Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A

Absorbed glass mat (AGM) battery 78, 87–88, 123
DCA vs. cycle number for 90–91, 90f
micro-hybrid 124t
power capability 80
prismatic configuration 80
spiral-wound configuration 80, 87–88
Abuse tests 482
electrical abuse tests 483t
mechanical abuse tests 484t
thermal abuse tests 485t
Accelerating aging test 481
Advanced Lead Acid Battery Consortium (ALABC) 98
Aging  See Cell aging
Air pollution 19
Automated guided vehicles (AGVs) 13
Auto-Mixte 35–36

B

Balance of plant (BOP) costs 398–399
Battery electric vehicles (BEVs) 7
CO2 reduction 70
costs of 70
demonstration programs 36–37
development targets 189, 189t
economic impacts 47–51, 48f, 49f
Electric and Hybrid Vehicle Research, Development and Demonstration Act 36
electric passenger cars 35–36
electric power trains, development of 191–192
energy consumption of 23–26
General Motors, EV1 of 36
HV battery packs 246
ICE cars, competitiveness of 35–36
industry loans 36–37
lead–acid battery  See (Lead–acid battery (LAB))
lithium-ion batteries  See (Lithium-ion batteries (LIBs))
market forces and barriers 40–45, 43f
market potentials of 45–47, 46f
market shares of 39–40, 40f
Muskie-Act/Clean Air Act Amendments 36
research and development process 36
stock and sales of 37–40, 38t, 39f
ZEV mandate 36
Battery management systems (BMSs) 
battery state estimation 293–303
cell balancing  See (Cell balancing)
high voltage safety 319–321
insulation monitoring device 319, 320f
interlock circuit 319
ISO 26262 functional safety standard  See (ISO 26262 standard)
IT security 321
overcurrent protection 319
pole-cutting relays and pre-/discharge circuit 317–318, 318f
Battery module 
cell interconnection system 251–252
cell module 249–251
Battery performance test 474–481
Battery repurposing 
advantages 393–394
aging effects 407–409
automobile manufacturers and collaborators 404–405
barriers and solutions 409–410
battery lease payments 398f
cell and pack cost 395t
design limitations and disadvantages 406–407
EV deployment 392
grid-storage applications 405
hybrid electric vehicles 389
market forces and future aspects 411–412
National Renewable Energy Laboratory 401–404
Oak Ridge National Laboratory 395–396
Pacific Northwest National Laboratory 396–398
plug-in hybrid electric vehicles 389
PV system costs 393
safety, warranty, and controls architecture 410–411
transportation batteries 392
Battery simulation 491
Battery size factor (BSF) 56
Battery state estimation 
state of charges 294–295, 295f, 296–300, 297f, 299f
state of function 295–296, 295f, 301–303
state of health 293–303, 295f, 301f
Battery Systems Engineering 322
Battery thermal management 
air-cooled systems 337
air-cooling dimensioning 346–347
battery heat generation 345–346
capacity and power fade 328
cell performance and aging 327–328
cell size 330
condensate avoiding and handling 350–353
definition 335
design process 335–337
dielectric liquid-based systems 337–339
direct refrigerated system 349
electrical insulation 353
hardware and control mechanisms 330
heat sources 332
heat transfer 332–334
indirect liquid-cooled systems 339
limitations and challenges 353–355
liquid cooling system 347–349
lithium-ion battery 330
phase change material 342–344
pre- and postconditioning 353
reference battery module 344–345
refrigerant-based systems 340–341
self-discharge 328–329
sensoring and control 350
thermal balance 334–335
thermal runaway 330
thermoelectric elements 342
Xenon Flash method 329
Beginning of life (BOL) conditions 360
Bidirectional multiwinding transformer balancing system 287t, 288–290, 290f
Binary electrolyte 422
Biofuels 17
Blunt indentation test 489–490
Book-keeping method  See Coulomb counting
Boost converter 290–291, 291f
Buck converter 290–291, 291f

