Reference

Abramowitz, M., and Stegun, I. A. (1968). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. New York: Dover Publications.

Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley & Sons Ltd.

Aitchison, J., and Dunsmore, I. R. (1975). Statistical Prediction Analysis. Cambridge: Cambridge University Press.

Akahira, M. and Takeuchi, K. (1981). Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency. Lecture Notes in Statistics, 7. New York: Springer.

Anderson, T. W. (1958). Introduction to Multivariate Statistical Analysis. New York: John Wiley & Sons Ltd.

Anderson, T.W. (1971). The Statistical Analysis of Time Series. New York: JohnWiley & Sons Ltd.

Andrews, D. F., Bickel, P. J.,Hampel, F. R.,Huber, P. J., Rogers,W.H., and Tukey, J.W. (1972). Robust Estimates of Location: Survey and Advances. Princeton, New Jersey: Princeton University Press.

Arnold, J. C. (1970). Inadmissibility of the usual scale estimate for a shifted exponential distribution. J. Am. Stat. Assoc., 65, 1260–1264.

Baranchick, A. J. (1970). A family of minimax estimators of the mean of a multivariate normal distribution. Ann. Math. Stat., 41, 642–645.

Baranchick, A. J. (1973). Inadmissibility of the MLE in some multiple regression problems with three or more independent variables. Ann. Stat., 1, 312–321.

Barlow, R. E., and Proschan, F. (1966). Tolerance and confidence limits for classes of distributions based on failure rate. Ann. Math. Stat., 37, 1593–1601.

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families in Statistical Theory. New York: John Wiley & Sons Ltd.

Barndorff-Nielsen, O. E., and Cox, D. R. (1979). Edgeworth and saddlepoint approximations with statistical applications (with discussion). J. R. Stat. Soc. B, 41, 279–312.

Barndorff-Nielsen, O. E., and Cox, D. R. (1994). Inference and Asymptotics. Monograph on Statistics and Applied Probability, No. 52. London: Chapman and Hall.

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.

© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

Barnett, V. (1973). Comparative Statistical Inference. New York: John Wiley & Sons Ltd.

Basu, D. (1975). Statistical information and likelihood. Sankhya, A, 37, 1–71.

Berger, J. O., and Bock, M. E. (1976). Eliminating singularities of Stein-type estimators of location vectors. J. Roy. Stat. Soc., B, 38, 166–170.

Berk, R. H. (1967). A special group structure and equivariant estimation. Ann. Math. Stat., 38, 1436–1445.

Berk, R. H. (1973). Some asymptotic aspects of sequential analysis. Ann. Stat., 1, 1126–1138.

Berk, R. H. (1975a). Locally most powerful sequential tests. Ann. Stat., 3, 373–381.

Berk, R. H. (1975b). Comparing sequential and nonsequential tests. Ann. Stat., 3, 991–998.

Berk, R. H. (1976). Asymptotic efficiencies of sequential tests. Ann. Stat., 4, 891–900.

Bhapkar, V. P. (1972). On a measure of efficiency of an estimating equation. Sankhya, A, 34, 467–472.

Bhattacharyya, A. (1946). On some analogues of the amount of information and their uses in statistical estimation. Sankhya, 8, 1–14, 201–218, 315–328.

Bickel, P. J., and Doksum, K. A. (1977). Mathematical Statistics: Basic Ideas and Selected Topics. San Francisco: Holden-Day.

Billah, M. B., and Saleh, A. K. M. E. (1998). Conflict between pretest estimators induced by three large sample tests under a regression model with student t-error. The Statistician, 47, 1–14.

Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. Cambridge, MA: MIT Press.

Blackwell, D. (1947). Conditional expectation and unbiased sequential estimation. Ann. Math. Stat., 18, 105–110.

Blackwell, D., and Girshick, M. A. (1954). Theory of Games and Statistical Decisions. New York: John Wiley & Sons Ltd.

