage regulator operation. 323
Figure 22.2 Switching regulator. 325
Figure 22.3 Overvoltage protection circuit. 327
Figure 22.4 Active load. 329
Figure 22.5 Voltage regulator calculator. 330
Figure 23.1 Voltage regulator operation. 334
Figure 23.2 Negative output utilizing a parasitic winding. 336
Figure 23.3 Negative output utilizing a parasitic winding. 337
Figure 23.4 Negative output by referencing the regulator to VOUT instead of ground. 338
Figure 23.5 Negative active load. 339
Figure 24.1 Oscillator schematics. 341
Figure 24.2 Oscillator outputs. 342
Figure 24.3 Comparator oscillator analysis. 343
Figure 24.4 Composite op amp. 344
Figure 24.5 Composite op amp. 345
Figure 24.6 Paralleling output op amps. 345
Figure 25.1 Op amp attenuator done wrong. 347
Figure 25.2 Op amp attenuator done correctly. 348
Figure 25.3 Inverting op amp attenuator. 348
Figure 25.4 Similar schematic symbols, but very different parts! 349
Figure 25.5 Example op amp schematic. 350
Figure 25.6 Example comparator schematic. 350
Figure 25.7 Different ways of dealing with unused op amp sections. 352
Figure 25.8 Unexpected DC gain. 354
Figure 25.9 Current source. 354
Figure 25.10 Current feedback amplifier incorrectly applied. 355
Figure 25.11 Voltage-feedback versus current-feedback amplifier stability versus load resistor. 356
Figure 25.12 Capacitor in feedback loop. 356
Figure 25.13 Terminating a fully differential amplifier. 357
Figure 25.14 Using an input stage. 358
Figure 25.15 Incorrect DC operating point. 358
Figure 25.16 Correct DC operating point. 359
Figure 25.17 Common-mode error. 360
Figure 25.18 The effects of VOCM on outputs. 360
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.15.6.77