Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A

Absorption solar heat storage system 
operation principle 37–38, 37f
prototype design 46f
absorber, improvement paths for 55–58
absorber inlet solution temperature 55
adiabatic absorber 58
base tests 55
charging tests 49–52, 50t
discharging mode test results 55–58
equilibrium factor 54, 54f
2-ethyl-1-hexanol 55
experimental procedure 49
heat and mass transfer enhancement additive 55
heat exchangers 47, 47f, 48t
heat transfer, in desorber 52–54, 53–54f
and instrumentation 48, 48f
measurements 49
Ultra-Torr vacuum fittings 49
water desorption rate, in desorber 52
simulations 
absorption percentage 44–45, 45t
heat exchanger size effects 43, 44f
input data 42–43
maximum crystallization ratio 45, 46f
results 43–45
solution heat exchanger 43, 44f
system model 
circulating pumps 42
condenser/evaporator 40–41
connection tubes 42
generator 39–40
heat sink/low-temperature heat source 42
inputs 39
solution tank 41
water tank 41–42
working principle 37–38, 38f
Adiabatic absorber 58
Agnesi curve 161–162
Alternative Energy Promotion Center (AEPC) 360, 363
Amplitude-complementarity 178–183, 179–180f
Aqueous electrolyte battery 20
Aqueous rechargeable sodium-ion battery 20

B

Black geomembranes 194–195

C

Carbon dioxide (CO2) emission reduction targets, in Germany 210
Carbon dioxide (CO2) policy sensitivity 221–222, 222f
Carbon Plan scenarios 7–8
Chemical adsorption 35–36
Chemical energy storage systems, ESSs 78
Closed liquid sorption 150
Closed sorption heat storage systems 148–150
Cold and cryogenic energy storage (CES) 15–16
Complementarity 157
imperfect 158
perfect 158, 159f
in southern Brazil 
climatic conditions 163
monthly precipitation and incident solar radiation 163, 163f
precise and reliable evaluation 165
PV-wind-diesel hybrid system 183–185, 185–186f
recycled paper factory, power generation for 183, 184f
time-complementarity 164–165, 164f
space and time 158
Compressed air energy storage (CAES) 
advantages/disadvantages 87
applications 87
capital cost 88
commercial maturity 87–88
components 86
conventional gas turbine technology 13
developers/suppliers 88
electricity storage systems 83–88
low round-trip efficiency 14
off-peak and on-peak electrical power 83
performance characteristics 87
process description 86–87
setup 75–76, 76f
technical feasibility 14
Concentrating solar power (CSP) 15
Coupled energy storage 11

D

Decoupled energy storage 11
Direct-focusing solar cookers 
disadvantages 330
instantaneous energy efficiency 329–330
LHTES 344–345
operation 329
reflectors 328
types 330, 330f
Direct hydrogen production 17–18
Distributed solar power generation 10 See also Rechargeable batteries
Distribution network-driven photovoltaics 235
Domestic hot water (DHW) preparation 121–122
solar fraction 128
system configurations 126–128, 127t
VA-ratio 126–128