C

Cahn–Hilliard theory 424–425
Calendar aging 359, 482
Carbon dioxide (CO2) emissions 
climate change 41
in Europe 17–19
life-cycle approach 21, 21f, 26–28, 32–33
vehicle production 22–23, 23f
Carbon-fiber-reinforced plastics (CFRP) 247
Cell aging 
battery lifetime, extension of 383
battery packs 369–372
calendar aging 359
capacity and voltage profiles 381–383
cell design and cell integrity 367–369
charge-discharge rate 367
end of battery’s life (EOL) 361
field data 375–376
LL cathode 360
phenomenological models 376–378
physical-based models 378–379
polarization and internal resistance 380–381
state of health 360, 365–367
temperature effects 365
testing 372–375
Cell balancing 292–293
bidirectional multiwinding transformer 287t, 288–290, 290f
DC/DC converters 287t, 290–291, 291f
dissipative shunt resistor/transistor 286, 287t, 288f, 322
imbalances 284–285, 285f
MOSFET switch array 287t, 291–292, 292f
static methods 285
switched capacitors 287t, 288, 289f
Cell interconnection system 247–248, 249, 251–252
Cell monitoring unit (CMU) 269
Cell supervision circuit (CSC) 247–248, 253
Cell-to-cell inhomogeneities 
at BOL 370
during calendar aging 370–371
during cycle aging 371–372
CHAdeMO plug 455
Charge acceptance (CA) 296
Charge-depleting (CD) mode 55
Charge-sustaining (CS) mode 55
Charging device 5
Charging infrastructure 
charger hardware 452–454
charging rate 454
development path of 463–465
driving behavior 446–448
economics of 462–463
electric driving 448
infrastructure location 451–452
parking locations 450
pause times 448–450
plug types 455
safety considerations 461–462
standards and regulations 463
SWOT analysis 456–458
Chloride battery 165
Clean Development Mechanism 32–33
CoLaBATS project 513
Coleman–Noll procedure 420
Compound annual growth rate (CAGR) 394
Computational homogenization (CH) technique 419
Control Systems Safety Evaluation and Reliability 322
Conversion reaction materials 152–154, 153f
Coulomb counting 296, 297
Cranking capability (CC) 295–296
Ćuk converter 290–291, 291f

D

Demand side management (DSM) 30, 31, 32
Depth of discharge (DoD) 134
lead–acid battery 82, 83f
SoC 295
Design and Safety Assessment of Critical Systems 322
Diagnostic coverage (DC) 312–313, 313t
Dissipative balancing system 286, 287t, 288f, 322
Distributions of relaxation times (DRT) 381
Dual electrolyte system 145
Dynamic charge acceptance (DCA) 85, 93–95, 93f
Dynamic stress testing (DST) 111

E

Electrical abuse tests 483t
Electrical safety tests 483–485
Electric and Hybrid Vehicle Research, Development and Demonstration Act 36
Electric drivetrains 19–20, 20f
Electric machine 4–5
Electric mobility 3–5
electricity demand, in Germany 29–30, 29f
power plant structure, impact on 29–32, 29f, 30f
vehicle drivetrains, electrification of 19–20, 20f
Electric propulsion systems 
vs. conventional propulsion system 6, 6f
fields of application 8, 8f
parallel hybrid/power-split hybrid 6–7
plug-in hybrid vehicle  See (Plug-in hybrid electric vehicles (PHEVs))
REEV 7
Electric road vehicles 11, 12f
Electric Vehicle Initiative (EVI) 45
Electric vehicles (EVs) 
advantages and disadvantages of 8–11, 10t
Electrochemical impedance spectroscopy (EIS) 381
Electro-chemical theory 298
Electroneutrality 419, 422, 423, 431
Electro-quasi-static (EQS) formulation 420
End of life (EOL) 58t, 294, 361
Energy consumption 
of electric vehicles 23–26
in Europe 17–19, 18f
life-cycle approach 21, 21f, 26–28
vehicle production 22–23, 23f
Energy storage device 4
Energy storage system 303–304
Enhanced flooded batteries (EFBs) 87–88, 123
European Green Vehicle Initiative (EGVI) 128

F

Failure mode and effects analysis (FMEA) 304–307
Failure mode effect and diagnostic analysis (FMEDA) 314
Faraday’s law of electrolysis 428
Federal Urban Driving Schedule (FUDS) 477–480
Ferrite battery 165–166
Fluoride battery 
cell chemistry 163
cell design of 163, 163f
electrode materials 164
electrolyte 164
experimental cells 164
performance data 164, 164t
Fuel cell electric vehicles (FCEVs) 7–8, 246
CO2 reduction 70
costs of 70
hydrogen 69–70
job structure, influences on 49–50
market potentials 46–47
Full concentration gradient (FCG) material 203–205, 204f
Functional safety requirements (FSRs) 307–308, 308t, 309f