Blyth, C. R. (1951). On minimax statistical decision procedures and their admissibility. Ann. Math. Stat., 22, 22–42.

Blyth, C. R., and Roberts, D. M. (1972). On inequalities of Cramér-Rao type and admissibility proofs. Proc. Sixth Berkeley Symp. Math. Stat. Prob., I, 17–30.

Borges, R., and Pfanzagl, J. (1965). One-parameter exponential families generated by transformation groups. Ann. Math. Stat., 36, 261–271.

Box, G. E. P., and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis., Massachusetts: Addison-Wesley.

Bratley, P., Fox, B. L., and Schrage, L. E. (1983). A Guide to Simulation. New York: Springer-Verlag.

Brewster, J. F., and Zidek, J. V. (1974). Improving on equivariant estimators. Ann. Stat., 2, 21–38.

Brier, S. S., Zacks, S., andMarlow,W. H. (1986). An application of empirical Bayes techniques to the simultaneous estimation of many probabilities. Nav. Res. Logist. Q., 33, 77–90.

Brown, L. D. (1964). Sufficient statistics in the case of independent random variables. Ann. Math. Stat., 35, 1456–1474.

Brown, L. D. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Ann. Math. Stat., 39, 29–48.

Brown, L. D. (1986). Fundamentals of Statistical Exponential Families With Applications in Statistical Decision Theory. IMS Lecture Notes-Monograph Series, vol. 9. California: Haywood.

Brown, L. D., and Cohen, A. (1974). Point and confidence estimation of a common mean and recovery of interblock information. Ann. Stat., 2, 963–976.

Casella, G. (1985). An introduction to empirical Bayes data analysis. Am. Stat., 39, 83–87.

Chapman, D. G., and Robbins, H. (1951). Minimum variance estimation without regularity assumptions. Ann. Math. Stat., 22, 581–586.

Chernoff, H. (1959). Sequential design of experiments. Ann. Math. Stat., 30, 755–770.

Chernoff, H. (1961). Sequential tests for the mean of a normal distribution. Proc. Fourth Berkeley Symp. Math. Stat. Prob., A, 79–91.

Chernoff, H. (1965). Sequential tests for the mean of a normal distribution, III (small T). Ann. Math. Stat., 36, 28–54.

Chernoff, H. (1968). Optimal stochastic control. Sankhya, A, 30, 221–252.

Chernoff, H., and Scheffé, H. (1952). A generalization of the Neyman-Pearson fundamental lemma. Ann. Math. Stat., 23, 213–225.

Chow, Y. S., and Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Stat., 36, 457–462.

Chow,Y. S., Robbins,H., and Siegmund, D. (1971). Great Expectations: The Theory of Optimal Stopping. Boston: Houghton Mifflin.

Cohen, A. (1966). All admissible linear estimates of the mean vector. Ann. Math. Stat., 37, 458–463.

Cohen, A., and Sackrowitz, H. B. (1974). On estimating the common mean of two normal distributions. Ann. Stat., 2, 1274–1282.

Cornfield, J. (1969). The Bayesian outlook and its applications. Biometrics, 25, 617– 657.

Cox, D. R., and Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman and Hall.

Cramér, H. (1946). A contribution to the theory of statistical estimation. Skand Aktuar., 29, 85–94.

Dantzig, G. B., andWald, A. (1951). On the fundamental lemma of Neyman and Pearson. Ann. Math. Stat., 22, 87–93.

David, F. N., and Kendall, M. G. (1955). Tables of Symmetric Functions. Biometrika, 42, 223.

David, H. A. (1970). Order Statistics. New York: John Wiley & Sons Ltd.

Davis, P. J., and Rabinowitz, P. (1984). Methods of Numerical Integration, 2nd edn. New York: Academic Press.

DeFinneti, B. (1974). Theory of Probability, vol. 1. New York: John Wiley & Sons Ltd.