E

Electrical energy storage 
capital costs 20–21, 21f
compressed air energy storage 13–14
cycle life 21
distributed solar power generation 10
facility requirements 8–10
flow battery 16–17
pumped-hydro storage 12–13
round-trip efficiency 21, 22f
solar fuels 17–18
technologies 
application regime map 11, 12f
chemical form 10
coupled energy storage 11
decoupled energy storage 11
economics 20–22
electrical and magnetic forms 10
mechanical form 10
thermal form 11
thermal energy storage 14–16
utility-scale solar power generation 9–10
Electrically conductive geomembrane 195
Electricity industry economics 
cost and value 228
energy storage 230–232
mini-grid system economics 229
PV economics 229–230
Electricity storage system (ESS) 
advantages and disadvantages 79, 80t
assessment 101–105
bridging power 65f, 66
capacitor types 77, 77f
capital costs 105, 107f, 108–109
categories 77
characteristics 105, 106t
chemical energy storage systems 78
commercial maturity 101, 102f
compressed air energy storage 83–88
economic evaluation 105–109
efficiency and lifetime 105, 107f
electrical systems 78
energy management 65f, 66
energy storage applications 67, 68f
features 79–101, 110t
flow batteries 88–94
integration with renewables 67, 68f
lead-acid batteries 98–101
mechanical systems 79
NaS battery 95–97
necessity 64–66
NiCd batteries 97–98
power quality 65f, 66
pumped hydroelectric storage system 81–83
for Saudi Arabia 
climate 69–70
conventional pumped-storage development 74–75, 75f
global solar radiation 73, 74f
global wind power installed capacity 73
load variations 72, 72f
solar PV 69, 73
sulfur 72
supply-demand situation, of power 70–72
weather parameters 70, 71t
wind machine used 75–76, 76t
wind speed, diurnal variation of 74–75, 75f
superconducting magnetic energy storage 77
thermal systems 79
for United States 67, 67t
upper bound conservative estimates 67, 67t
Electrochemical capacitors  See Supercapacitors
Electrolyzers 3
Endothermal charging process 36
Energetic complementarity  See also Complementarity
energy storage, effects of 186–187
hydropower vs. solar energy 162–165
Energy-complementarity 176–178, 177f
Energy storage systems (ESS), Japan 
after earthquake 
contingent valuation methods 279–280
follow-up survey 280
automobile starter batteries 279
awareness 282–283, 282–283f
battery usage investigation 280
consumer perception survey 
Fukushima prefecture 281–282
by geographical location 281
Kanagawa prefecture 281–282
Kochi prefecture 281–282
EV batteries 279
home storage batteries 280–281
for households and businesses 278–279
installation of 283f, 284
internet-based survey 279
Li-ion and nickel-metal hydride batteries 278
NaS and redox flow batteries 278
nuclear power plant accident 278, 280
vs. photovoltaics 284–285, 284f
storage battery ownership 285, 286f
Environmental issues 
combined systems 268
lifecycle analysis and assessment 247
photovoltaic cell manufacture 248
solar and biofuel options 248
solar cells 248–249
solar electricity systems 
life-cycle studies 250
m-Si production and use 250–254f
system assembly 249–250
solar electric storage 
in batteries 262–264, 265t
caverns 258–259
compressed air storage facilities 258
global warming impacts 262, 263t
high-temperature electrolyzer 262, 263t
high-temperature SOEC 259–262, 260t
hydrogen production pathways 259
pumped hydro impacts 262
short-term smoothing 257–258
superconducting coil charging 257–258
surplus electricity 258
solar heat storage 266–268
solar thermal panels 
LCA impacts 266, 267t
negative life-cycle impacts 264–266
wind power 248
Eutectics 35
Exothermal discharging process 36

F

Feed-in tariffs (FiTs) 230, 233, 275–278
Flow batteries 16–17, 88–94 See also Vanadium redox battery (VRB)
Fuel cells 3

G

Geomembranes 
characteristics 193
electrically conductive 195
hydroelectric and dam reservoir projects 193–194
lifetime 195–198
performance 195, 195f
properties 195–198, 196t
types 193, 194t
water retention 194
for water storage 193–194, 195f
Geosynthetics 
for hydro energy storage 193–198 See also (Geomembranes)
ratio P, V0, and surface 203, 204f
Grid defection 240–241

H

Hawkeye solar cooker 343, 344f
Heat capacity storage 4
Heat-capacity thermal energy storage (HCTES) 
direct-focusing solar cookers 334–337
indirect solar cookers 339–343
oven solar cookers 337–339
Heating degree days (HDDs) 117–118, 117f
Heat storage 135–136 See also Sorption heat storage
High-density polyethylene (HDPE) geomembranes 193–198
Household systems, PVs in 233–234
Hybrid hydro-photovoltaic (PV) plant 
dimensionless area 171
direct current hydroelectric generator 166–167
failure index 169
Homer software 169
operational strategy 168, 172
parallel 167f
performance analysis method 168–173
phasing effect 173–175, 174f
series 166–167, 166f
supply failure times 168
total instantaneous power 169–170
Hydrates 144 See also Salt hydrates
Hydro energy storage, in reservoir 198
Hydroxides 145

I

Indirect hydrogen production 17–18
Indirect solar cookers 
advantages 332
challenges 332
disadvantages 334
HCTES 339–343
heat transfer fluid 333
latent heat energy efficiency 333–334
LHTES 348–351
solar collection instantaneous efficiency 333
thermal sensible efficiency 333–334
types 334, 334f
Indirect solar thermal route 8
Integrated SE-PSH systems 
concept 198, 199f
optimization model 
decision variable constraint 202
dynamic programming 202–203
mathematical simulation-optimization model 200–201, 201f
power consumption 201–202
recursive formulas 202–203
solar generator, electric power of 201
water balance 199–200
water storage 200
series connection 191–192, 192f
International Energy Agency, electricity storage 241–242
Isolated solar PV systems  See Solar photovoltaics (PV) systems, Kyangshing