G

General Motors 36
Global Technical Regulations (GTR) 501–502
Global warming 31, 32f
Greenhouse gas (GHG) emissions 21, 41
climate change 41, 389
of compact car 27, 27f
Ground fault interrupter (GFI) 461

H

Hard carbon 154
Hardware software interface (HSI) 311
Hazard analysis and risk assessment (HARA) 304–307, 306t, 307t
Heat transfer 
conduction 334
convection 334
radiation 333
High-voltage (HV) batteries 
battery housing 254–258
battery module 247–252
cooling and heating system 254
definition 245
electrical/electronic components 252–254
mechanical requirements 259–260
safety requirements 260
service requirements 260–261
High-voltage battery management systems (HV BMSs) 
communication 268–269
data acquisition 266
data processing and storage 266–267
design of 272–280
electrical management 267
safety management 267–268
smart cells 278–279
thermal management 267
topology of 269–272
HORIZON 2020 program 128
Hybrid electric vehicles (HEVs) 389
Auto-Mixte 35–36
calendar life test 63–64
cold-cranking and thermal performance tests 63–64
cycle life test 63–64
deployment 392
development targets 189, 189t
drivetrain, electrification of 20
energy content for 408
energy efficiency test 63–64
global market 392
lead–acid battery  See (Lead–acid battery (LAB))
lithium-ion batteries  See (Lithium-ion batteries (LIBs))
“Lohner-Porsche,” 35–36
Prius model 36–37
regenerative braking system 191
self-discharge test 63–64
state of charge 392
supercapacitors 67, 68f, 69
time-shifting 407
voltage efficiency 409
Hybrid pulse power characterization (HPPC) tests 
cell voltage profile 59–60, 61f
discharge and regenerative pulse powers 56, 60–62, 62f, 63f
discharge and regenerative pulse resistances 60, 61f
discharge voltage and cumulative energy 59–60, 60f
ESCT, UECD, UECS, and UEM values 63, 64t
open circuit voltage 60, 61f

I

Inductive power transfer (IPT) 453–454
Inorganic solid electrolytes 
garnets 151
glassy nitrides 151
sulfidic glasses 152
super ionic conductors 152
Insulation monitoring device (IMD) 319, 320f
Intergovernmental Panel on Climate Change (IPCC) 41
Internal combustion engine (ICE) vehicles 35–36, 295–296
global market volume 47–48, 48f
job structure, influences on 49–50
micro-hybrid system 121
mild hybrids 121
production of 48–49, 49f
Internal entropy production 433, 435f
Inverse mass ratio battery 166
ISO 26262 standard 
energy storage system 303–304
hardware development 311–314, 313t
item integration and testing 317
production, release for 317
safety goals 307, 307t
safety life cycle 303, 304f
safety validation and assessment 317
software development 315–316, 315f
system design 309–311, 312f

