References

Chapter 1

Byer, R. L., Herbst, R. L., Kildal, H., and Levenson, M. D. (1972). Optically pumped molecular iodine vapor-phase laser. Appl. Phys. Lett. 20, 463–466.

Chutjian, A., and James, T. C. (1969). Intensity measurements in the B3Πu+X1g+ system of I2. J. Chem. Phys. 51, 1242–1249.

de Broglie, L. (1923). Waves and quanta. Nature 112, 540.

Diels, J.C. (1990). Femtosecond dye lasers. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 3.

Diels, J.C., and Rudolph, W. (2006). Ultrashort Laser Pulse Phenomena, 2nd edn. Academic Press, New York.

Dienes, A., and Yankelevich, D. R. (1998). Tunable dye lasers. In Encyclopedia of Applied Physics, Vol. 22 (Trigg, G. L., ed.). Wiley-VCH, New York, pp. 299–334.

Dirac, P. A. M. (1978). The Principles of Quantum Mechanics, 4th edn. Oxford University Press, London.

Dong, L., Sugunan, A., Hu, J., Zhou, S., Li, S., Popov, S., Toprak, M. S., Friberg, A. T., and Muhammed, M. (2013). Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots. Appl. Opt. 52, 105–109.

Duarte, F. J. (1990). Technology of pulsed dye lasers. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 6.

Duarte, F. J. (ed.). (1995a). Dye lasers. In Tunable Lasers Handbook. Academic Press, New York, Chapter 5.

Duarte, F. J. (1995b). Solid-state dispersive dye laser oscillator: Very compact cavity. Opt. Commun. 117, 480–484.

Duarte, F. J. (1998). Interference of two independent sources. Am. J. Phys. 66, 662–663.

Duarte, F. J. (2003). Tunable Laser Optics. Elsevier Academic Press, New York.

Duarte, F. J. (2014). Quantum Optics for Engineers. CRC Press, New York.

Duarte, F. J., Liao, L. S., Vaeth, K. M., and Miller, A. M. (2006). Widely tunable green laser emission using the coumarin 545 teramethyl dye as gain medium. J. Opt. A: Pure Appl. Opt. 8, 172–174.

Dujardin, G., and Flamant, P. (1978). Amplified spontaneous emission and spatial dependence of gain in dye amplifiers. Opt. Commun. 24, 243–247.

Everett, P. N. (1991). Flashlamp-excited dye lasers. In High Power Dye Lasers (Duarte, F. J., ed.). Springer-Verlag, Berlin, Germany, Chapter 6.

Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., and Cho A. Y. (1994). Quantum cascade laser. Science 264, 553–556.

Feynman, R. P., Leighton, R. B., and Sands, M. (1965). The Feynman Lectures on Physics, Vol. III. Addison-Wesley, Reading, MA.

Fork, R. L., Greene, B. I., and Shank, C. V. (1981). Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett. 38, 671–672.

Ganiel, U., Hardy, A., Neumann, G., and Treves, D. (1975). Amplified spontaneous emission and signal amplification in dye-laser systems. IEEE J. Quant. Electron. QE-11, 881–892.

Haag, G., Munz, M., and Maroowski, G. (1983). Amplified spontaneous emission (ASE) in laser oscillators and amplifiers. IEEE J. Quant. Electron. QE-19, 1149.

Haken, H. (1970). Light and Matter. Springer-Verlag, Berlin, Germany.

Haken, H. (1981). Light. North Holland, Amsterdam, The Netherlands.

Hammond, P. (1979). Spectra of the lowest excited singlet states of rhodamine 6G and rhoda-mine B. IEEE J. Quant. Electron. QE-15, 624–632.

Hargrove, R. S., and Kan, T. K. (1980). High power efficient dye amplifier pumped by copper vapor lasers. IEEE J. Quant. Electron. QE-16, 1108–1113.

Hillman, L. W. (1990). Laser dynamics. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 2.

Hollberg, L. (1990). CW dye lasers. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 5.

Javan, A., Benett, W. R., and Herriott, D. R. (1961). Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys. Rev. Lett. 6, 106–110.

Jensen, C. (1991). Pulsed dye laser gain analysis and amplifier design. In High Power Dye Lasers (Duarte, F. J., ed.). Springer-Verlag, Berlin, Germany, Chapter 3.

Kittel, C. (1971). Introduction to Solid State Physics. John Wiley, New York.

Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature 187, 493–494.

Munz, M., and Haag, G. (1980). Optimization of dye-laser output coupling by consideration of the spatial gain distribution. Appl. Phys. 22, 175–184.

Nair, L. G., and Dasgupta, K. (1985). Amplified spontaneous emission in narrow-band pulsed dye laser oscillators—Theory and experiment. IEEE J. Quant. Electron. 21, 1782–1794.

Penzkofer, A., and Falkenstein, W. (1978). Theoretical investigation of amplified spontaneous emission with picosecond light pulses in dye solutions. Opt. Quant. Electron. 10, 399–423.

Planck, M. (1901). Ueber das gesetz der energieverteilung im normalspectrum. Ann. Phys. 309 (3), 553–563.

Sargent, M., Scully, M. O., and Lamb, W. E. (1974). Laser Physics. Addison-Wesley, Reading, MA.

Schäfer, F. P. (ed.). (1990). Dye Lasers, 2nd edn. Springer-Verlag, Berlin, Germany.

Schäfer, F. P., Schmidt, W., and Volze, J. (1966). Organic dye solution laser. Appl. Phys. Lett. 9, 306–309.

Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070.

Siegman, A. E. (1986). Lasers. University Science Books, Mill Valley, CA.

Silfvast, W. T. (2008). Laser Fundamentals, 2nd edn. Cambridge University Press, Cambridge.

Sorokin, P. P., and Lankard, J. R. (1966). Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine. IBM J. Res. Dev. 10, 162–163.

Teschke, O., Dienes, A., and Whinnery, J. R. (1976). Theory and operation of high-power CW and long-pulse dye lasers. IEEE J. Quant. Electron. QE-12, 383–395.

Townes, C. H. (1999). How the Laser Happened. Oxford University Press, Oxford.

Willett, C. S. (1974). An Introduction to Gas Lasers: Population Inversion Mechanisms. Pergamon Press, New York.

Chapter 2

Born, M., and Wolf, E. (1999). Principles of Optics, 7th edn. Cambridge University Press, New York.

Dirac, P. A. M. (1939). A new notation for quantum mechanics. Math. Proc. Cam. Phil. Soc. 35, 416–418.

Dirac, P. A. M. (1978). The Principles of Quantum Mechanics, 4th edn. Oxford University Press, London.

Duarte, F. J. (1990). Narrow-linewidth pulsed dye laser oscillators. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 4.

Duarte, F. J. (ed.). (1991). Dispersive dye lasers. In High Power Dye Lasers. Springer-Verlag, Berlin, Germany, Chapter 2.

Duarte, F. J. (1992). Cavity dispersion equation Δλ ≈ Δθ (∂θ/∂λ)–1: A note on its origin. Appl. Opt. 31, 6979–6982.

Duarte, F. J. (1993). On a generalized interference equation and interferometric measurements. Opt. Commun. 103, 8–14.

Duarte, F. J. (ed.). (1995a). Interferometric imaging. In Tunable Laser Applications, 1st edn. Marcel Dekker, New York, Chapter 5.

Duarte, F. J. (ed.). (1995b). Narrow-linewidth laser oscillators and intracavity dispersion. In Tunable Lasers Handbook. Academic Press, New York, Chapter 2.

Duarte, F. J. (1997). Interference, diffraction, and refraction, via Dirac’s notation. Am. J. Phys. 65, 637–640.

Duarte, F. J. (1998). Interference of two independent sources. Am. J. Phys. 66, 662–663.

Duarte, F. J. (2003). Tunable Laser Optics. Elsevier Academic Press, New York.

Duarte, F. J. (2004). Comment on “reflection, refraction, and multislit interference.” Eur. J. Phys. 25, L57–L58.

Duarte, F. J. (2006). Multiple-prism dispersion equations for positive and negative refraction. Appl. Phys. B 82, 35–38.

Duarte, F. J. (2008). Coherent electrically excited organic semiconductors: Coherent or laser emission? Appl. Phys. B 90, 101–108.

Duarte, F. J. (2014). Quantum Optics for Engineers. CRC Press, New York.

Duarte, F. J., and Paine, D. J. (1989). Quantum mechanical description of N-slit interference phenomena. In Proceedings of the International Conference on Lasers ’88 (Sze, R. C. and Duarte, F. J., eds.). STS Press, McLean, VA, pp. 42–47.

Feynman, R. P., Leighton, R. B., and Sands, M. (1965a). The Feynman Lectures on Physics, Vol. III. Addison-Wesley, Reading, MA.

Feynman, R. P., Leighton, R. B., and Sands, M. (1965b). The Feynman Lectures on Physics, Vol. I. Addison-Wesley, Reading, MA.

Robertson, J. K. (1955). Introduction to Optics: Geometrical and Physical. Van Nostrand, New York.

van Kampen, N. G. (1988). Ten theorems about quantum mechanical measurements. Phys. A153, 97–113.

Wallenstein, R., and Hänsch, T. W. (1974). Linear pressure tuning of a multielement dye laser spectrometer. Appl. Opt. 13, 1625–1628.

Chapter 3

Bass, I. L., Bonanno, R. E., Hackel, R. H., and Hammond, P. R. (1992). High-average power dye laser at Lawrence Livermore National Laboratory. Appl. Opt. 31, 6993–7006.

Bennett, C. H., Bessette F., Brassard, G., Salvail, L., and Smolin, J. (1992). Experimental quantum cryptography. J. Cryptol. 5, 3–28.

Dirac, P. A. M. (1978). The Principles of Quantum Mechanics, 4th edn. Oxford University Press, London.

Duarte, F. J. (1990). Narrow-linewidth pulsed dye laser oscillators. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 4.

Duarte, F. J. (ed.). (1991). Dispersive dye lasers. In High Power Dye Lasers. Springer-Verlag, Berlin, Germany.

Duarte, F. J. (1992). Cavity dispersion equation Δλ ≈ Δθ (∂θ/∂λ)–1: A note on its origin. Appl. Opt. 31, 6979–6982.

Duarte, F. J. (1993). On a generalized interference equation and interferometric measurements. Opt. Commun. 103, 8–14.

Duarte, F. J. (1997). Interference, diffraction, and refraction, via Dirac’s notation. Am. J. Phys. 65, 637–640.

Duarte, F. J. (1999). Multiple-prism grating solid-state dye laser oscillator: Optimized architecture. Appl. Opt. 38, 6347–6349.

Duarte, F. J. (2003). Tunable Laser Optics. Elsevier Academic Press, New York.

Duarte, F. J. (2013). The probability amplitude for entangled polarizations: An interferometric approach. J. Mod. Opt. 60, 1585–1587.

Duarte, F. J. (2014). Quantum Optics for Engineers. CRC Press, New York.

Duarte, F. J., and Piper, J. A. (1984). Narrow-linewidth, high-prf copper laser-pumped Dye-laser oscillators. Appl. Opt. 23, 1391–1394.

Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663.

Everett, P. N. (1989). 300 W dye laser for field experimental site. In Proceedings of the International Conference on Lasers ‘88 (Duarte, F. J., ed.). STS Press, McLean, VA, pp. 404–409.

Feng, Y., Taylor, L. R., and Calia, D. B. (2009). 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star. Opt. Express 17, 19021–19026.

Feynman, R. P., Leighton, R. B., and Sands, M. (1965). The Feynman Lectures on Physics, Vol. III. Addison-Wesley, Reading, MA.

Haken, H. (1981). Light. North Holland, Amsterdam, The Netherlands.

Heisenberg, W. (1927). Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanic. Z. Phys. 43, 172–198.

Henry, L. J., Shay, T. M., Moore, G. T., and Grosek, J. R. (2013). Seeded Raman amplifier for applications in the 1100–1500 nm spectral region. US Patent 8, 472, 486 B1.

Mandel, L., and Wolf, E. (1995). Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge.

Mitchell, A. C. G., and Zemansky, M. W. (1971). Resonance Radiation and Excited Atoms. Cambridge University Press, New York.

Pique, J.P., and Farinotti, S. (2003). Efficient modeless laser for mesospheric sodium laser guide star. J. Opt. Soc. Am. B 20, 2093–2101.

Pryce, M. H. L., and Ward, J. C. (1947). Angular correlation effects with annihilation radiation. Nature 160, 435.

Primmerman, C. A., Murphy, D. V., Page, D. A., Zollars, B. G., and Barclay, H. T. (1991). Compensation of atmospheric optical distortion using a synthetic beacon. Nature 353, 141–143.

Ward, J. C. (1949). Some Properties of the Elementary Particles. Oxford University Press, Oxford.

Chapter 4

Born, M., and Wolf, E. (1999). Principles of Optics, 7th edn. Cambridge University Press, Cambridge.

Brewster, D. (1813). A Treatise on New Philosophical Instruments for Various Purposes in the Arts and Sciences with Experiments on Light and Colours. Murray and Blackwood, Edinburgh.

Diels, J.C. (1990). Femtosecond dye lasers. In Dye Laser Principles (Duarte, F. J., ed.). Academic Press, New York, Chapter 3.

Diels, J.C., Dietel, W., Fontaine, J. J., Rudolph, W., and Wilhelmi, B. (1985). Analysis of a mode-locked ring laser: Chirped-solitary-pulse solutions. J. Opt. Soc. Am. B 2, 680–686.

Diels, J.C., and Rudolph, W. (2006). Ultrafast Laser Pulse Phenomena, 2nd edn. Academic Press, New York.

Dietel, W., Fontaine, J. J., and Diels, J.C. (1983). Intracavity pulse compression with glass: A new method of generating pulses shorter than 60 fs. Opt. Lett. 8, 4–6.

Duarte, F. J. (1985). Note on achromatic multiple-prism beam expanders. Opt. Commun. 53, 259–262.

Duarte, F. J. (1987a). Generalized multiple-prism dispersion theory for pulse compression in ultrafast dye lasers. Opt. Quant. Electron. 19, 223–229.

Duarte, F. J. (1987b). Beam shaping with telescopes and multiple-prism beam expanders. J. Opt. Soc. Am. A 4, 30.

Duarte, F. J. (1989). Transmission efficiency in achromatic nonorthogonal multiple-prism laser beam expanders. Opt. Commun. 71, 1–5.

Duarte, F. J. (1990a). Narrow-linewidth pulsed dye laser oscillators. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 4.

Duarte, F. J. (1990b). Prismatic pulse compression: Beam deviations and geometrical perturbations. Opt. Quant. Electron. 22, 467–471.

Duarte, F. J. (ed.). (1991). Dispersive dye lasers. In High Power Dye Lasers. Springer-Verlag, Berlin, Germany, Chapter 2.

Duarte, F. J. (1992). Cavity dispersion equation Δ Δ λ θ θ λ ≈ ∂ ∂ − (/) 1: A note on its origin. Appl. Opt. 31, 6979–6982.

Duarte, F. J. (1993). On a generalized interference equation and interferometric measurements. Opt. Commun. 103, 8–14.

Duarte, F. J. (ed.). (1995a). Narrow-linewidth laser oscillators and intracavity dispersion. In Tunable Lasers Handbook. Academic Press, New York, Chapter 2.

Duarte, F. J. (ed.). (1995b). Dye lasers. In Tunable Lasers Handbook. Academic Press, New York, Chapter 5.

Duarte, F. J. (ed.). (1995c). Interferometric imaging. In Tunable Laser Applications, 1st edn. Marcel Dekker, New York, Chapter 5.

Duarte, F. J. (1999). Multiple-prism grating solid-state dye laser oscillator: Optimized architecture. Appl. Opt. 38, 6347–6349.

Duarte, F. J. (2000). Multiple-prism arrays in laser optics. Am. J. Phys. 68, 162–166.

Duarte, F. J. (2001a). Multiple-return-pass beam divergence and the linewidth equation. Appl. Opt. 40, 3038–3041.

Duarte, F. J. (2001b). Laser sensitometer using multiple-prism beam expansion and a polarizer. US Patent 6, 236, 461.

Duarte, F. J. (2002). Secure interferometric communications in free space. Opt. Commun. 205, 313–319.

Duarte, F. J. (2003). Tunable Laser Optics, 1st edn. Elsevier Academic Press, New York.

Duarte, F. J. (2005). Secure interferometric communications in free space: Enhanced sensitivity for propagation in the metre range. J. Opt. A: Pure Appl. Opt. 7, 73–75.

Duarte, F. J. (2006). Multiple-prism dispersion equations for positive and negative refraction. Appl. Phys. B 82, 35–38.

Duarte, F. J. (2009). Generalized multiple-prism dispersion theory for laser pulse compression: Higher order phase derivatives. Appl. Phys. B 96, 809–814.

Duarte, F. J. (2013). Tunable laser optics: Applications to optics and quantum optics. Prog. Quant. Electron. 37, 326–347.

Duarte, F. J., and Piper, J. A. (1982). Dispersion theory of multiple-prism beam expander for pulsed dye lasers. Opt. Commun. 43, 303–307.

Duarte, F. J., and Piper, J. A. (1983). Generalized prism dispersion theory. Am. J. Phys. 51, 1132–1134.

Duarte, F. J., and Piper, J. A. (1984). Multi-pass dispersion theory of prismatic pulsed dye lasers. Opt. Acta 31, 331–335.

Duarte, F. J., Reed, B. A., and Burak, C. J. (2005). Laser sensitometer. US Patent 6, 903, 824 B2.

Duarte, F. J., Taylor, T. S., Black, A. M., Davenport, W. E., and Varmette P. G. (2011). N-slit interferometer for secure free-space optical communications: 527 m intra interferometric path length. J. Opt. 13, 035710.

Duarte, F. J., Taylor, T. S., Clark, A. B., and Davenport, W. E. (2010). The N-slit interferometer: An extended configuration. J. Opt. 12, 015705.

Fork, R. L., Martinez, O. M., and Gordon, J. P. (1984). Negative dispersion using pairs of prisms. Opt. Lett. 9, 150–152.

Jenkins, F. A., and White, H. E. (1957). Fundamentals of Optics. McGraw-Hill, New York.

Lohmann, A. W., and Stork, W. (1989). Modified Brewster telescopes. Appl. Opt. 28, 1318–1319.

Maker, G. T., and Ferguson, A. I. (1989). Frequency-modulation mode locking of a diode-pumped Nd:YAG laser. Opt. Lett. 14, 788–790.

Marple, D. T. F. (1964). Refractive index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 35, 539–542.

Newton, I. (1704). Opticks. Royal Society, London.

Osvay, K., Kovács, A. P., Heiner, Z., Kurdi, G., Klebniczki, J., and Csatári, M. (2004). Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors. IEEE J. Sel. Top. Quant. Electron. 10, 213–220.

Osvay, K., Kovács, A. P., Kurdi, G., Heiner, Z., Divall, M., Klebniczki, J., and Ferincz, I. E. (2005). Measurement of non-compensated angular dispersion and the subsequent temporal lengthening of femtosecond pulses in a CPA laser. Opt. Commun. 248, 201–209.

Pang, L. Y., Fujimoto, J. G., and Kintzer, E. S. (1992). Ultrashort-pulse generation from high-power diode arrays by using intracavity optical nonlinearities. Opt. Lett. 17, 1599–1601.

Shay, T. M., and Duarte, F. J. (2009). Tunable fiber lasers. In Tunable Laser Applications (Duarte, F. J., ed.). CRC Press, New York, Chapter 6.

Sirat, G. Y., Wilner, K., and Neuhauser, D. (2005). Uniaxial crystal interferometer: Principles and forecasted applications to imaging astrometry. Opt. Express 13, 6310–6322.

Wyatt, R. (1978). Comment on “On the dispersion of a prism used as a beam expander in a nitrogen laser.” Opt. Commun. 26, 9–11.

Wynne, C. G. (1997). Atmospheric dispersion in very large telescopes with adaptive optics. Mon. Not. R. Astron. Soc. 285, 130–134.

Chapter 5

Bennett, J. M., and Bennett, H. E. (1978). Polarization. In Handbook of Optics (Driscoll, W. G. and Vaughan, W., eds.). McGraw-Hill, New York.

Born, M., and Wolf, E. (1999). Principles of Optics, 7th edn. Cambridge University Press, New York.

Duarte, F. J. (1989). Optical device for rotating the polarization of a light beam. US Patent 4, 822, 150.

Duarte, F. J. (1990). Technology of pulsed dye lasers. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 6.

Duarte, F. J. (1992). Beam transmission characteristics of a collinear polarization rotator. Appl. Opt. 31, 3377–3378.

Duarte, F. J. (1995). Solid-state dispersive dye laser oscillator: Very compact cavity. Opt. Commun. 117, 480–484.

Duarte, F. J. (1999). Multiple-prism grating solid-state dye laser oscillator: Optimized architecture. Appl. Opt. 38, 6347–6349.

Duarte, F. J. (2001). Laser sensitometer using a multiple-prism beam expander and a Polarizer. US Patent 6, 236, 461 B1.

Duarte, F. J. (2003). Tunable Laser Optics, 1st edn. Elsevier Academic Press, New York.

Duarte, F. J. (2014). Quantum Optics for Engineers. CRC Press, New York.

Duarte, F. J., Ehrlich, J. J., Davenport, W. E., and Taylor, T. S. (1990). Flashlamp pumped narrow-linewidth dispersive dye laser oscillators: Very low amplified spontaneous emission levels and reduction of linewidth instabilities. Appl. Opt. 29, 3176–3179.

Duarte, F. J., and Piper, J. A. (1983). Generalized prism dispersion theory. Am. J. Phys. 51, 1132–1134.

Dyson, F. J. (1990). Feynman’s proof of Maxwell equations. Am. J. Phys. 58, 209–211.

Feynman, R. P., Leighton, R. B., and Sands, M. (1965). The Feynman Lectures on Physics, Vol. II. Addison-Wesley, Reading, MA.