J

Japanese energy policies, FiT 
Renewable Portfolio Standards 276
Sunshine Project 276

K

Köppen-Geiger climate classification 116–117

L

Lab-scaled thermal open energy storage system 150–151, 152f
Large-scale electricity storage technologies 66
Large-scale energy storage systems 77–78
Latent heat storage 
advantages 33
definition 32
disadvantages 33
eutectics 35
inorganic PCMs 33–34
organic PCMs 34–35
vs. sensible heat storage 30, 33
solid-liquid PCMs 32–33
solid-solid PCMs 32
Latent-heat thermal energy storage (LHTES) 328
direct-focusing solar cookers 344–345
indirect solar cookers 348–351
oven solar cookers 346–348
Lead-acid batteries 
advantages/disadvantages 100
costs 99–100
deployment status 101
developers/suppliers 101
efficiency 99
performance characteristics 99
process description 98–99
types 99
Levelized cost of electricity (LCOE) production, Kyangshing 360, 363–364
vs. diesel generators 368–369, 369t
vs. grid line extension 369–370, 371t
sensitivity analysis 365–367
LiBr/H2O absorption prototype 46f
Li-ion batteries 
investment cost sensitivities 217f, 218
vs. photovoltaics 215
vs. PHS plants 215
Liquid/gas sorption 35
Liquid solar fuel routes 18
Long-term absorption storage cycle 
LiBr/H2O absorption prototype 46, 46f
operation principle 37–38, 37f
working principle 37–38, 38f
Low-density polyethylene (LDPE) geomembranes 193–194

M

Mathematical simulation-optimization model, of SE-PSH systems 200–201
Mechanical energy storage systems, ESS 79
Metals, drawbacks of 34
Mini-grids 237–238
Mini-grid solar PV systems 363, 365 See also Solar photovoltaics (PV) systems, Kyangshing
operation and management aspects 372
public-private partnership concept 370–372

N

Nickel-cadmium (Ni-Cd) batteries 
advantages/disadvantages 98
costs 98
deployment status 98
developers/suppliers 98
efficiency 97–98
performance characteristics 97–98
process description 97
Nonparaffin organic PCMs 35

O

Ocean PHS technology 13
Off-grid applications, battery storage systems for 227
ONE energy 275
On-grid electrification 360
Open sorption heat storage systems 148, 150–151
Oven solar cookers 
advantages 331
disadvantages 332
LHTES 346–348
SBCs, energy efficiency of 331–332
types 332, 332f
variations 331

P

Packed bed sorption store systems 145, 146f
Paraffins 34–35
Partial amplitude-complementarity index 160–161
Partial energy-complementarity index 159–160
Partial time-complementarity index 159–160
5P business model 372
Peak-load-pricing theory 211
Per-cycle cost 83, 108–109
Phase change materials (PCMs) 30
classification 33, 34f
inorganic 33–34
organic 34–35
solid-liquid PCMs 32–33
solid-solid PCMs 32
Photovoltaic-energy storage systems 
energy storage costs 
PHS plants 311–312, 312f
of power conversion systems 310–311
PV-based energy storage installation 312–315, 313t
of storage device 310–311
types 311–312, 311f
energy storage technologies 
batteries 300–301
capacity and discharge time 300–301, 302f
categories 300, 301t
PHS technology 303f, 304f, 303–305 See also (Pumped-hydro storage (PHS))
operation modes 
charging and discharging modes 298–299
conversion losses 299–300
diurnal cycle 298–299
Sankey diagram 299–300, 300f
PV-ESS 
components 305–307, 307t
dimensions and characteristics 307–310
in remote islands 
electricity generation, costs reduction 296–298
load-demand fluctuations 297–298, 297f
reliability and flexibility 296
RES penetration 296–297
Tilos island 
load demand variation 316, 316f
operational modes 318–319
PV energy yield variation 319–324, 321f
PV-PHS system components 317–318, 317f, 320f
RES 316
site description 316
solar irradiance measurements 316, 317f
Photovoltaics (PV) 
economics 227, 229–230
evolutionary opportunities 238–240
feed-in to German grids 210, 210f
future developments 238–242
grid defection 240–241
investment cost sensitivities 218–219, 219f
vs. Li-ion 215
and storage applications 
Australia 232
commercial and industry PV 234–235
distribution network-driven PV 235
household systems 233–234
mini-grids 237–238
utility PV 236
Physical adsorption 35–36
Power supply-demand situation, in Saudi Arabia 70–72
Public-private partnership (PPP) concept 370–372
Pumped hydroelectric storage (PHS) 
advantages/disadvantages 82–83
applications 82
capital cost 83
commercial maturity 83
developers/suppliers 83
performance characteristics 82
process description 81–82
worldwide installations 83, 84t
Pumped-hydro storage (PHS) 
adjustable-speed motor/generators 13
advantages 12
capacity-planning model 211
characterization 303–304
configuration 304, 304f
drawback 12
economic and social benefits 305
efficiency of 304–305
efficient capital investment 210–211
hydroelectric principle 12
investment cost sensitivities 218, 218f
vs. Li-ion batteries 215
load balancing 303–304
in lower mountain ranges 210
ocean 13
power capacity vs. energy storage methods 303f
underground 13
Pumped storage hydroelectricity (PSH) technology 
characteristic 190
charging and discharging dynamics 204–205, 204f
in electric power systems 190
geomembranes, in water/energy storage 193–198
mode of operation 190–191
role 191–192
with seawater 192–193
Pumped thermal electricity storage (PTES) 16
PV-wind-diesel hybrid system, in southern Brazil 183–185, 185–186f