J

Joule heating 367, 371–372

K

Kalman filters 299–300, 301, 301f

L

Latent-fault metric (LFM) 313–314
Layered-layered (LL) cathode 360
Lazy battery phenomenon 84–85
Lead–acid battery (LAB) 
automotive technology, changes in 99, 99f
battery market, development of 100, 100f
capacity and discharge current 80, 81f
carbon 88–91, 89f, 90f, 91f
chemical hazard 87
depth of discharge 82, 83f
disposal/recycling 87
double sulfate theory 75
durability 81–85
dynamic charge acceptance 85
electrical hazards 86, 87
energy efficiency of 80–81
fire and explosion hazards 87
flat, pasted, grid type accumulator 78, 79f, 80
grid type electrodes 78, 79f
in HEV applications 91–98, 92t
lazy battery phenomenon 84–85
lead 85–86
operating principle of 76–78
pasted plates 75
plate thickness 82
production process 86
PSoC operation 83, 84–85
self-discharge of 81, 82f
SLI, EFBs, and AGM 87–88
SoC range 82–85, 83f, 84f
spiral wound cell 78, 79f, 80
stationary energy storage 75
sulfuric acid 86
temperature 85
tubular plate design 75
tubular type electrode 78, 78f
worldwide passenger car sales 99, 99f
Life cycle assessment (LCA) 33
liquid cooling system 
conductive thermal resistance 348
convective thermal resistance 348
Lithium-air battery 148t
aqueous lithium-air systems 144–145
dendrite growth (anode) 146
dry and nonaqueous lithium/air systems 140–144, 141f
lithium/seawater batteries 145–146
oxygen reduction catalysts 146–147
water-stable lithium anodes 145
Lithium-ion batteries (LIBs) 
advantages and disadvantages of 176–180, 177f
anode materials 178–180, 185, 187t
battery pack design 180–182, 180f, 181f, 185–188
carbonaceous anode materials 217–218
cathode materials 64–67, 65f, 66t, 67f, 176–178, 177f, 184–185, 186t
complete battery cell models 426
composite materials 421
computational homogenization techniques 419
core functioning 421–422
core-shell type LiMn0.85Fe0.15PO4–LiFePO4 material 214–216
cost targets of 173
cylindrical cells 174–175, 175f
disposal and recycling 183
electrode/electrolyte boundary 425–426
energy and power requirements 173, 174t
energy densities of 127, 128
environmental service 182
EOL of 294
gravimetric energy density 192
intercalation/deintercalation process 68–69
intercalation, in active materials 423
interface reaction 425–426
jelly rolls 174, 174f
layered LiCoO2 192–193
layered Li[NixCoyMnz]O2 cathode materials 192–199
lifetime 173
macroscopic scale modeling 428
market forces 188–189
multiscale battery cell models 426–427
multiscale modeling approach 427–431
nano-sized cathode material 192
Ni-rich and Ni-deficient Li[NixCoyMnz]O2 materials 199–205
nonlinear material response 424–425
olivine type LiFePO4 materials 205–209
olivine type LiMnPO4 compound 210–214
one-dimensional modeling 431–435
oxidation/reduction reaction 417
pouch cells 175, 176f
prismatic cells 174–175, 175f
safety requirements 183–184
SEI layer 426
Si-based anode materials 223–232
solid-state electrolytes  See (Solid-state electrolyte (SSE))
stacked electrode cell design 174, 175f
stress generation 425
transition metal oxide anode materials 219–223
two-dimensional modeling 435–437
5-V lithium-ion materials 128–131
volumetric energy density 192
Lithium iron phosphate (LFP) cathode 364
Lithium–nickel aluminum oxides (LNCAs) 177–178
Lithium-organosulfur battery 140
Lithium polysulfide battery 
additives in cathodes 136
anodes 137
binders 136
carbon nanotubes and nanofibers 135
cell design and electrode reactions 134, 134f
core–shell structures 136
current collectors 137
electrolyte additives 138
experimental cell data 138–140, 139t
gel polymer electrolytes 138
graphene 136
ionic liquids 138
liquid organic electrolytes 137
lithium sulfide 136
macroporous carbon 135
membrane separators 138
microporous carbon 135
nanostructured sulfur cathodes 135
passivation and soluble products 134
polymer-sulfur nanocomposites 136
solid-state electrolytes 137–138
three-dimensional (3D) nanostructured sulfur composites 136
yolk-shell structures 136
Lithium-sulfur batteries 132
basic cell reactions 133
capacity of 133, 133t
challenges 133
energy density 133
lithium-organosulfur battery 140
lithium polysulfide battery  See (Lithium polysulfide battery)
standard potentials 133, 133t
Lithium super ionic conductor (LISICON) 145
Lithium thiolate 140
Lithium-water battery 145–146
Lohner-Porsche 35–36

M

Magnesium battery 
cell chemistry 159, 160f
electrodes 162–163
electrolyte 159–162, 161f
magnesium-sulfur battery 159, 163
Mechanical abuse tests 484t
Mechanical safety tests 485–487
Mennekes plug 455
Mini-cars 11
Module management unit (MMU) 269, 272–275
MOSFET switch array 287t, 291–292, 292f