Jenkins, F. A., and White, H. E. (1957). Fundamentals of Optics. McGraw-Hill, New York.

Jones, R. C. (1947). A new calculus for the treatment of optical systems. J. Opt. Soc. Am. 37, 107–110.

Lorrain, P., and Corson, D. (1970). Electromagnetic Fields and Waves. Freeman, San Francisco, CA.

Olivares, I. E., Cuadra, J. A., Aguilar, F. A., Aguirre Gomez, J. G., and Duarte, F. J. (2009). Optical method using rotating Glan-Thompson polarizers to independently vary the power of the excitation and repumping lasers in laser cooling experiments. J. Mod. Opt. 56, 1780–1784.

Robson, B. A. (1974). The Theory of Polarization Phenomena. Clarendon Press, Oxford.

Saleh, B. E. A., and Teich, M. C. (1991). Fundamentals of Photonics. Wiley, New York.

Chapter 6

Brouwer, W. (1964). Matrix Methods in Optical Design. Benjamin, New York.

Duarte, F. J. (1988). Transmission efficiency in achromatic nonorthogonal multiple-prism laser beam expanders. Opt. Commun. 71, 1–5.

Duarte, F. J. (1989). Ray transfer matrix analysis of multiple-prism dye laser oscillators. Opt. Quant. Electron. 21, 47–54.

Duarte, F. J. (1990). Narrow-linewidth pulsed dye laser oscillators. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 4.

Duarte, F. J. (ed.). (1991). Dispersive dye lasers. In High Power Dye Lasers. Springer-Verlag, Berlin, Germany, Chapter 2.

Duarte, F. J. (1992). Multiple-prism dispersion and 4 × 4 ray transfer matrices. Opt. Quant. Electron. 24, 49–53.

Duarte, F. J. (1999). Multiple-prism grating solid-state dye laser oscillator: Optimized architecture. Appl. Opt. 38, 6347–6349.

Duarte, F. J. (2001). Multiple-return-pass beam divergence and the linewidth equation. Appl. Opt. 40, 3038–3041.

Duarte, F. J. (2003). Tunable Laser Optics, 1st edn. Elsevier Academic Press, New York.

Duarte, F. J., Costela, A., Garcia-Moreno, I., Sastre, R., Ehrlich, J. J., and Taylor, T. S. (1997). Dispersive solid-state dye laser oscillators. Opt. Quant. Electron. 29, 461–472.

Duarte, F. J., and Piper, J. A. (1982). Dispersion theory of multiple-prism beam expanders. Opt. Commun. 43, 303–307.

Kogelnik, H. (1979). Propagation of laser beams. In Applied Optics and Optics Engineering (Shannon, R. R. and Wyant, J. C., eds.). Academic Press, New York, pp. 155–190.

Kostenbauer, A. G. (1990). Ray-pulse matrices: A rational treatment for dispersive optical systems. IEEE J. Quant. Electron. 26, 1148–1157.

Siegman, A. (1986). Lasers. University Science Books, Mill Valley, CA.

Wollnik, H. (1987). Optics of Charged Particles. Academic Press, New York.

Chapter 7

Bass, I. L., Bonanno, R. E., Hackel, R. H., and Hammond, P. R. (1992). High-average power dye laser at Lawrence Livermore National Laboratory. Appl. Opt. 31, 6993–7006.

Beiting, E. J., and Smith, K. A. (1979). An on-axis reflective beam expander for pulsed dye laser cavities. Opt. Commun. 28, 355–358.

Belenov, E. M., Velichanskii, V. L., Zibrob, A. S., Nitikin, V. V., Sautenkov, V. A., and Uskov, A. V. (1983). Methods for narrowing the emission line of an injection laser. Sov. J. Quant. Electron. 13, 792–798.

Bennetts, S., McDonald, G. D., Hardman, K. S., Debs, J. E., Carlos, C. N., Kuhn, C. C. N., Close, J. D., and Robins, N. P. (2014). External cavity diode lasers with 5 kHz linewidth and 200 nm tuning range at 1.55 μm and methods for linewidth measurement. Opt. Express 22, 10642–10654.

Bernhardt, A. F., and Rasmussen, P. (1981). Design criteria and operating characteristics of a single-mode pulsed dye laser. Appl. Phys. B 26, 141–146.

Blit, S., Ganiel, U., and Treves, D. (1977). A tunable, single mode, injection-locked, flashlamp pumped dye laser. Appl. Phys. 12, 69–74.

Bor, Zs. (1979). A novel pumping arrangement for tunable single picosecond pulse generation with a N2 laser pumped distributed feedback dye lasers. Opt. Commun. 29, 103–108.

Born, M., and Wolf, E. (1999). Principles of Optics, 7th edn. Cambridge University Press, Cambridge.

Bos, F. (1981). Versatile high-power single-longitudinal-mode pulsed dye laser. Appl. Opt. 20, 1886–1890.

Duarte, F. J. (1985a). Application of dye laser techniques to frequency selectivity in pulsed CO2 lasers. In Proceedings of the International Conference on Lasers ’84 (Corcoran, K. M., Sullivan, M. D., and Stwalley, W. C., eds.). STS Press, McLean, VA, pp. 397–403.

Duarte, F. J. (1985b). Variable linewidth high-power TEA CO2 laser. Appl. Opt. 24, 34–37.

Duarte, F. J. (1985c). Multiple-prism Littrow and grazing-incidence pulsed CO2 lasers. Appl. Opt. 24, 1244–1245.

Duarte, F. J. (1985d). Note on achromatic multiple-prism beam expanders. Opt. Commun. 53, 259–262.

Duarte, F. J. (1989). Transmission efficiency in achromatic nonorthogonal multiple-prism laser beam expanders. Opt. Commun. 71, 1–5.

Duarte, F. J. (1990a). Narrow-linewidth pulsed dye laser oscillators. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 4.

Duarte, F. J. (1990b). Technology of pulsed dye lasers. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 6.

Duarte, F. J. (ed.). (1991a). Dispersive dye lasers. In High Power Dye Lasers. Springer-Verlag, Berlin, Germany, Chapter 2.

Duarte, F. J. (1991b). Dispersive excimer lasers. In Proceedings of the International Conference on Lasers ’90 (Harris, D. G. and Herbelin, J., eds.). STS Press, McLean, VA, pp. 277–279.

Duarte, F. J. (1993a). Multiple-prism grating designs tune diode lasers. Laser Focus World 29 (2), 103–109.

Duarte, F. J. (1993b). On a generalized interference equation and interferometric measurements. Opt. Commun. 103, 8–14.

Duarte, F. J. (ed.). (1995a). Dispersive external-cavity semiconductor lasers. In Tunable Laser Applications. Marcel Dekker, New York, Chapter 3.

Duarte, F. J. (ed.). (1995b). Interferometric imaging. In Tunable Laser Applications. Marcel Dekker, New York, Chapter 5.

Duarte, F. J. (1997). Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator. Opt. Laser Technol. 29, 513–516.

Duarte, F. J. (1999). Multiple-prism grating solid-state dye laser oscillator: Optimized architecture. Appl. Opt. 38, 6347–6349.

Duarte, F. J. (2001). Multiple-return-pass beam divergence and the linewidth equation. Appl. Opt. 40, 3038–3041.

Duarte, F. J. (2003). Tunable Laser Optics, 1st edn. Elsevier Academic Press, New York.

Duarte, F. J. (ed.). (2009). Broadly tunable external-cavity semiconductor lasers. In Tunable Laser Applications, 2nd edn. CRC Press, New York, Chapter 5.

Duarte, F. J. (2014). Quantum Optics for Engineers. CRC Press, New York.

Duarte, F. J., and Conrad, R. W. (1987). Diffraction-limited single-longitudinal-mode multiple-prism flashlamp-pumped dye laser oscillator: Linewidth analysis and injection of amplifier system. Appl. Opt. 26, 2567–2571.

Duarte, F. J., Costela, A., Garcia-Moreno, I., Sastre, R., Ehrlich, J. J., and Taylor, T. S. (1997). Dispersive solid-state dye lasers. Opt. Quant. Electron. 29, 461–472.

Duarte, F. J., Ehrlich, J. J., Patterson, S. P., Russell, S. D., and Adams, J. E. (1988). Linewidth instabilities in narrow-linewidth flashlamp-pumped dye laser oscillators. Appl. Opt. 27, 843–846.

Duarte, F. J., and Piper, J. A. (1980). A double-prism beam expander for pulsed dye lasers. Opt. Commun. 35, 100–104.

Duarte, F. J., and Piper, J. A. (1981). Prism preexpanded grazing-incidence grating cavity for pulsed dye lasers. Appl. Opt. 20, 2113–2116.

Duarte, F. J., and Piper, J. A. (1982a). Dispersion theory of multiple-prism beam expanders. Opt. Commun. 43, 303–307.

Duarte, F. J., and Piper, J. A. (1982b). Comparison of prism-preexpanded and grazing incidence grating cavities for copper laser pumped dye lasers. Appl. Opt. 21, 2782–2786.

Duarte, F. J., and Piper, J. A. (1984a). Narrow-linewidth, high prf copper laser-pumped dye laser oscillators. Appl. Opt. 23, 1391–1394.

Duarte, F. J., and Piper, J. A. (1984b). Multi-pass dispersion theory of prismatic pulsed dye lasers. Opt. Acta 31, 331–335.

Duarte, F. J., Taylor, T. S., Costela, A., Garcia-Moreno, I., and Sastre, R. (1998). Long-pulse narrow-linewidth dispersive solid-state dye-laser oscillator. Appl. Opt. 37, 3987–3989.

Dupre, P. (1987). Quasiunimodal tunable pulsed dye laser at 440 nm: Theoretical development for using quad prism beam expander and one or two gratings in a pulsed dye laser oscillator cavity. Appl. Opt. 26, 860–871.

Farkas, A. M., and Eden, J. G. (1993). Pulsed dye laser amplification and frequency doubling of single longitudinal mode semiconductor lasers. IEEE J. Quant. Electron. 29, 2923–2927.

Flamant, P. H., and Maillard, D. J. M. (1984). Transient injection frequency-locking of a microsecond-pulsed dye laser for atmospheric measurements. Opt. Quant. Electron. 16, 179–182.

Fleming, M. W., and Mooradian, A. (1981). Spectral characteristics of external-cavity controlled semiconductor lasers. IEEE J. Quant. Electron. QE-17, 44–59.

Fox, R. W., Hollberg, L., and Zibrov, A. S. (1997). Semiconductor diode lasers. In Atomic, Molecular, and Optical Physics: Electromagnetic Radiation (Dunning, F. B. and Hulet, R. G., eds.). Academic Press, New York, Chapter 4.

Hänsch, T. W. (1972). Repetitively pulsed tunable dye laser for high resolution spectroscopy. Appl. Opt. 11, 895–898.

Harrison, J., and Mooradian, A. (1989). Linewidth and offset frequency locking of external cavity GaAlAs lasers. IEEE J. Quant. Electron. QE-25, 1152–1155.