DeGroot,M. H., and Raghavachari, M. (1970). Relations between Pitman efficiency and Fisher information. Sankhya, 32, 319–324.

Denny, J. L. (1967). Sufficient conditions for a family of probabilities to be exponential. Proc. Natl. Acad. Sci., 57, 1184–1187.

Denny, J. L. (1969). Note on a theorem of Dynkin on the dimension of sufficient statistics. Ann. Math. Statist., 40, 1474–1476.

Draper, N., and Smith, H. (1966). Applied Regression Analysis. New York: JohnWiley & Sons Ltd.

Dynkin, E. B. (1951). Necessary and sufficient statistics for a family of probability distributions. Selected Translations in Math. Stat. Prob., 1, 17–40.

Dynkin, E. B., and Yushkevich, A. A. (1969). Markov Processes: Theorems and Problems. New York: Plenum Press.

Eaton, M. L. (1989). Group Invariance Applications in Statistics. Regional Conferences Series in Probability and Statistics, vol. 1, IMS. California: Haywood.

Efron, B. (1975). Defining the curvature of a statistical problem (with application to second order efficiency). Ann. Stat., 3, 1189–1242 (with discussion).

Efron, B. (1978). The geometry of exponential families. Ann. Stat., 6, 362–376.

Efron, B., and Morris, C. (1971). Limiting the risk of Bayes and empirical estimators-Part I: the Bayes case. J. Am. Stat. Assoc., 66, 807–815.

Efron, B., and Morris C. (1973a). Combining possibly related estimation problems. J. R. Stat. Soc. B, 35, 379–421.

Efron, B., and Morris, C. (1972a). Limiting the risk of Bayes and empirical Bayes estimators. J. Am. Stat. Assoc., 67, 103–109.

Efron, B., and Morris, C. (1972b). Empirical Bayes on vector observations: an extension of Stein’s method. Biometrika, 59, 335–347.

Efron, B., and Morris, C. (1973b). Stein’s estimation rule and its competitors: an empirical Bayes approach. J. Am. Stat. Assoc., 68, 117–130.

Ellison, B. E. (1964). Two theorems of inference about the normal distributionwith applications in acceptance sampling. J. Am. Stat. Assoc., 59, 89–95.

Evans, M., and Swartz, T. (2001). Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford: Oxford University Press.

Feller, W. (1966). An Introduction to Probability Theory and Its Applications, vol. II. New York: John Wiley & Sons Ltd.

Fend, A.V. (1959).On the attainment of Cramér-Rao andBhattacharya bounds for the variances of an estimate. Ann. Math. Stat., 30, 381–388.

Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. New York: Academic Press.

Ferguson, T. S. (1996). A Course in Large Sample Theory. New York: Chapman and Hall.

Field, C., and Ronchetti, E. (1990). Small Sample Asymptotics. IMS Lecture Notes-Monograph Series, vol. 13. California: Haywood.

Fienberg, S. E. (1980). The Analysis of Crossed-Classified Categorical Data, 2nd edn. Boston, MA: MIT Press.

Finney, D. J. (1964). Statistical Methods in Biological Assays, 2nd edn. London: Griffin.

Fisher, R. A. (1922). On the mathematical foundation of theoretical statistics. Phil. Trans. R. Soc. A, 222, 309–368.

Fisz, M. (1963). Probability Theory and Mathematical Statistics, 3rd edn. New York: John Wiley & Sons Ltd.

Fleiss, J. L. (1973). Statistical Methods for Rates and Proportions. New York: John Wiley & Sons Ltd.

Fraser, D. A. S. (1957). Nonparametric Methods in Statistics. New York: John Wiley & Sons Ltd.

Fraser, D. A. S. (1968). The Structure of Inference. New York: John Wiley & Sons Ltd.

Fréchet, M. (1943). Sur l’extension de certaines evaluations statistiques de petits enchantilons. Rev. Int. Statisist., 11, 182–205.