N

National Renewable Energy Laboratory (NREL) 399
New European Driving Cycle (NEDC) 23–26, 24t
Newton–Raphson iterative scheme 436
Nickel manganese cobalt (NMC) 364
Nickel–metal hydride (NiMH) battery 
AA-size batteries, specific energy for 109, 109f
advantages and disadvantages of 109, 115–116
button configuration 116, 117f
cell/electrode chemical reactions 103–104
cell, module and pack design 120–121
characteristics 109
charge retention/shelf life 113–115, 114f
costs 115
cycle life of 111–112, 111f, 112f
cylindrical cell configuration 116, 117f
cylindrical vs. prismatic configuration 116–119
electric vehicles 122
environmental and safety issues 122
full hybrids 121
grid energy storage application 124–125
KOH/LiOH electrolytes 108
KOH/NaOH/LiOH electrolyte 108
large prismatic configuration 116, 118f
metal vs. plastic cell cases 119–120, 120f
MH electrode 104–105
micro-hybrid start/stop technology 121, 122, 123, 123t
mild hybrids 121
monoblock construction 116, 119f
nickel hydroxide electrode 105–107, 106f, 107f
permanently wettable polypropylene 108
plug-in hybrids 122
surface treatments 108
voltage–capacity profiles for 110, 110f
Nickel–zinc (NiZn) battery  See also Nickel–metal hydride (NiMH) battery
advantages and disadvantages of 109, 115–116
cell/electrode chemical reactions 103–104
charge retention/shelf life 115
cycle life of 112–113
electrolytes 108
environmental and safety issues 122
Li-ion style microporous separator 108–109
micro-hybrid start/stop technology 121, 123–124, 124t
mild hybrids 121
NiMH nonwoven style separator 108–109
voltage–capacity profiles 110
zinc electrode 105

O

Oak Ridge National Laboratory (ORNL) 395–396
Off-board chargers 5
Off-road vehicles 12–13, 13f, 14
On-board chargers 5

P

Pacific Northwest National Laboratory (PNNL) 392
Pack management unit (PMU) 269
Partial state of charge (PSoC) 83, 84–85
Pedelecs 11
Performance tests 474
PERSEUS model 29–30
Peukert equation 80
Phase change material (PCM) 342–344
Phenomenological models 376–378
Plug-in hybrid electric vehicles (PHEVs) 7, 361
battery cost reduction 115, 121
battery system 55
CD-mode fraction 447f
charge-depleting mode 55
CO2 emissions and energy consumption 22, 25, 25f, 70
costs of 70
cycle life of 111–112
development targets 189, 189t
drivetrain, electrification of 20
effect of incentives 390f
energy in 55
external electrical grid 191
global market 392, 411
internal combustion engine 389
Li-ion battery  See (Lithium-ion batteries (LIBs))
market forces and barriers 40–45, 43f
market potentials of 45–47, 46f
NiMH battery 122
performance goals for 57–59, 58t
regulation service 396
state of health 396
static capacity (SC) tests 56, 61–62, 64t
stock and sales of 37–40, 38t, 39f
ultracapacitor-modified PHEV protocol 67, 68f
Polyaniline nanotubes (PANI-NT) 135
Polyethylene oxide (PEO) 137–138, 150–151
Polyvinylpyrrolidone (PVP) 135
PowerACE model 30
Power-assist hybrid electric vehicles 
battery system 55
charge-sustaining mode 55
energy in 55
Li-ion battery  See (Lithium-ion batteries (LIBs))
performance goals for 57, 57t
static capacity (SC) tests 56, 59–60
Power conversion system (PCS) 398–399
Power electronics 5, 5f
Probabilistic metric for random hardware failures (PMHFs) 314
Proper safety tests 482
Protected lithium electrode (PLE) 141f, 144, 145
Protection circuit modules (PCMs) 279
Proton battery 166
Pseudo-two-dimensional (P2D) models 379

R

Randles circuit model 297, 297f
Range extended electric vehicles (REEVs) 7, 46–47
Rechargeable energy storage systems (REESS), legal requirements 
content of 500–501
GRSP 501
meeting of 496–500
Recycling, lithium-ion batteries 
acid leaching 510–511
anodes and cathodes 507t
average composition 507t
battery collection rate 504–505
cobalt and nickel 506–507
dismantling and separation 509–510
electrolyte 506
filtration 511
fire accidents in 505f
fire incident at recycling plant 506f
flow sheet of 512f
ionic liquids (ILs) 514f
metallic lithium 505–506
sorting 509
task specific ionic liquids 513
thermal treatment 511
Redox-flow batteries 166
Reliability tests 482
Renewable energy (RE) 17, 30–32
Repurposing  See Battery repurposing