Harvey, K. C., and Myatt, C. J. (1991). External-cavity diode laser using a grazing- incidence diffraction grating. Opt. Lett. 16, 910–912.

Hawthorn, C. J., Weber, K. P., and Scholten, R. E. (2001). Littrow configuration tunable external cavity diode laser with fixed direction output beam. Rev. Sci. Instrum. 72, 4477–4479.

Johnston, T. F., and Duarte, F. J. (2002). Lasers, dye. In Encyclopedia of Physical Science and Technology, 3rd edn., Vol. 8 (Meyers, R. A., ed.). Academic Press, New York, pp. 315–359.

Kangas, K. W., Lowenthal, D. D., and Muller, C. H. (1989). Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator. Opt. Lett. 14, 21–23.

Kasuya, T., Suzuki, T., and Shimoda, K. (1978). A prism anamorphic system for Gaussian beam expander. Appl. Phys. 17, 131–136.

Klauminzer, G. K. (1978). Optical beam expander for dye laser. US Patent 4, 127, 828.

Kogelnik, H., and Shank, C. V. (1971). Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154.

Kogelnik, H., and Shank, C. V. (1972). Coupled-wave theory of distributed feedback Lasers. J. Appl. Phys. 43, 2327–2335.

Laurila, T., Joutsenoja, T., Hernberg, R., and Kuittinen, M. (2002). Tunable external-cavity laser at 650 nm based on a transmission diffraction grating. Appl. Opt. 27, 5632–5637.

Littman, M. G. (1978). Single-mode operation of grazing-incidence pulsed dye laser. Opt. Lett. 3, 138–140.

Littman, M. G., and Metcalf, H. J. (1978). Spectrally narrow pulsed dye laser without beam expander. Appl. Opt. 17, 2224–2227.

Liu, K., and Littman, M. G. (1981). Novel geometry for single-mode scanning of tunable lasers. Opt. Lett. 6, 117–118.

Maeda, M., Uchino, O., Okada, T., and Miyazoe, Y. (1975). Powerful narrow-band dye laser forced oscillator. J. Appl. Phys. 14, 1975–1980.

Meaburn, J. (1976). Detection and Spectrometry of Faint Light. Reidel, Boston, MA.

Nevsky, A. Yu., Bressel, U., Ernsting, I., Eisele, Ch., Okhapkin, M., Schiller, S., Gubenko, A., et al. (2008). A narrow-linewidth external cavity quantum dot laser for high- resolution spectroscopy in the near infrared and yellow spectral ranges. Appl. Phys. B 92, 501–507.

Notomi, M., Mitomi, O., Yoshikuni, Y., Kano, F., and Tohmori, Y. (1990). Broad-band tunable two-section laser diode with external grating cavity. IEEE Photon. Technol. Lett. 2, 85–87.

Pacala, T. J., McDermid, I. S., and Laudenslager, J. B. (1984). Single-longitudinal-mode operation of an XeCl laser. Appl. Phys. Lett. 45, 507–509.

Saikan, S. (1978). Nitrogen-laser-pumped single-mode dye laser. Appl. Phys. 17, 41–44.

Schäfer, F. P. (1990). Principles of dye laser operation. In Dye Lasers (Schäfer, F. P., ed.). Springer-Verlag, Berlin, Germany, Chapter 1.

Shank, C. V. (1975). Physics of dye lasers. Rev. Mod. Phys. 47, 649–657.

Shank, C. V., Bjorkholm, J. E., and Kogelnik, H. (1971). Tunable distributed-feedback dye laser. Appl. Phys. Lett. 18, 395–396.

Shay, T. M., and Duarte, F. J. (2009). Tunable fiber lasers. In Tunable Lasers Applications (Duarte, F. J., ed.). CRC Press, New York, Chapter 6.

Shoshan, I., Danon, N. N., and Oppenheim, U. P. (1977). Narrowband operation of a pulsed dye laser without intracavity beam expansion. J. Appl. Phys. 48, 4495–4497.

Siegman, A. (1986). Lasers. University Science Books, Mill Valley, CA.

Strome, F. C., and Webb, J. P. (1971). Flashtube-pumped dye laser with multiple-prism tuning. Appl. Opt. 10, 1348–1353.

Sugii, M., Ando, M., and Sasaki, K. (1987). Simple long-pulse XeCl laser with narrow-line output. IEEE J. Quant. Electron. QE-23, 1458–1460.

Uenishi, Y., Honna, K., and Nagaoka, S. (1996). Tunable laser diode using a nickel micromachined external mirror. Electron. Lett. 32, 1207–1208.

Voumard, C. (1977). External-cavity-controlled 32-MHz narrow-band CW GaAlAs-diode lasers. Opt. Lett. 1, 61–63.

Wadsworth, W. J., McKinnie, I. T., Woolhouse, A. D., and Haskell, T. G. (1999). Efficient distributed feedback solid state dye laser with dynamic grating. Appl. Phys. B 69, 163–165.

Wallenstein, R., and Hänsch, T. W. (1974). Linear pressure tuning of a multielement dye laser spectrometer. Appl. Opt. 13, 1625–1628.

Wieman, C. E., and Hollberg, L. (1991). Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20.

Wolf, T., Borchert, B., Drögemüller, K., and Amann, M.C. (1991). Narrow-linewidth InGaAsP/InP metal-clad ridge-waveguide distributed feedback lasers. Jpn. J. Appl. Phys. 30, L745–L747.

Wyatt, R. (1978). Narrow linewidth, short pulse operation of a nitrogen-laser-pumped dye laser. Opt. Commun. 26, 429–431.

Zhu, X.L., Lam, S.K., and Lo, D. (2000). Distributed-feedback dye-doped solgel silica lasers. Appl. Opt. 39, 3104–3107.

Zorabedian, P. (1992). Characteristics of a grating-external-cavity semiconductor laser containing intracavity prism beam expanders. J. Lightw. Technol. 10, 330–335.

Zorabedian, P. (1995). Tunable external-cavity semiconductor lasers. In Tunable Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 8.

Chapter 8

Akhmanov, S. A., Kovrigin, A. I., Kolosov, V. A., Piskarskas, A. S., Fadeev, V. V., and Khokhlov, R. V. (1966). Tunable parametric light generator with KDP crystal. JETP Lett. 3, 241–245.

Armstrong, J. A., Bloemberger, N., Duccuing, J., and Pershan, P. S. (1962). Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939.

Auyeung, J., Fekete, D., Pepper, D. M., and Yariv, A. (1979). A theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors. IEEE J. Quant. Electron. QE-15, 1180–1188.

Baldwin, G. C. (1969). An Introduction to Nonlinear Optics. Plenum Press, New York.

Barnes, N. P. (1995). Optical parametic oscillators. In Tunable Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 7.

Barnes, N. P., and Corcoran, V. J. (1976). Parametric generation processes: Spectral bandwidth and acceptance angles. Appl. Opt. 15, 696–699.

Bellini, M., and Hänsch, T. W. (2000). Phase-locked white-light continuum pulses: Toward a universal optical frequency-comb synthesizer. Opt. Lett. 25, 1049–1051.

Berik, E., Davidenko, B., Mihkelsoo, V., Apanasevich, P., Grabchikov, A., and Orlovich, V. (1985). Stimulated Raman scattering of dye laser radiation in hydrogen: Improvement of spectral purity. Opt. Commun. 56, 283–287.

Bloembergen, N. (1965). Nonlinear Optics. Benjamin, New York.

Bloembergen, N. (1967). The stimulated Raman effect. Am. J. Phys. 35, 989–1023.

Born, M., and Wolf, E. (1999). Principles of Optics, 7th edn. Cambridge University Press, Cambridge.

Boyd, R. W. (1992). Nonlinear Optics. Academic Press, New York.

Brink, D. J., and Proch, D. (1982). Efficient tunable ultraviolet source based on stimulated Raman scattering of an excimer-pumped dye laser. Opt. Lett. 7, 494–496.

Brosnan, S. J., and Byer, R. L. (1979). Optical parametric oscillators and linewidth studies. IEEE J. Quant. Electron. QE-15, 415–431.

Byer, R. L., Oshman, M. K., Young, J. F., and Harris, S. E. (1968). Visible CW parametric oscillators. Appl. Phys. Lett. 12, 109–111.

Diddams, S. A. (2010). The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51–B62.

Diddams, S. A., Jones, D. J., Ye, J., Cundiff, S. T., Hall, J. L., Ranka, J. K., Windeler, R. S., Holzwarth, R., Udem, T., and Hänsch, T. W. (2000). Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102–5105.

Diels, J.C. (1990). Femtosecond dye lasers. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 3.

Diels, J.C., and Rudolph, W. (2006). Ultrafast Laser Pulse Phenomena. Academic Press, New York.

Duarte, F. J. (2003). Tunable Laser Optics. Elsevier Academic Press, New York.

Eckstein, J. N., Ferguson, A. I., and Hänsch, T. W. (1978). High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. 40, 847–850.

Fouche, D. G., and Chang, R. K. (1972). Observation of resonance Raman scattering below the dissociation limit in I2 vapor. Phys. Rev. Lett. 29, 536–539.

Giordmaine, J. A., and Miller, R. C. (1965). Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976.

Hanna, D. C., Pacheco, M. M. T., and Wong, K. H. (1985). High efficiency and high brightness Raman conversion of dye laser radiation. Opt. Commun. 55, 188–192.

Harris, S. E. (1969). Tunable optical parametric oscillators. Proc. IEEE 57, 2096–2113.

Hartig, W., and Schmidt, W. (1979). A broadly tunable IR waveguide Raman laser pumped by a dye laser. Appl. Phys. 18, 235–241.

Holzwarth, R., Zimmermann, M., Udem, T., and Hänsch, T. W. (2001). Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb. IEEE J. Quant. Electron. 37, 1493–1501.

Kumar, P., Shapiro, J. H., and Bondurant, R. S. (1984). Fluctuations in the phase-conjugate signal generated via degenerate four-wave mixing. Opt. Commun. 50, 183–188.

Ludewigt, K., Birkmann, K., and Wellegehausen, B. (1984). Anti-Stokes Raman laser investigations on atomic TI and Sn. Appl. Phys. B 33, 133–139.

Manners, J. (1983). XeCl laser generated infra-red SRS in barium vapour. Opt. Commun. 44, 366–370.

Marshall, L. R., and Piper, J. A. (1990). Transient stimulated Raman scattering in lead vapor. IEEE J. Quant. Electron. 26, 1098–1104.

Mills, D. L. (1991). Nonlinear Optics. Springer-Verlag, Berlin, Germany.

Milton, T. K., Reid, S. A., Kim, H. L., and McDonald, J. D. (1989). A scanning, single mode, LiNbO3, optical parametric oscillator. Opt. Commun. 69, 289–293.

Orr, B. J., He, Y., and White, R. T. (2009). Spectroscopic applications of pulsed tunable optical parametric oscillators. In Tunable Laser Applications, 2nd edn. (Duarte, F. J., ed.). CRC Press, New York, Chapter 2.