Galambos, J. (1978). The Asymptotic Theory of Extreme Order Statistics. New York: John Wiley & Sons Ltd.

Gamerman, D. (1997). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Text in Statistical Science. New York: Chapman and Hall.

Gastwirth, J. L. (1977). On robust procedures. J. Am. Stat. Assoc., 61, 929–948.

Geisser, S. (1993). Predictive Inference: An Introduction. Monographs on Statistics and Applied Probability, No. 55. New York: Chapman and Hall.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data Analysis. New York: Chapman and Hall.

Ghosh, B. K. (1970). Sequential Tests of Statistical Hypotheses. Reading, MA: Addison-Wesley.

Ghosh, M. (1992). Hierarchical and Empirical Bayes Multivariate Estimation. Current Issues in Statistical Inference: Essays in Honor of D. Basu, IMS Lecture Notes–Monograph Series, vol. 17.

Ghosh, M.,Mukhopadhyay, N., and Sen, P. K. (1997). Sequential Estimation. New York: John Wiley & Sons Ltd.

Girshick, M. A., and Savage, L. J. (1951). Bayes and minimax estimates for quadratic loss functions. Proc. Second Berkeley Symp. Math. Stat. Prob., 1, 53–74.

Godambe, V. P. (1991). Estimating Functions. Oxford: Clarendon Press.

Gokhale, D. V., and Kullback, S. (1978). The Information in Contingency Tables. Textbooks and monographs, vol. 23. New York: Marcel Dekker.

Good, I. J. (1965). The Estimation of Probabilities: An Assay on Modern Bayesian Methods. Cambridge, MA: MIT Press.

Good, I. J. (1967). A Bayesian significance test for multinomial distributions. J. R. Stat. Soc. B, 28, 399–431

Good, I. J. (l975). The Bayes factor against equiprobability of a multinomial population assuming a symmetric dirichlet prior. Ann. Stat., 3, 246–250.

Good, I. J., and Crook, J. F. (1974). The Bayes/non-Bayes compromise and multinomial distribution. J. Am. Stat. Assoc., 69, 711–720.

Graybill, F. (1961). An Introduction to Linear Statistical Models, Vol. I. New York: McGraw-Hill.

Graybill, F. A. (1976). Theory and Application of the Linear Model. Massachusetts: Duxbury Press.

Gross, A. J., and Clark, V. A. (1975). Survival Distributions: Reliability Applications in the Biomedical Sciences. New York: John Wiley & Sons Ltd.

Guenther,W. C. (1971). Tolerance intervals for univariate distributions. Naval Res. Log.Quart., 19, 309–333.

Gumbel, E. J. (1958). Statistics of Extreme. New York: Columbia University Press.

Guttman, I. (1970). Construction of beta content tolerance regions at confidence level gamma for large samples from the k-variate normal distribution. Ann. Math. Stat., 41, 376–400.

Haberman, S. J. (1974). The Analysis of Frequency Data. Chicago: The University of Chicago Press.

Hacking, I. (1965). Logic of Statistical Inference. Cambridge: Cambridge University Press.

Hald, A. (1952). Statistical Theory With Engineering Applications. New York: John Wiley & Sons Ltd.

Hall, W. J., Wijsman, R. A., and Ghosh, B. K. (1965). The relationship between suffi-ciency and invariance with applications in sequential analysis. Ann. Math. Stat., 36, 575– 614.

Harrison, P. J., and Stevens, C. F. (1976). Bayesian forecasting. J. R. Stat. Soc. B, 38, 205– 247.

Hettmansperger, T. P. (1984). Statistical Inference Based on Ranks. New York: John Wiley & Sons Ltd.

Hoerl, A. E. (1962). Application of ridge analysis to regression problems. Chemical Engineering Progress, 58, 54–59.

Hoerl, A. E., andKennard, R.W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12, 55–67.