R

Rain harvesting technology 193, 198, 199–200, 202 See also Geosynthetics
Rechargeable batteries 
lead-acid battery 18–19
lithium-ion battery 19
nickel-based battery 19
sodium-sulfur battery 19–20
Redox flow batteries (RFBs) 16–17, 88
Renewable energy production, limitation of 67–69
Renewable energy sources (RES) 
constraint 220–221
policy sensitivity 221, 221f
political objectives 219–222
in power generation 209–210
Renewable Energy Target (RET) 229–230
Renewable Portfolio Standards (RPS) 276
Renewable resources 156
Reservoir volume 198

S

Salt hydrates 33–34, 150–151
Saudi Arabia, ESS for 
climate 69–70
conventional pumped-storage development 74–75, 75f
global solar radiation 73, 74f
global wind power installed capacity 73
load variations 72, 72f
solar PV 69, 73
sulfur 72
supply-demand situation, of power 70–72
weather parameters 70, 71t
wind machine used 75–76, 76t
wind speed, diurnal variation of 74–75, 75f
Saudi Electricity Company (SEC) 70–72
Sensible heat storage 30
in buildings 
disadvantages 31
liquid storage 31
solid storage 32
vs. latent heat storage 30
Sensible-heat thermal energy storage (SHTES) 328, 335–336
Separate reactor sorption store systems 145, 147f
Silicagel 141–143
Small-scale low-power demands, solar cells for 8–9
Sodium-sulfur (NaS) battery 
advantages/disadvantages 96
capital cost 96
deployment status 96–97
developers/suppliers 96–97
energy and power density 95
NGK design 95
process description 95
schematic illustration 94f
Solar combi-system 122, 128–130, 128t
Solar cookers 
direct-focusing solar cookers 328–330, 329f
HCTES 334–343
indirect solar cookers 332–334, 334f
LHTES 328, 344–351
oven solar cookers 331–332, 332f
phase change material 328
SHTES 328
thermal energy storage 
ASAE standard 352
ECSCR standard 353
exergy-based thermal performance parameters 354
figures of merit 354–355
Indian standard 352–353
thermal performance parameters 353
types 353
Solar district heating (SDH) system 123, 123f
district heating net 126
with seasonal TES 130–131
Solar electrical energy storage  See Electrical energy storage
Solar electricity systems, environmental impacts 
life-cycle studies 250
m-Si production and use 
air pollution 250–252, 251f
climate change impacts 252, 253f
energy payback period 250–252, 251f
labor requirements 250–252, 252f
LCA greenhouse gas emissions 250–252, 250f
life-cycle physical impacts 255t
monetized assessment 256t
mortality and morbidity 253, 254f
system assembly 249–250
Solar electric storage, environmental and social impacts 
in batteries 262–264, 265t
caverns 258–259
compressed air storage facilities 258
global warming impacts 262, 263t
high-temperature electrolyzer 262, 263t
high-temperature SOEC 259–262, 260t
hydrogen production pathways 259
pumped hydro impacts 262
short-term smoothing 257–258
superconducting coil charging 257–258
surplus electricity 258
Solar energy 
conversion 8
day-to-night storage requirement 1–2
seasonal storage 1–2
shorter storage periods 2
Solar fuels 17–18
Solar heat storage, environmental issues 266–268
Solar-hydro system, integration of 191–193
Solar intermittency 1–2
Solar photovoltaics (PV) 64
Solar photovoltaics (PV) systems, Kyangshing 
AEPC 363
component sizing 364
inverters 365
solar charge controller 365
design parameters 365, 366t
electricity demand 362–363, 363t
energy consumption patterns 362–363
firewood 361, 362f
LCOE 363–364
vs. diesel generators 368–369, 369t
vs. grid line extension 369–370, 371t
sensitivity analysis 365–367
life-cycle costs 364
mini-grid option 363, 365
operation and management aspects 372