Orr, B. J., Johnson, M. J., and Haub, J. G. (1995). Spectroscopic applications of pulsed tunable optical parametric oscillators. In Tunable Laser Applications (Duarte, F. J., ed.). Marcel Dekker, New York, Chapter 2.

Schmidt, W., and Appt, W. (1972). Tunable stimulated Raman emission generated by a dye laser. Z. Naturforsch. 28a, 792–793.

Schomburg, H., Döbele, H. F., and Rückle, B. (1983). Generation of tunable narrow- bandwidth VUV radiation by anti-Stokes SRS in H2. Appl. Phys. B 30, 131–134.

Shen, Y. R. (1984). The Principles of Nonlinear Optics. Wiley, New York.

Toulouse, J. (2005). Optical nonlinearities in fibers: Review, recent examples, and systems applications. J. Lightw. Technol. 23, 3625–3641.

Trutna, W. R., and Byer, R. L. (1980). Multiple-pass Raman gain cell. Appl. Opt. 19, 301–312.

Trutna, W. R., Yong, J. R., Park, K., and Byer, R. L. (1979). The dependence of Raman gain on pump laser linewidth. IEEE J. Quant. Electron. QE-15, 648–655.

White, J. C., and Henderson, D. (1983). Tuning and saturation behavior of the anti-Stokes Raman laser. Opt. Lett. 8, 15–17.

Wilke, V., and Schmidt, W. (1978). Tunable UV-radiation by stimulated Raman scattering. Appl. Phys. 16, 151–154.

Wyatt, R., and Cotter, D. (1980). Tunable infrared generation using 6s−6d Raman transition in caesium vapour. Appl. Phys. 21, 199–204.

Yariv, A. (1975). Quantum Electronics, 2nd edn. Wiley, New York.

Yariv, A. (1977). Compensation for atmospheric degradation of optical transmission by nonlinear optical mixing. Opt. Commun. 21, 49–50.

Yariv, A. (1985). Optical Electronics, 3rd edn. HRW, New York.

Chapter 9

Allaria, E., Appio, R., Badano, L., Barletta, W. A., Bassanese, S., Biedron, S. G., Borga, A., et al. (2012). Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704.

Anliker, P., Luthi, H. R., Seelig, W., Steinger, J., Weber, H. P., Leutwyler, S., Schumacher, E., and Woste, L. (1977). 33-W CW dye laser. IEEE J. Quant. Electron. QE-13, 547–548.

Auerbach, M., Adel, P., Wandt, D., Fallnich, C., Unger, S., Jetschke, S., and Müller, H.R. (2002). 10 W widely tunable narrow linewidth double-clad fiber ring laser. Opt. Express 10, 139–144.

Baltakov, F. N., Barikhin, B. A., and Sukhanov, L. V. (1974). 400-J pulsed laser using a solution of rhodamine-6G in ethanol. JETP Lett. 19, 174–175.

Barnes, N. P. (1995a). Transition metal solid-state lasers. In Tunable Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 6.

Barnes, N. P. (1995b). Optical parametric oscillators. In Tunable Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 7.

Barnes, N. P., and Williams-Byrd, J. A. (1995). Average power effects in parametric oscillators and amplifiers. J. Opt. Soc. Am. B 12, 124–131.

Bass, I. L., Bonanno, R. E., Hackel, R. H., and Hammond, P. R. (1992). High-average power dye laser at Lawrence Livermore National Laboratory. Appl. Opt. 31, 6993–7006.

Baving, H. J., Muuss, H., and Skolaut, W. (1982). CW dye laser operation at 200W pump power. Appl. Phys. B. 29, 19–21.

Beck, R., Englisch, W., and Gürs, K. (1976). Table of Laser Lines in Gases and Vapors. Springer-Verlag, Berlin, Germany.

Benson, S. V. (1995). Tunable free-electron lasers. In Tunable Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 9.

Berger, J. D., and Anthon, D. (2003). Tunable MEMS devices for optical networks. Opt. Photon. News 14 (3), 43–49.

Berger, J. D., Zhang, Y., Grade, J. D., Howard, L., Hrynia, S., Jerman, H., Fennema, A., Tselikov, A., and Anthon, D. (2001). External cavity diode lasers tuned with silicon MEMS. IEEE LEOS Newslett. 15 (5), 9–10.

Bernhardt, A. F., and Rasmussen, P. (1981). Design criteria and operating characteristics of a single-mode pulsed dye laser. Appl. Phys. B 26, 141–146.

Bobrovskii, A. N., Branitskii, A. V., Zurin, M. V., Koshevnikov, A. V., Mishchenko, V. A., and Myl’nikov, G. D. (1987). Continuously tunable TEA CO2 laser. Sov. J. Quant. Electron. 17, 1157–1159.

Bos, F. (1981). Versatile high-power single-longitudinal-mode pulsed dye laser. Appl. Opt. 20, 1886–1890.

Bradley, C. C., McClelland, J. J., Anderson, W. R., and Celotta, R. J. (2000). Magneto-optical trapping of chromium atoms. Phys. Rev. 61, 053407.

Brandt, M., and Piper, J. A. (1981). Operating characteristics of TE copper bromide lasers. IEEE J. Quant. Electron. QE-17, 1107–1115.

Brau, C. A. (1990). Free-Electron Lasers. Academic Press, New York.

Braun, I., Ihlein, G., Laeri, F., Nöckel, J. U., Schulz-Ekloff, G., Schüth, F., Vietze, U., Weiß, Ö., and Wöhrle, D. (2000). Hexagonal microlasers based on organic dyes in nanoporous crystals. Appl. Phys. 70, 335–343.

Broyer, M., Chevaleyre, J., Delacrétaz, G., and Wöste, L. (1984). CVL-pumped dye laser spectroscopic application. Appl. Phys. B. 35, 31–36.

Buffa, R., Burlamacchi, P., Salimbeni, R., and Matera, M. (1983). Efficient spectral narrowing of a XeCl TEA laser. J. Phys. D: Appl. Phys. 16, L125–L128.

Caro, R. G., Gower, M. C., and Webb, C. E. (1982). A simple tunable KrF laser system with narrow bandwidth and diffraction-limited divergence. J. Phys. D: Appl. Phys. 15, 767–773.

Chen, H., Babin, F., Leblanc, M., and Schinn, G. W. (2003). Widely tunable single-frequency Erbium-doped fiber lasers. IEEE Photon. Technol. Lett. 15, 185–187.

Chesler, R. B., and Geusic, J. E. (1972). Solid-state ionic lasers. In Laser Handbook, Vol. 1 (Arecchi, F. T. and Schulz-Dubois, E. O., eds.). North Holland, Amsterdam, The Netherlands, pp. 325–368.

Corzine, S. W., Bowers, J. E., Przybylek, G., Koren, U., Miller, B. I., and Soccolich, C. E. (1988). Actively mode-locked GaInAsP laser with subpicosecond output. Appl. Phys. Lett. 52, 348–350.

Costela, A., Cerdan, L., and Garcia-Moreno, I. (2013). Solid state dye lasers with scattering feedback. Prog. Quant. Electron. 37, 348–382.

Costela, A., Garcia-Moreno, I., and Sastre, R. (2009). Solid state dye lasers. In Tunable Laser Applications, 2nd edn. (Duarte, F. J., ed.). CRC Press, New York, Chapter 3.

Coutts, D. W., Wadsworth, W. J., and Webb, C. E. (1998). High average power blue generation from a copper vapour laser pumped titanium sapphire laser. J. Mod. Opt. 45, 1185–1197.

Delfyett, P. J., Florez, L., Stoffel, N., Gmitter, T., Andreadakis, N., Alphonse, G., and Ceislik, W. (1992). 200 fs optical pulse generation and intracavity pulse evolution in a hybrid mode-locked semiconductor diode-laser/amplifier system. Opt. Lett. 17, 670–672.

Demmler, S., Rothhardt, J., Heidt, A. M., Hartung, A., Rohwer, E. G., Bartelt, H., Limpert, J., and Tünnermann A. (2011). Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum. Opt. Express 19, 20151–20158.

Diels, J.C. (1990). Femtosecond dye lasers. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 3.

Diels, J.C., and Rudolph, W. (2006). Ultrashort Laser Pulse Phenomena, 2nd edn. Academic Press, New York.

Dietel, W., Fontaine, J. J., and Diels, J.C. (1983). Intracavity pulse compression with glass: A new method of generating pulses shorter than 60 fs. Opt. Lett. 8, 4–6.

Dominic, V., MacCormack, S., Waarts, R., Sanders, S., Bicknese, S., Dohle, R., Wolak, E., Yeh, P. S., and Zucker, E. (1999). 110W fibre laser. Electron. Lett. 35, 1158–1160.

Drever, R. W. P., Hall, J. L., Kowalski, F. V., Hough, J., Ford, G. M., Munley, A. J., and Ward, H. (1983). Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B. 31, 97–105.

Duarte, F. J. (1985a). Application of dye laser techniques to frequency selectivity in pulsed CO2 lasers. In Proceedings of the International Conference on Lasers ’84 (Corcoran, K. M., Sullivan, M. D., and Stwalley, W. C., eds.). STS Press, McLean, VA, pp. 397–403.

Duarte, F. J. (1985b). Multiple-prism Littrow and grazing-incidence pulsed CO2 lasers. Appl. Opt. 24, 1244–1245.

Duarte, F. J. (1985c). Variable linewidth high-power TEA CO2 laser. Appl. Opt. 24, 34–37.

Duarte, F. J. (1991a). Dispersive excimer lasers. In Proceedings of the International Conference on Lasers ’90 (Harris, D. G. and Herbelin, J., eds.). STS Press, McLean, VA, pp. 277–279.

Duarte, F. J. (ed.). (1991b). Dispersive dye lasers. In High Power Dye Lasers. Springer-Verlag, Berlin, Germany, Chapter 2.

Duarte, F. J. (1993). Multiple-prism grating designs tune diode lasers. Laser Focus World 29 (2), 103–109.

Duarte, F. J. (ed.). (1995a). Introduction. In Tunable Lasers Handbook. Academic Press, New York, Chapter 1.

Duarte, F. J. (ed.). (1995b). Dye lasers. In Tunable Lasers Handbook. Academic Press, New York, Chapter 5.

Duarte, F. J. (ed.). (1995c). Dispersive external-cavity semiconductor lasers. In Tunable Laser Applications Marcel Dekker, New York, Chapter 3.

Duarte, F. J. (1999). Multiple-prism grating solid-state dye laser oscillator: Optimized architecture. Appl. Opt. 38, 6347–6349.

Duarte, F. J. (2003). Tunable Laser Optics. Elsevier Academic Press, New York.

Duarte, F. J. (ed.). (2009). Broadly tunable external-cavity semiconductor lasers. In Tunable Laser Applications, 2nd edn. CRC Press, New York, Chapter 5.

Duarte, F. J. (2012). Tunable organic dye lasers: Physics and technology of high performance liquid and solid-state narrow-linewidth oscillators. Prog. Quant. Electron. 36, 29–50.

Duarte, F. J. (2014). Quantum Optics for Engineers. CRC Press, New York.