Hoerl, A. E., Kennard, R. W., and Baldwin, K. F. (1975). Ridge regression: some simulations. Comm. Stat., 4, 105–123.

Holland, P. W. (1973). Covariance stabilizing transformations. Ann. Stat., 1, 84–92.

Huber, P. J. (1964). Robust estimation of the location parameter. Ann. Math. Stat., 35, 73–101.

Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proc. Fifth Berkeley Symp. Math. Stat. Prob., I, 221–233.

James, W., and Stein, C. (1960). Estimation with quadratic loss. Proc. Fourth Berkeley Symp. Math. Stat. Prob., 2, 361–379.

Jeffreys, H. (1961). Theory of Probability, 3rd edn. Oxford: Clarendon Press.

Jogdio, K., and Bohrer, R. (1973). Some simple examples and counter examples about the existence of optimal tests. J. Am. Stat. Assoc., 68, 679–682.

Johnson, N. L., and Kotz, S. (1969). Distributions in Statistics, Vol. I. Discrete Distributions, vol. II. Continuous Univariate Distributions-1, vol. III. Continuous Univariate Distributions-2. Boston: Houghton and Mifflin.

Johnson, N. L., and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. New York: John Wiley & Sons Ltd.

Joshi,V. M. (1976).On the attainment of the Cramér-Rao lower bound. Ann. Stat., 4, 998–1002.

Judge, G. G., and Bock, M. E. (1978). The Statistical Implications of Pre-Test and Stein-Rule Estimators in Econometrics. Amsterdam: North-Holland Publishing Co.

Karlin, S. (1956). Decision theory for polya type distributions. Case of two actions, I. Third Berkeley Symp. Math. Stat. Prob., 1, 115–128.

Karlin, S. (1958). Admissibility for estimation with quadratic loss. Ann. Math. Stat., 29, 406–436.

Karlin, S. and Rubin, H. (1956). The theory of decision procedures for distributions with monotone likelihood ratio. Ann. Math. Stat., 27, 272–300.

Khan, R. A. (1969). A general method for determining fixed-width confidence intervals. Ann. Math. Stat., 40, 704–709.

Kiefer, J. (1952). On minimum variance estimates. Ann. Math. Stat., 23, 627–629.

Kiefer, J., and Weiss, L. (1957). Some properties of generalized sequential probability ratio tests. Ann. Math. Stat., 28, 57–74.

Klotz, J. H., Milton, R. C., and Zacks, S. (1969). Mean square efficiency of estimators of variance components. J. Am. Stat. Assoc., 64, 1342–1349.

Kubokawa, T. (1987). Estimation of The Common Means of Normal Distributions With Application to Regression and Design of Experiments. Ph.D. Dissertation, University of Tsukuba.

Kullback, S. (1959). Information Theory and Statistics. New York: John Wiley & Sons Ltd.

Lai, T. L. (1973).Optimal stopping and sequential tests which minimize the maximum expected sample size. Ann. Stat., 1, 659–673.

Lancaster, H. O. (1969). The chi-squared distributions. New York: John Wiley & Sons Ltd.

Le Cam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes’ estimates. Univ. Calif. Publ. Statist., 1, 277–330.

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. New York: Springer.

Lehmann, E. L. (1997). Testing Statistical Hypotheses, 2nd edn. Springer Texts in Statistics. New York: Springer.

Lehmann, E. L., and Casella, G. (1998). Theory of Point Estimation, 2nd edn. Springer Texts in Statistics. New York: Springer.

Lehmann, E. L., and Scheffé, H. (1950). Completeness, similar regions and unbiased estimation, I. Sankhya, 10, 305–340.

Lehmann, E. L., and Scheffé, H. (1955). Completeness, similar regions and unbiased estimation, II. Sankhya, 15, 219–236.

Lin, P. E. (1974).Admissibleminimax estimators of the multivariate normalmean with squared error loss. Commun. Stat., 3, 95–100.

