8.10 Example: Chat Server

We’ll finish this chapter with a chat server that lets several users broadcast textual messages to each other. There are four kinds of goroutine in this program. There is one instance apiece of the main and broadcaster goroutines, and for each client connection there is one handleConn and one clientWriter goroutine. The broadcaster is a good illustration of how select is used, since it has to respond to three different kinds of messages.

The job of the main goroutine, shown below, is to listen for and accept incoming network connections from clients. For each one, it creates a new handleConn goroutine, just as in the concurrent echo server we saw at the start of this chapter.

gopl.io/ch8/chat
func main() {
    listener, err := net.Listen("tcp", "localhost:8000")
    if err != nil {
        log.Fatal(err)
    }

    go broadcaster()
    for {
        conn, err := listener.Accept()
        if err != nil {
            log.Print(err)
            continue
        }
        go handleConn(conn)
    }
}

Next is the broadcaster. Its local variable clients records the current set of connected clients. The only information recorded about each client is the identity of its outgoing message channel, about which more later.

type client chan<- string // an outgoing message channel

var (
    entering = make(chan client)
    leaving  = make(chan client)
    messages = make(chan string) // all incoming client messages
)

func broadcaster() {
    clients := make(map[client]bool) // all connected clients
    for {
        select {
        case msg := <-messages:
            // Broadcast incoming message to all
            // clients' outgoing message channels.
            for cli := range clients {
                cli <- msg
            }

        case cli := <-entering:
            clients[cli] = true

        case cli := <-leaving:
            delete(clients, cli)
            close(cli)
        }
    }
}

The broadcaster listens on the global entering and leaving channels for announcements of arriving and departing clients. When it receives one of these events, it updates the clients set, and if the event was a departure, it closes the client’s outgoing message channel. The broadcaster also listens for events on the global messages channel, to which each client sends all its incoming messages. When the broadcaster receives one of these events, it broadcasts the message to every connected client.

Now let’s look at the per-client goroutines. The handleConn function creates a new outgoing message channel for its client and announces the arrival of this client to the broadcaster over the entering channel. Then it reads every line of text from the client, sending each line to the broadcaster over the global incoming message channel, prefixing each message with the identity of its sender. Once there is nothing more to read from the client, handleConn announces the departure of the client over the leaving channel and closes the connection.

func handleConn(conn net.Conn) {
    ch := make(chan string) // outgoing client messages
    go clientWriter(conn, ch)

    who := conn.RemoteAddr().String()
    ch <- "You are " + who
    messages <- who + " has arrived"
    entering <- ch

    input := bufio.NewScanner(conn)
    for input.Scan() {
        messages <- who + ": " + input.Text()
    }
    // NOTE: ignoring potential errors from input.Err()

    leaving <- ch
    messages <- who + " has left"
    conn.Close()
}

func clientWriter(conn net.Conn, ch <-chan string) {
    for msg := range ch {
        fmt.Fprintln(conn, msg) // NOTE: ignoring network errors
    }
}

In addition, handleConn creates a clientWriter goroutine for each client that receives messages broadcast to the client’s outgoing message channel and writes them to the client’s network connection. The client writer’s loop terminates when the broadcaster closes the channel after receiving a leaving notification.

The display below shows the server in action with two clients in separate windows on the same computer, using netcat to chat:

$ go build gopl.io/ch8/chat
$ go build gopl.io/ch8/netcat3
$ ./chat &
$ ./netcat3
You are 127.0.0.1:64208               $ ./netcat3
127.0.0.1:64211 has arrived           You are 127.0.0.1:64211
Hi!
127.0.0.1:64208: Hi!                  127.0.0.1:64208: Hi!
                                      Hi yourself.
127.0.0.1:64211: Hi yourself.         127.0.0.1:64211: Hi yourself.
^C
                                      127.0.0.1:64208 has left
$ ./netcat3
You are 127.0.0.1:64216               127.0.0.1:64216 has arrived
                                      Welcome.
127.0.0.1:64211: Welcome.             127.0.0.1:64211: Welcome.
                                      ^C
127.0.0.1:64211 has left

While hosting a chat session for n clients, this program runs 2n+2 concurrently communicating goroutines, yet it needs no explicit locking operations (§9.2). The clients map is confined to a single goroutine, the broadcaster, so it cannot be accessed concurrently. The only variables that are shared by multiple goroutines are channels and instances of net.Conn, both of which are concurrency safe. We’ll talk more about confinement, concurrency safety, and the implications of sharing variables across goroutines in the next chapter.

Exercise 8.12: Make the broadcaster announce the current set of clients to each new arrival. This requires that the clients set and the entering and leaving channels record the client name too.

Exercise 8.13: Make the chat server disconnect idle clients, such as those that have sent no messages in the last five minutes. Hint: calling conn.Close() in another goroutine unblocks active Read calls such as the one done by input.Scan().

Exercise 8.14: Change the chat server’s network protocol so that each client provides its name on entering. Use that name instead of the network address when prefixing each message with its sender’s identity.

Exercise 8.15: Failure of any client program to read data in a timely manner ultimately causes all clients to get stuck. Modify the broadcaster to skip a message rather than wait if a client writer is not ready to accept it. Alternatively, add buffering to each client’s outgoing message channel so that most messages are not dropped; the broadcaster should use a non-blocking send to this channel.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.217.220.114