Duarte, F. J., and Conrad, R. W. (1987). Diffraction-limited single-longitudinal-mode multiple-prism flashlamp-pumped dye laser oscillator: Linewidth analysis and injection of amplifier system. Appl. Opt. 26, 2567–2571.

Duarte, F. J., Davenport, W. E., Ehrlich, J. J., and Taylor, T. S. (1991). Ruggedized narrow-linewidth dispersive dye laser oscillator. Opt. Commun. 84, 310–316.

Duarte, F. J., Ehrlich, J. J., Davenport, W. E., Taylor, T. S., and McDonald, J. C. (1993). A new tunable dye laser oscillator: Preliminary report. In Proceedings of the International Conference on Lasers ’92 (Wang, C. P., ed.). STS Press, McLean, VA, pp. 293–296.

Duarte, F. J., and Hillman, L. W. (1990). Introduction. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 1.

Duarte, F. J., and James, R. O. (2003). Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media, Opt. Lett. 28, 2088–2090.

Duarte, F. J., Liao, L. S., Vaeth, K. M., and Miller, A. M. (2006). Widely tunable green laser emission using the coumarin 545 tetramethyl dye as the gain medium. J. Opt. A: Pre Appl. Opt. 8, 172–174.

Duarte, F. J., and Piper, J. A. (1981). Prism preexpanded grazing-incidence grating cavity for pulsed dye lasers. Appl. Opt. 20, 2113–2116.

Duarte, F. J., and Piper, J. A. (1982). Comparison of prism-expander and grazing-incidence grating cavities for copper laser pumped dye lasers. Appl. Opt. 21, 2782–2786.

Duarte, F. J., and Piper, J. A. (1984). Narrow-linewidth, high prf copper laser-pumped dye laser oscillators. Appl. Opt. 23, 1391–1394.

Duarte, F. J., Taylor, T. S., Costela, A., Garcia-Moreno, I., and Sastre, R. (1998). Long-pulse narrow-linewidth dispersive solid-state dye-laser oscillator. Appl. Opt. 37, 3987–3989.

Dupre, P. (1987). Quasiunimodal tunable pulsed dye laser at 440 nm: Theoretical development for using quad prism beam expander and one or two gratings in a pulsed dye laser oscillator cavity. Appl. Opt. 26, 860–871.

Ell, R., Morgner, U., Kärtner, F. X., Fugimoto, J. G., Ippen, E. P., Scheuer, V., Angelow, G., et al. (2001). Generation of 5-fs pulses from a Ti:sapphire laser. Opt. Lett. 26, 373–375.

Erbert, G., Bass, I., Hackel, R., Jenkins, S., Kanz, K., and Paisner, J. (1991). 43-W CW Ti:sapphire laser. In Technical Digest, Conference on Lasers and Electro-Optics. Paper CThH4. Optical Society of America, Washington, DC.

Everett, P. N. (1991). Flashlamp-excited dye lasers. In High Power Dye Lasers (Duarte, F. J., ed.). Springer-Verlag, Berlin, Germany, Chapter 6.

Fan, Y. X., Eckardt, R. C., Byer, R. L., Route, R. K., and Feigelson, R. S. (1984). AgGaS2 infrared parametric oscillator. Appl. Phys. Lett. 45, 313–315.

Farhoomand, J., and Pickett, H. M. (1988). A stable high power optically pumped far infrared laser system. In Proceedings of the International Conference on Lasers ’87 (Duarte, F. J., ed.). STS Press, McLean, VA, pp. 539–543.

Fedorova, K. A., Cataluna, M. A., Krestnikov, I., Livshits, D., and Rafailov, E. U. (2010). Broadly tunable high-power InAs/GaAs quantum dot external cavity diode lasers. Opt. Express 18, 19438–19443.

Flamant, P. H., and Maillard, D. J. M. (1984). Transient injection frequency-locking of a microsecond-pulsed dye laser for atmospheric measurements. Opt. Quant. Electron. 16, 179–182.

Fleming, M. W., and Mooradian, A. (1981). Spectral characteristics of external-cavity controlled semiconductor lasers. IEEE J. Quant. Electron. QE-17, 44–59.

Fork, R. L., Brito Cruz, C. H., Becker, P. C., and Shank, C. V. (1987). Compression of optical pulses to six femtoseconds by using cubic phase compression. Opt. Lett. 12, 483–485.

Fork, R. L., Greene, B. I., and Shank, C. V. (1981). Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett. 38, 671–672.

Fork, R. L., Martinez, O. E., and Gordon, J. P. (1984). Negative dispersion using pairs of prisms. Opt. Lett. 9, 150–152.

Fort, J., and Moulin, C. (1987). High-power high-energy linear flashlamp-pumped dye Laser. Appl. Opt. 26, 1246–1249.

Fox, R. W., Hollberg, L., and Zibrov, A. S. (1997). Semiconductor diode lasers. In Atomic, Molecular, and Optical Physics. Academic Press, New York, Chapter 4.

Freed, C. (1995). CO2 isotope lasers and their applications in tunable laser spectroscopy. In Tunabe Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 4.

German, K. R. (1981). Grazing angle tuner for CW lasers. Appl. Opt. 20, 3168–3171.

Harstad, K. (1983). Interpulse kinetics in copper and copper halide lasers. IEEE J. Quant. Electron. QE-19, 88–91.

He, Y., and Orr, B. J. (2001). Tunable single-mode operation of a pulsed optical parametric oscillator pumped by a multimode laser. Appl. Opt. 40, 4836–4848.

Hollberg, L. (1990). CW dye lasers. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 5.

Holzer, W., Gratz, H., Schmitt, T., Penzkofer, A., Costela, A., Garcia-Moreno, I., Sastre, R., and Duarte, F. J. (2000). Photo-physical characterization of rhodamine 6G in a 2-hydroxyethyl-methacrylate methyl-methacrylate copolymer. Chem. Phys. 256, 125–136.

Hugi, A., Terazzi, R., Bonetti, Y., Wittmann, A., Fischer, M., Beck, M., Faist, J., and Gini, E. (2009). External cavity quantum cascade laser tunable from 7.6 to 11.4 μm. Appl. Phys. Letts. 95, 061103.

James, B. W., Falconer, I. S., Bowden, M. D., Krug, P. A., Whitbourn, L. B., Stimson, P. A., and Macfarlane, J. C. (1988). Optically pumped submillimeter lasers and their applications to plasma diagnostics. In Proceedings of the International Conference on Lasers ’87 (Duarte, F. J., ed.). STS Press, McLean, VA, pp. 550–554.

Jensen, O. B., Skettrup, T., Petersen, O. B., and Larsen, M. B. (2002). Diode-pumped intra-cavity optical parametric oscillator in pulsed and continuous-wave operation. J. Opt. A: Pure Appl. Opt. 4, 190–193.

Jeong, Y., Sahu, J. K., Payne, D. N., and Nilsson, J. (2004). Ytterbium-doped large core fiber laser with 1.36 kW continuous-wave output power. Opt. Express 12, 6086–6092.

Johnston, T. F., and Duarte, F. J. (2002). Lasers, dye. In Encyclopedia of Physical Science and Technology, 3rd edn., Vol. 8 (Meyers, R. A., ed.). Academic Press, New York, pp. 315–359.

Kafka, J. D., and Baer, T. (1987). Prism-pair delay lines in optical pulse compression. Opt. Lett. 12, 401–403.

Karnutsch, C. (2007). Low Threshold Organic Thin Film Laser Devices. Cuvillier, Göttingen, Germany.

Klimek, D. E., Aldag, H. R., and Russell, J. (1992). In Conference on Lasers and Electro-Optics. Optical Society of America, Washington, DC, p. 332.

Kner, P., Sun, D., Boucart, J., Floyd, P., Nabiev, R., Davis, D., Yuen, W., Jansen, M., and Chang-Hasnain, C. J. (2002). VCSELS. Opt. Photon. News 13 (3), 44–47.

Kubota, H., Kurokawa, K., and Nakazawa, M. (1988). 29-fs pulse generation from a linear-cavity synchronously pumped dye laser. Opt. Lett. 13, 749–751.

Larrue, D., Zarzycki, J., Canva, M., Georges, P., Bentivegna, F., and Brun, A. (1994). Impregnated ORMOSIL matrices for efficient solid state optical gain media. Opt. Commun. 110, 125–130.

Loree, T. R., Butterfield, K. B., and Barker, D. L. (1978). Spectral tuning of ArF and KrF discharge lasers. Appl. Phys. Lett. 32, 171–173.

Lu, Q. Y., Bandyopadhyay, N., Slivken, S., Bai, Y., and Razeghi, M. (2013). High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation. Opt. Express 21, 968–973.

Ludewigt, K., Pfingsten, W., Mhlmann, C., and Wellegehausen, B. (1987). High-power vacuum-ultraviolet anti-Stokes Raman laser with atomic selenium, Opt. Lett. 12, 39–41.

Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature 187, 493–494.

Maslyukov, A., Sokolov, S., Kaivola, M., Nyholm, K., and Popov, S. (1995). Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements. Appl. Opt. 34, 1516–1518.

Maulini, R., Mohan, A., Giovannini, M., Faist, J., and Gini, E. (2006). External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade. Appl. Phys. Lett. 88, 201113.

McAleavey, F. J., O’Gorman, J., Donegan, J. F., MacCraith, B. D., Hegarty, J., and Maze, G. (1997). Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical based hydrocarbon gas sensing. IEEE J. Sel. Top. Quant. Electron. 3, 1103–1111.

McKee, T. J. (1985). Spectral-narrowing techniques for excimer lasers oscillators. Can. J. Phys. 63, 214–219.

Miller, J. (1988). High power hydrogen Fluoride chemical lasers: Power scaling and beam quality. In Proceedings of the International Conference on Lasers ’87 (Duarte, F. J., ed.). STS Press, McLean, VA, pp. 190–217.

Mollenauer, L. F. (1985). Color center lasers. In Laser Handbook, Vol. 4 (Stitch, M. L. and Bass, M., eds.). North Holland, Amsterdam, The Netherlands, Chapter 2.

Mollenauer, L. F., and Bloom, D. M. (1979). Color-center laser generates picoseconds pulses and several watts CW over the 1.24–1.45-μm range. Opt. Lett. 4, 247–249.

Moulton, P. F. (1986). Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 3, 125–132.

Nevsky, A. Yu., Bressel, U., Ernsting, I., Eisele, Ch., Okhapkin, M., Schiller, S., Gubenko, A., et al. (2008). A narrow-linewidth external cavity quantum dot laser for high-resolution spectroscopy in the near infrared and yellow spectral ranges. Appl. Phys. B 92, 501–507.

Olivares, I. E., Duarte, A. E., Saravia, E. A., and Duarte, F. J. (2002). Lithium isotope separation with tunable diode lasers. Appl. Opt. 41, 2973–2977.

Orr, B. J., He, Y., and White, R. T. (2009). Spectroscopic applications of pulsed tunable optical parametric oscillators. In Tunable Laser Applications, 2nd edn. (Duarte, F. J., ed.). CRC Press, New York, Chapter 2.