Lindley, D. V. (1956). On a measure of the information provided by an experiment. Ann. Math. Stat., 27, 986–1005.

Lindley, D. V., and Smith, A. F. M. (1972). Bayes estimates for the linear model. J. R. Stat. Soc. B, 34, 1–42.

Lindsey, J. K. (1996). Parametric Statistical Inference. Oxford: Oxford Science Publications, Clarendon Press.

Lugannani, R., and Rice, S. (1980). Saddlepoint approximation for the distribution of the sum of independent random variables. Adv. Appl. Probab., 12, 475–490.

Maritz, J. (1970). Empirical Bayes Methods. London: Methuen.

Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation and nonlinear estimation. Technometrics, 12, 55–67.

McLachlan, G. J., and Krishnan, T. (1997). The EM Algorithm and Extensions. New York: John Wiley & Sons Ltd.

Miller, R. G. (1966). Simultaneous Statistical Inference. New York: McGraw-Hill.

Morris, C. (1983). Parametric Empirical Bayes Inference and Applications. J. Am. Stat. Assoc., 78, 47–65.

Mukhopadhyay, N., and de Silva, B. M. (2009). Sequential Methods and Their Applicatio7ns. Boca Raton, FL: CR Press.

Neyman, J. (1935). Sur un teorems concerente le cosidette statistiche sufficienti. Inst. Ital. Atti. Giorn., 6, 320–334.

Neyman, J., and Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Phil. Trans. R. Soc. A, 231, 289–337.

Neyman, J. and Pearson, E. S. (1936a). Contributions to the theory of testing statistical hypotheses, I. Unbiased critical regions of type A and type A(1). Stat. Res. Mem., 1, 1–37.

Neyman, J., and Pearson, E. S. (1936b). Sufficient statistics and uniformly most powerful tests of statistical hypotheses. Stat. Res. Memo., 1, 113–137.

Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrika, 16, 1–32.

Pfanzagl, J. (1972). Transformation groups and sufficient statistics. Ann. Math. Stat., 43, 553–568.

Pfanzagl, J. (1985). Asymptotic Expansions for General Statistical Models. Springer Lecture Notes in Statistics, Vol. 31. New York: Springer.

Pitman, E. J. G. (1948). Notes on Nonparametric Statistical Inference. Chapel Hill, NC: Institute of Statistics, University of North Carolina.

Pitman, E. J. G. (1979). Some Basic Theory for Statistical Inference. New York: Chapman and Hall.

Portnoy, S. (1971). Formal Bayes estimation with application to a random effect model. Ann. Math. Stat., 42, 1379–1402.

Raiffa, H., and Schlaifer, R. (1961). Introduction to Statistical Decision Theory. Cambridge: Harvard University Press.

Rao, C. R. (1945). Information and accuracy attainable in estimation of statistical parameters. Bull. Cal. Math. Soc., 37, 81–91.

Rao, C. R. (1947).Minimum variance and estimation of several parameters. Proc. Camb. Phil. Soc., 43, 280–283.

Rao, C. R. (1949). Sufficient statistics and minimum variance estimates. Proc. Camb. Phil. Soc., 45, 218–231.

Rao, C. R. (1963). Criteria of estimation in large samples. Sankhya, A, 25, 189–206.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd edn. New York: John Wiley & Sons Ltd.

Reid, N. (1988). Saddlepoint Methods and Statistical Inference. Statistical Science, 3, 213– 238.

Reid, N. (1995). Likelihood and Bayesian Approximation Methods. In: Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M., editors. Bayesian Statistics, Vol. 5. Oxford: Oxford University Press.

Robbins, H. (1956). The empirical Bayes approach to statistics. Proc. Third Berkeley Symp. Math. Stat. Prob., 1, 157–164.

Robbins, H. (1964). The empirical approach to statistical decision problems. Ann. Math. Stat., 35, 1–20.