S

Safety tests 471–472, 474
Scale-transitions conditions 436
Sealed lead–acid (SLA) battery 78
Silicon nanoparticles (SiNPs) 223–224, 225–227, 226f
Single-point fault metric (SPFM) 313–314
Smart cells 278–279
Sodium-ion batteries 
advantages 154–158
cell design of 155f
challenges 154–158
negative electrode materials (anode) 154–156
performance data 154, 155f
positive electrode materials (cathode) 156–158, 157f
Sodium-oxygen batteries 
advantage 158
cell chemistry 158
cell design of 158, 158f
charge/discharge characteristics 158, 158f
sodium superoxide 159
Solid electrolyte interface (SEI) 129, 227–229, 298
Solid electrolyte interphase (SEI) 328, 363, 426
Solid-state electrolyte (SSE) 
advantages of 147
inorganic solid electrolytes 151–152
vs. liquid electrolyte 150t
solid polymer electrolytes 150–151
Sport utility cars 11
Sport utility vehicles (SUVs) 57–59
Standards 
abuse tests 482
accelerating aging 481
ANSI C18.2M, Part 2 (2007) 473
applicability 470
battery performance test 474–481
battery simulation 491
battery’s life 482
calendar aging 482
cell fabrication, foreign material 490
in China 469
definition 469
electrical abuse tests 483t
electrical safety tests 483–485
IEC 61960 (2011) 473
IEC 62133 (2012) 473
IEC 62281 (2004) 473
IEEE Std 1625 (2008) 473
IEEE Std 1725 (2011) 473
internal short circuit testing 488–490
ISO 26262  See (ISO 26262 standard)
JIS C8714 (2007) 473
mechanical abuse tests 484t
mechanical safety tests 485–487
performance tests 471, 474
proper safety tests 482
reliability tests 482
safety tests 471–472, 474
scope of 470
ST/SG/AC.10/11/Rev.5 (2009) 474
thermal abuse tests 485t
thermal safety tests 487–488
UL 1642 (2005) 474
UL 2054 (2004) 474
UL 2575 (2011) 474
Starting, lighting, and ignition (SLI) battery 75
State of charges (SoCs) 284
automotive cell, temperature of 298, 299f
cell modeling 297
Coulomb counting 296, 297
current pulse and cell voltage response 298, 299f
DoD 295
electro-chemical processes 298
FTP72 driving cycle voltage response 298, 300f
Kalman filters 299–300, 301f
OCV measurement 296, 298
rated/actual capacity 294–295
Rp, characteristic map of 298, 299f
simplified Randles circuit model 297, 297f
SoF, qualitative dependency of 295f
State of function (SoF) 
battery state prediction 301–303
charge acceptance 296
cranking capability 295–296
qualitative dependency of 295, 295f
State of health (SoH) 360, 396
dual Kalman filter network 301, 301f
end of life 294
internal resistance 294, 300
rated/actual capacity 293, 294
SoC and OCV 300
SoF, qualitative dependency of 295f
Static capacity (SC) tests 56, 59–60, 61–62, 64t
Strengths, weaknesses, opportunities, and threats (SWOT) analysis 
fast-charging stations 457
fast charging technology 457t
inductive charging 455t, 459
internal factors 456–457
stationary inductive charging 459
Supercapacitors 67, 68f, 69
Switched capacitor balancing method 287t, 288, 289f

T

Task specific ionic liquids (TSILs) 513
Technical safety requirements (TSRs) 309–311, 310t, 311f
Thermal abuse tests 485t
Thermal safety tests 
external heating/thermal stability 488
fire resistance 487–488
thermal shock 488

U

UltraBattery® 91, 91f
Ultracapacitors  See Supercapacitors
U.S. Advanced Battery Consortium (USABC) 128

V

Valve-regulated lead–acid (VRLA) battery 78
Vehicle mileage traveled (VMT) 446, 446f
V-model 315

W

Working Group on Passive Safety (GRSP) 501

X

Xenon Flash method 329

Z

Zero Emission Vehicle (ZEV) 36
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.145.59.187