Orr, B. J., Johnson, M. J., and Haub, J. G. (1995). Spectroscopic applications of pulsed tunable optical parametric oscillators. In Tunable Laser Applications (Duarte, F. J., ed.). Marcel Dekker, New York, Chapter 2.

Osvay, K., Kovács, A. P., Kurdi, G., Heiner, Z., Divall, M., Klebniczki, J., and Ferincz, I. E. (2005). Measurements of non-compensated angular dispersion and the subsequent temporal lengthening of femtosecond pulses in a CPA laser. Opt. Commun. 248, 201–209.

Pacala, T. J., McDermid, I. S., and Laudenslager, J. B. (1984). Single-longitudinal-mode operation of an XeCl laser. Appl. Phys. Lett. 45, 507–509.

Pacheco, D. P., Aldag, H. R., Itzkan, I., and Rostler, P. S. (1988). A solid-state flashlamp-pumped dye laser employing polymer hosts. In Proceedings of the International Conference on Lasers ’87 (Duarte, F. J., ed.). STS Press, McLean, VA, pp. 330–337.

Pang, L. Y., Fujimoto, J. G., and Kintzer, E. S. (1992). Ultrashort-pulse generation from high-power diode arrays by using intracavity optical nonlinearities. Opt. Lett. 17, 1599–1601.

Piper, J. A. (1974). Increased efficiency and new CW transitions in the helium-iodine laser system. J. Phys. D: Appl. Phys. 7, 323–328.

Piper, J. A. (1976). Simultaneous CW laser oscillation on transitions of Cd+ and I+ in a hollow-cathode He–CdI2 discharge. Opt. Commun. 19, 189–192.

Piper, J. A. (1978). A transversely excited copper halide laser with large active volume. IEEE J. Quant. Electron. QE-14, 405–407.

Piper, J. A., and Gill, P. (1975). Output characteristics of the He-Zn laser. J. Phys. D: Appl. Phys. 8, 127–134.

Powers, P. E., Ellington, R. J., Pelouch, W. S., and Tang, C. L. (1993). Recent advences in the Ti:sapphire-pumped high-repetition-rate femtosecond optical parametric oscillator. J. Opt. Soc. Am. B 10, 2163–2167.

Rhodes, C. K. (ed.). (1979). Excimer Lasers. Springer-Verlag, Berlin, Germany.

Rifani, M., Yin, Y.Y., Elliott, D. S., Jay, M. J., Jang, S.H., Kelley, M. P., Bastin, L., and Kahr, B. (1995). Solid-state dye laser from stereoscopic host-guest interactions. J. Am. Chem. Soc. 117, 7572–7573.

Ruddock, I. S., and Bradley, D. J. (1976). Bandwidth-limited subpicosecond generation in mode-locked CW dye laser. Appl. Phys. Lett. 29, 296–297.

Salvatore, R. A., Schrans, T., and Yariv, A. (1993). Wavelength tunable source of subpicosecond pulses from CW passively mode-locked two-section multiple-quantum-well laser. IEEE Photon. Technol. Lett. 5, 756–758.

Samuel, I. D. W., and Turnbull, G. A. (2007). Organic semiconductor lasers. Chem. Rev. 107, 1272–1295.

Schäfer, F. P. (ed.). (1990). Dye Lasers. Springer-Verlag, Berlin, Germany.

Scheps, R. (1993). Low-threshold dye laser pumped by visible laser diodes. IEEE Photon. Lett. 5, 1156–1158.

Schneider, T. R., and Cox, J. D. (1988). The nuclear pumping of lasers—Revisited. In Proceedings of the International Conference on Lasers ’87 (Duarte, F. J., ed.). STS Press, McLean, VA, pp. 234–240.

Schröder, T., Boller, K.J., Fix, A., and Wallenstein R. (1994). Spectral properties and numerical modelling of a critically phase-matched nanosecond LiB3O5 optical parametric oscillator. Appl. Phys. B. 58, 425–438.

Shan, X., Siddiqui, A. S., Simeonidou, D., and Ferreira, M. (1991). Rebroadening of spectral linewidth with shorter wavelength detuning away from the gain curve peak in external cavity semiconductor lasers sources. In Conference on Lasers and Electro-Optics, Optical Society of America, Washington, DC, pp. 258–259.

Shand, M. L., and Walling, J. C. (1982). A tunable emerald laser. IEEE J. Quant. Electron. QE-18, 1829–1830.

Shay, T. M., and Duarte, F. J. (2009). Tunable fiber lasers. In Tunable Laser Applications, 2nd edn. (Duarte, F. J., ed.). CRC Press, New York, Chapter 6.

Shay, T., Hanson, F., Gookin, D., and Schimitschek, E. J. (1981). Line narrowing and enhanced efficiency of an HgBr laser by injection locking. Appl. Phys. Lett. 39, 783–785.

Singh, S., Dasgupta, K., Sasi, K., Manohar, K. G., Nair, L. G., and Chatterjee, U. K. (1994). High-power high-repetition-rate copper-vapor-pumped dye laser. Opt. Eng. 33, 1894–1904.

Smith, R. S., and DiMauro, L. F. (1987). Efficiency and linewidth improvements in a grazing-incidence dye laser using an intracavity lens and spherical end mirror. Appl. Opt. 26, 855–859.

Smith, R. G., Geusic, J. E., Levinstein, H. J., Rubin, J. J., Singh, S., and Van Uitert, L. G. (1968). Continuous optical parametric oscillation in Ba2NaNb5O15. Appl. Phys. Lett. 12, 308–309.

Srinivasan, B., Tafoya, J., and Jain, R. K. (1999). High power watt-level CW operation of diode-pumped 2.7 mm fiber lasers using efficient cross-relaxation and energy transfer mechanisms. Opt. Express 4, 490–495.

Sugii, M., Ando, M., and Sasaki, K. (1987). Simple long-pulse XeCl laser with narrow-line output. IEEE J. Quant. Electron. QE-23, 1458–1460.

Sugiyama, A., Nakayama, T., Kato, M., and Maruyama, Y. (1996). Characteristics of a dye laser amplifier transversely pumped by copper vapor lasers with a two-dimmensional calculation model. Appl. Opt. 36, 5849–5854.

Sze, R. C., and Harris, D. G. (1995). Tunable excimer lasers. In Tunable Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 3.

Sze, R. C., Kurnit, N. A., Watkins, D. E., and Bigio, I. J. (1986). Narrow band tuning with small long-pulse excimer lasers. In Proceedings of the International Conference on Lasers ’85 (Wang, C. P., ed.). STS Press, McLean, VA, pp. 133–144.

Tallman, C., and Tennant, R. (1991). Large-scale excimer-laser-pumped dye lasers. In High Power Dye Lasers (Duarte, F. J., ed.). Springer-Verlag, Berlin, Germany, Chapter 4.

Tang, K. Y., O’Keefe, T., Treacy, B., Rottler, L., and White, C. (1987). Kilojoule output XeCl dye laser: Optimization and analysis. In Proceedings: Dye Laser/Laser Dye Technical Exchange Meeting, 1987 (Bentley, J. H., ed.). U. S. Army Missile Command, Redstone Arsenal, Al, pp. 490–502.

Tavella, F., Willner, A., Rothhardt, J., Hädrich, S., Seise, E., Düsterer, S., Tschentscher, T., et al. (2010). Fiber-amplifier pumped high average power few-cycle pulse non-collinear OPCPA. Opt. Express 18, 4689–4694.

Tenenbaum, J., Smilanski, I., Gabay, S., Levin, L. A., Erez, G., and Lavi, S. (1980). Structure of 510.6 and 578.2 nm copper laser lines. Opt. Commun. 32, 473–477.

Tittel, F. K., Marowski, G., Nighan, W. L., Zhu, Y., Sauerbrey, R. A., and Wilson, W. L. (1986). Injection-controlled tuning of an electron-beam excited XeF(CA) laser. IEEE J. Quant. Electron. QE-22, 2168–2173.

Tratt, D. M., Kar, A. K., and Harrison, R. G. (1985). Spectral control of gain-switched lasers by injection-seeding: Application to TEA CO2 lasers. Prog. Quant. Opt. 10, 229–266.

Varangis, P. M., Li, H., Liu, G. T., Newell, T. C., Stintz, A., Fuchs, B., Malloy, K. J., and Lester, L. F. (2000). Low-threshold quantum dot lasers with 201 nm tuning range. Electron. Lett. 36, 1544–1545.

Walling, J. C., and Peterson, O. G. (1980). High gain laser performance in alexandrite. IEEE J. Quant. Electron. QE-16, 119–120.

Walling, J. C., Peterson, O. G., Jensen, H. P., Morris, R. C., and O’Dell, E. W. (1980a). Tunable alexandrite lasers. IEEE J. Quant. Electron. QE-16, 1302–1315.

Walling, J. C., Peterson, O. G., and Morris, R. C. (1980b). Tunable CW alexandrite laser. IEEE J. Quant. Electron. QE-16, 120–121.

Wang, Y., Larotonda, M. A., Luther, B. M., Alessi, D., Berrill, M., Shlyatpsev, V. N., and Rocca, J. J. (2005). Demonstration of high-repetition-rate tabletop soft-X-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm. Phys. Rev. A. 72, 053807.

Webb, C. E. (1991). High-power dye lasers pumped by copper vapor lasers. In High Power Dye Lasers (Duarte, F. J., ed.). Springer-Verlag, Berlin, Germany, Chapter 5.

Willett, C. S. (1974). An Introduction to Gas Lasers: Population Inversion Mechanisms. Pergamon Press, New York.

Woodward, B. W., Ehlers, V. J., and Lineberger, W. C. (1973). A reliable, repetitively pulsed, high-power nitrogen laser. Rev. Sci. Instrum. 44, 882–887.

Yang, T. T., Burde, D. H., Merry, G. A., Harris, D. G., Pugh, L. A. Tillotson, J. H., Turner, C. E., and Copeland, D. A. (1988). Spectra of electron-beam pumped XeF lasers. Appl. Opt. 27, 49–57.

Yodh, A. G., Bai, Y., Golub, J. E., and Mossberg, T. W. (1984). Grazing-incidence dye lasers with and without intracavity lenses: A comparative study. App. Opt. 23, 2040–2042.

Yoshida, S., Fujii, H., Amano, S., Endho, M., Sawano, T., and Fujioka, T. (1988). Highly efficient chemically pumped oxygen iodine laser. In Proceedings of the International Conference on Lasers ’87 (Duarte, F. J., ed.). STS Press, McLean, VA, pp. 223–229.

Zhang, D., Zhao, J., Yang, O., Liu, W., Fu, Y., Li, C., Luo, M., Hu, S. Q., and Wang L. (2012). Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection. Opt. Express 20, 19670–19682.

Zorabedian, P. (1992). Characteristics of a grating-external-cavity semiconductor laser containing intracavity prism beam expanders. J. Lightw. Technol. 10, 330–335.

Zorabedian, P. (1995). Tunable external-cavity semiconductor lasers. In Tunable Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 8.

Chapter 10

Altman, J. H. (1977). Sensitometry of black- and white- materials. In The Theory of the Photographic Process (James, T. H., ed.). Eastman Kodak Company, Rochester, NY, pp. 481–516.