Rogatko, A., and Zacks, S. (1993). Ordering Genes: Controlling the Decision Error Probabilities. Am. J. Hum. Genet., 52, 947–957.

Rohatgi, V. K. (1976). An Introduction to Probability Theory and Mathematical Statistics. New York: John Wiley & Sons Ltd.

Sarhan, A. E., and Greenberg, B. G. (1962). Contributions to Order Statistics. New York: John Wiley & Sons Ltd.

Savage, L. J. (1962). The Foundations of Statistical Inference. London: Methuen.

Scheffé, H. (1970). Multiple testing versus multiple estimation. Improper confidence sets: estimation of directions and ratios. Ann. Math. Stat., 41, 1–29.

Scheffé, H. (1959). The Analysis of Variance. New York: John Wiley & Sons Ltd.

Schervish, M. J. (1995). Theory of Statistics. New York: Springer.

Schmetterer, L. (1974). Introduction to Mathematical Statistics (Revised English Edition). New York: Springer.

Searle, S. R. (1971). Linear Models. New York: John Wiley & Sons Ltd.

Seber, G. A. F. (1977). Linear Regression Analysis. New York: John Wiley & Sons Ltd.

Sen, A., and Srivastava,M. S. (1990). Regression Analysis: Theory, Methods and Applications. Springer Texts in Statistics. New York: Springer.

Sen, P. K. and Singer, J. M. (1993). Large Sample Methods in Statistics: An Introduction With Applications. New York: Chapman and Hall.

Shiryayev, A. N. (1973). Statistical Sequential Analysis: Optimal Stopping Rules. Translations of Math. Monographs, Vol. 38. American Math. Society, Providence, Rhode Island.

Shiryayev, A. N. (1984). Probability, Graduate Texts in Mathematics, No. 95. New York: Springer.

Siegmund, D. (1985). Sequential Analysis: Tests and Confidence Intervals.NewYork: Springer.

Simons, G. (1968). On the cost of not knowing the variance when making a fixed-width confidence interval for the mean. Ann. Math. Stat., 39, 1946–1952.

Skovgaard, Ib M. (1990). Analytic Statistical Models. IMS Lecture Notes-Monograph Series, Vol. 15. California: Haywood.

Smith, A. F. M. (1973a). A general Bayesian linear model. J. R. Stat. Soc. B, 35, 67–75.

Smith, A. F. M. (1973b). Bayes estimates in one-way and two-way models. Biometrika, 60, 319–329.

Srivastava, M. S. (1971). On fixed-width confidence bounds for regression parameters. Ann. Math. Stat., 42, 1403–1411.

Starr, N. (1966). The performance of a sequential procedure for the fixed-width interval estimation of the mean. Ann. Math. Stat., 37, 36–50.

Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Stat., 16, 243–258.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc. Third Berkeley Symp. Math. Stat. Prob., 1, 197–206.

Stein, C. (1959). The admissibility of the Pitman’s estimator for a single location parameter. Ann. Math. Stat., 30, 970–999.

Stein, C. (1962). A remark on the likelihood principle. J. R. Stat. Soc. A, 565–568.

Stein, C. (1964). Inadmissibility of the usual estimate of the variance of a normal distribution with unknown mean. Ann. Inst. Stat. Math., 16, 155–160.

Stein, C. (1986). Approximate Computation of Expectations. LectureNotes-Monograph Series, Vol. 7. Hayward, CA: Institute of Mathematical Statistics.

Stone, J., and Conniffe, D. (1973). A critical view of ridge regression. The Statistician, 22, 181–187.

Strawderman,W. E. (1972). On the existence of proper Bayes minimax estimators of the mean of a multivariate normal distribution. Proc. Sixth Berkeley Symp. Math. Stat. Prob., 1, 51–56.