Bennett, C. H., and Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers Systems and Signal Processing. Bangalore, India.

Boffi, P., Piccinin, D., Mottarella, D., and Martinelli, M. (2000). All optical free-space processing for optical communications signals. Opt. Commun. 181, 79–88.

Dainty, J. C., and Shaw, R. (1974). Image Science. Academic Press, New York.

Deutsch, D. (1992). Quantum computation. Phys. World 5 (6), 57–61.

Dirac, P. A. M. (1978). The Principles of Quantum Mechanics, 4th edn. Oxford University Press, London.

Duarte, F. J. (1985). Note on achromatic multiple-prism beam expanders. Opt. Commun. 53, 259–262.

Duarte, F. J. (1987). Beam shaping with telescopes and multiple-prism beam expanders. J. Opt. Soc. Am. A 4, 30.

Duarte, F. J. (ed.). (1991). Dispersive dye lasers. In High Power Dye Lasers. Springer-Verlag, Berlin, Germany, pp. 7–43.

Duarte, F. J. (1993a). Electro-optical interferometric microdensitometer system. US Patent 5, 255, 069.

Duarte, F. J. (1993b). On a generalized interference equation and interferometric measurements. Opt. Commun. 103, 8–14.

Duarte, F. J. (ed.). (1995). Interferometric imaging. In Tunable Laser Applications. Marcel Dekker, New York, pp. 153–178.

Duarte, F. J. (1996). Generalized interference equation and optical processing. In Proceedings of the International Conference on Lasers ’95 (Corcoran, V. J. and Goldman, T. A., eds.). STS Press, McLean, VA, pp. 615–617.

Duarte, F. J. (2001). Laser sensitometer using multiple-prism beam expansion and a polarizer. US Patent 6, 236, 461.

Duarte, F. J. (2002). Secure interferometric communications in free space. Opt. Commun. 205, 313–319.

Duarte, F. J. (2005). Secure interferometric communications in free space: Enhanced sensitivity for propagation in the metre range. J. Opt. A: Pure Appl. Opt. 7, 73–75.

Duarte, F. J. (2013). The probability amplitude for entangled polarizations: An interferometric approach. J. Mod. Opt. 60, 1585–1587.

Duarte, F. J. (2014). Quantum Optics for Engineers. CRC Press, New York.

Duarte, F. J., and Paine, D. J. (1989). Quantum mechanical description of N-slit interference phenomena. In Proceedings of the International Conference on Lasers ’88 (Sze, R. C. and Duarte, F. J., eds.). STS Press, McLean, VA, pp. 42–27.

Duarte, F. J., and Piper, J. A. (1982). Dispersion theory of multiple-prism beam expanders for pulsed dye lasers. Opt. Commun. 43, 303–307.

Duarte, F. J., Reed, B. A., and Burak, C. J. (2005). Laser sensitometer. US Patent 6, 903, 824 B2.

Duarte, F. J., Taylor, T. S., Black, A. M., Davenport, W. E., and Varmette, P. G. (2011). N-slit interferometer for secure free-space optical communications: 527 m intra interferometric path length. J. Opt. 13, 035710.

Duarte, F. J., Taylor, T. S., Black, A. M., and Olivares, I. E. (2013). Diffractive patterns superimposed over propagating N-slit interferograms. J. Mod. Opt. 60, 136–140.

Duarte, F. J., Taylor, T. S., Clark, A. B., and Davenport, W. E. (2010). The N-slit interferometer: An extended configuration. J. Opt. 12, 015705.

Olivares, I. E., Cuadra, J. A., Aguilar, F. A., Aguirre-Gomez, J. G., and Duarte, F. J. (2009). J. Mod. Opt. 56, 1780–1784.

Pryce, M. H. L., and Ward, J. C. (1947). Angular correlation effects with annihilation radiation. Nature 160, 435.

Turunen, J. (1986). Astigmatism in laser beam optical systems. Appl. Opt. 25, 2908–2911.

Ward, J. C. (1949). Some Properties of the Elementary Particles. DPhil thesis, Oxford University Press, Oxford.

Willebrand, H. A., and Ghuman, B. S. (2001). Fiber optics without fiber. IEEE Spectr. 38 (8), 40–45.

Yu, S. T. S., and Gregory, D. A. (1996). Optical pattern recognition: Architectures and techniques. Proc. IEEE 84, 733–775.

Chapter 11

Born, M., and Wolf, E. (1999). Principles of Optics, 7th edn. Cambridge University Press, Cambridge.

Byer, R. L., Paul, J., and Duncan, M. D. (1977). In Laser Spectroscopy III (Hall, J. L. and Carlsten, J. L., eds.). Springer-Verlag, Berlin, Germany, pp. 414–416.

Demtröder, W. (2008). Laser Spectroscopy, 4th edn., Vol. 1. Springer-Verlag, Berlin, Germany.

Duarte, F. J. (ed.). (1991). Dispersive dye lasers. In High Power Dye Lasers. Springer-Verlag, Berlin, Germany, Chapter 2.

Duarte, F. J. (1993). On a generalized interference equation and interferometric measurements. Opt. Commun. 103, 8–14.

Duarte, F. J. (1995). Solid-sate dispersive dye laser oscillator: Very compact cavity. Opt. Commun. 117, 480–484.

Duarte, F. J. (2003). Tunable Laser Optics, 1st edn. Elsevier Academic Press, New York.

Duarte, F. J. (2004). Comment on “Reflection, refraction, and multislit interference.” Eur. J. Phys. 25, L57–L58.

Duarte, F. J. (2007). Coherent electrically-excited organic semiconductors: Visibility of inter-ferograms and emission linewidth. Opt. Lett. 32, 412–414.

Duarte, F. J. (2008). Coherent electrically excited organic semiconductors: Coherent or laser emission? Appl. Phys. B 90, 101–108.

Duarte, F. J. (ed.). (2010). Electrically-pumped organic-semiconductor coherent emission: A review. In Coherence and Ultrashort Pulsed Laser Emission. Intech, Rijeka, Croatia.

Duarte, F. J. (2014). Quantum Optics for Engineers. CRC Press, New York.

Duarte, F. J., Liao, L. S., and Vaeth, K. M. (2005). Coherence characteristics of electrically excited tandem organic light-emitting diodes. Opt. Lett. 30, 3072–3074.

Feynman, R. P. (1965). The Feynman Lectures on Physics: Exercises. Addison-Wesley, Reading, MA.

Feynman, R. P., Leighton, R. B., and Sand, M. (1965). The Feynman Lectures on Physics, Vol. III. Addison-Wesley, Reading, MA.

Fischer, A., Kullmer, R., and Demtröder, W. (1981). Computer controlled Fabry-Perot wave-meter. Opt. Commun. 39, 277–282.

Gardner, J. L. (1985). Compact Fizeau wavemeter. Appl. Opt. 24, 3570–3573.

Hanbury Brown, R., and Twiss, R. Q. (1956). A test of a new type of stellar interferometer on Sirius. Nature 178, 1046–1048.

Konishi, N., Suzuki, T., Taira, Y., Kato, H., and Kasuya, T. (1981). High precision wavelength meter with Fabry-Perot optics. Appl. Phys. 25, 311–316.

Meaburn, J. (1976). Detection and Spectrometry of Faint Light. Reidel, Boston, MA.

Michelson, A. A. (1927). Studies in Optics. University of Chicago, Chicago, IL.

Snyder, J. J. (1977). Fizeau wavelength meter. In Laser Spectroscopy III (Hall, J. L. and Carlsten, J. L., eds.). Springer-Verlag, Berlin, Germany, pp. 419–420.

Steel, W. H. (1967). Interferometry. Cambridge University Press, Cambridge.

Wallenstein, R., and Hänsch, T. W. (1974). Linear pressure tuning of a multielement dye laser spectrometer. Appl. Opt. 13, 1625–1628.

Chapter 12

Born, M., and Wolf, E. (1999). Principles of Optics, 7th edn. Cambridge University Press, Cambridge.

Duarte, F. J. (1981). Investigation of the Optically-Pumped Iodine Dimer Laser in the Visible. Macquarie University, Sydney, Australia.

Duarte, F. J. (1983). Prism-grating system for laser wavelength measurements. J. Phys. E: Sci. Instrum. 16, 599–601.

Duarte, F. J. (1985). Note on achromatic multiple-prism beam expanders. Opt. Commun. 53, 259–262.

Duarte, F. J. (1990). Narrow-linewidth pulsed dye laser oscillators. In Dye Laser Principles (Duarte, F. J. and Hillman, L. W., eds.). Academic Press, New York, Chapter 4.

Duarte, F. J., and Piper, J. A. (1982). Dispersion theory of multiple-prism beam expander for pulsed dye lasers. Opt. Commun. 43, 303–307.

Duarte, F. J., and Piper, J. A. (1983). Generalized prism dispersion theory. Am. J. Phys. 51, 1132–1134.

Duarte, F. J., and Piper, J. A. (1984). Multi-pass dispersion theory of prismatic pulsed dye lasers. Opt. Acta 31, 331–335.

Gerstenkorn, S., and Luc, P. (1978). Atlas du Spectre d’Absorption de la Molecule d’Iode. CNRS, Paris, France.

Maystre, D. (1980). Integral methods. In Electromagnetic Theory of Gratings (Petit, R., ed.). Springer-Verlag, Berlin, Germany, Chapter 3.

Meaburn, J. (1976). Detection and Spectrometry of Faint Light. Reidel, Boston, MA.

Morris, M. B., and McIlrath, T. J. (1979). Portable high-resolution laser monochromator-interferometer with multichannel electronic readout. Appl. Opt. 24, 4145–4151.

Newton, I. (1704). Opticks. The Royal Society, London.

Chapter 13

Barnes, N. P. (1995a). Transition metal solid-state lasers. In Tunable Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 6.

Barnes, N. P. (1995b). Optical parametric oscillators. In Tunable Lasers Handbook (Duarte, F. J., ed.). Academic Press, New York, Chapter 7.

Duarte, F. J. (2003). Tunable Laser Optics. Elsevier Academic Press, New York.

Duarte, F. J. (2009). Appendix on optical quantities and conversion units. In Tunable Laser Applications (Duarte, F. J., ed.), 2nd edn. CRC Press, New York, Chapter 15.

Duarte, F. J., Costela, A., Garcia-Moreno, I., and Sastre, R. (2000). Measurements of ∂n/∂T in solid-state dye-laser gain media. Appl. Opt. 39, 6522–6523.

Duarte, F. J., and James, R. O. (2003). Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media. Opt. Lett. 28, 2088–2090.

Herzberg, G. (1950). Spectra of Diatomic Molecules. Van Nostrand, New York.

Marple, D. T. F. (1964). Refractive index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 35, 539–542.

Schott North America. (2001). Optical Glass Data Sheets. Schott, Duryea, PA.

Wolfe, W. L. (1978). Properties of optical materials. In Handbook of Optics (Driscoll, W. G. and Vaughan, W., eds.). McGraw-Hill, New York.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.191.200.35