Susarla, V. (1982). Empirical Bayes Theory:Encyclopedia of Statistical Sciences, vol. 2. New York: John Wiley & Sons Ltd, pp. 490–502.

Sverdrup, E. (1953). Similarity, minimaxity and admissibility of statistical test procedures. Skand. Aktuar. Tidskrift, 36, 64–86.

Tan, P. (1969). A note on a theorem of Dynkin on necessary and sufficient statistics. Canadian Math. Bulletin, 12, 347–351.

Tiao, G. C., and Tan, W. Y. (1965). Bayesian analysis of random-effect models in the analysis of variance. I. Posterior distribution of variance components. Biometrika, 51, 219– 230.

Tierney, L. J., and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities, J. Am. Stat. Assoc., 81, 82–86.

Wald, A. (1945). Sequential tests of statistical hypotheses. Ann. Math. Stat., 16, 117–186.

Wald, A. (1947). Sequential Analysis. New York: John Wiley & Sons Ltd.

Watson, G. S. (1967). Linear least squares regression. Ann. Math. Stat., 38, 1679–1689.

West, M., and Harrison, P. J. (1997). Bayesian Forecasting and Dynamic Models, 2nd edn. New York: Springer.

West, M., Harrison, P. J., and Migon, H. S. (1985). Dynamic Generalized linear models and Bayesian forecasting (with discussion). J. Am. Stat. Assoc., 80, 73–83.

Wijsman, R. A. (1971). Exponentially bounded stopping time of SPRTs for composite hypotheses. Ann. Math. Stat., 42, 1859–1869.

Wijsman, R. A. (1970). Examples of exponentially bounded stopping time of invariant sequential probability ratio tests when the model may be false. Proc. Sixth Berkeley Symp. Math. Stat. Prob., 1, 109–128.

Wijsman, R. A. (1973). On the attainment of the Cramér-Rao lower bound. Ann. Stat., 1, 538–542.

Wijsman, R. A. (1990). Invariant Measures on Groups and Their Use in Statistics, Lecture Notes-Monograph Series, Vol. 14. Hayward, CA: Institute of Mathematical Statistics.

Wilks, S. S. (1962). Mathematical Statistics. New York: John Wiley & Sons Ltd.

Zacks, S. (1966). Unbiased estimation of the common mean of two normal distributions based on small samples. J. Am. Stat. Assoc., 61, 467–476.

Zacks, S. (1970a). Bayes and fiducial equivariant estimators of the common mean of two normal distributions. Ann. Math. Stat., 41, 59–69.

Zacks, S. (1970b). Bayes equivariant estimators of variance components. Ann. Inst. Stat. Math., 22, 27–40.

Zacks, S. (1971). The Theory of Statistical Inference. New York: John Wiley & Sons Ltd.

Zacks, S. (1992). Introduction to Reliability Analysis: Probability Models and Statistical Methods. New York: Springer.

Zacks, S. (1997).Adaptive Designs for ParametricModels.Chapter 5 in Handbook of Statistics, Vol. 13: Design and Analysis of Experiments. New York: North-Holland.

Zacks, S., and Solomon, H. (1976). On testing and estimating the interaction between treatments and environmental conditions in binomial experiments: The case of two stations. Commun. Stat., A5, 197–223.

Zehna, P. W. (1966). Invariance of maximum likelihood estimation. Ann. Math. Stat., 37, 755.

Zelen, M. (1972). Exact significance tests for contingency tables embedded in a 2 **N classification. Sixth Berkeley Symp. Prob. Stat., I, 737–757.

Zelen, M., and Severo, N. C. (1968). Probability functions; Chapter 26 in Abramowitz, M. and Stegun, I. A. (1968).

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. New York: John Wiley & Sons Ltd.

Zyskind, G. (1967). On canonical forms, non-negative covariance matrices and best and simple least-squares linear estimators in linear models. Ann. Math. Stat., 38, 1092–1109.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.137.217.220