public-private partnership concept 370–372
site description 361, 362f
technical and economical parameters 365–366, 367t
technological options 
deep-cycle battery bank 364–365
panel generation factor 364
SHS 364
total wattage hours 364
Solar power generation, operational regime for 8–9, 9f
Solar thermal collectors 118–119, 122–128
Solar thermal energy storage 
boundary conditions, in Europe 
air exchange rate 120
ambient air temperatures 116–117
case study 123–131, 125t
European building stock 119–121
European climate 116–119
heat exchange rate 120
heating degree days 117–118
heating demand of buildings 119
hot water consumption 121, 122f
insulation standard 119–120
single-family houses 119, 120f
solar irradiation, in Europe 117–118, 118f
thermally well-insulated buildings 119
U-values 119–120, 120f
in buildings 
latent heat storage 32–35
sensible storage 30–32
sorption technologies 35–36
classification 121–123
cost estimations 126
DHW preparation 121–122
solar fraction 128
system configurations 126–128, 127t
VA-ratio 126–128
representative locations 124
role of 29, 29f
SDH system 123, 123f
district heating net 126
with seasonal TES 130–131
seasonal TES 115–116
short-and long-term concepts 115–116
solar combi-system 122, 128–130, 128t
technical issues 124–126
thermochemical storage 30, 30f
transient system simulations 123–124
Solid absorption heat pumps, with integrated heat storage 149–150
Solid/gas sorption 35
Solution heat exchanger (SHX) 43, 44f, 55–58
Sorption couple 35
Sorption heat storage 
advantages and disadvantages 137–138, 138f
classification 35–36, 36f
closed systems 148–150
compactness 151
description 136–137
hydrates 144
hydroxides 145
liquid sorption 143–144
open systems 148, 150–151
operating principle 36
principles 138–141
small autonomous applications 151–153
sorption materials 
classification 141, 143f
physisorption materials 141–143
silicagel 141–143
zeolites 141–143
strong chemisorption 145
weak chemisorption 144
Space-complementarity 158
Storage plants, in system view 
cycle stability 213
efficiencies 212–213
generation technologies 211–212
political objectives 213
reference case 
assumptions 214
efficient portfolio 216t
input parameters 214, 214t
results 215–217
short-term and long-term balancing 215
storage-filling levels 212–213
storage technologies 212
supply and demand, balance of 212
system costs 211
value of lost load 212
Supercapacitors 77f
and costs 97t, 100t
operational and economic parameters 100t
Superconducting magnetic energy storage (SMES) 77
costs 101–105, 103t
description 78
operational and economic parameters 101–105, 103t
schematic illustration 81–82, 81f
Symmetric open-framework electrode battery 20
System ratings 190, 190f

T

Thermal energy storage (TES) 
categories 14–15
cold and cryogenic energy storage 15–16
concentrating solar power 15
ESS 79
PTES 16
supply and demand side management 14–15
types 136f
Thermochemical-based TES 14–15
Thermochemical storage 30, 30f
Thermophysical-based TES 14–15
Time-complementarity 158–162
degrees, effects of 173–176
in southern Brazil 164–165, 164f

U

Underground gas store types 2–3, 3f
Underground hydrogen stores 3–4
Underground PHS technology 13
United States, ESS for 67, 67t
Utility photovoltaics and storage systems 236
Utility-scale lead-acid batteries 109t
Utility-scale sodium-sulfur batteries 105, 106t
Utility-scale storage technologies 
compressed air energy storage 13–14
flow battery 16–17
pumped-hydro storage 12–13
solar fuels 17–18
thermal energy storage 14–16

V

Value of lost load (VoLL) 212
Vanadium redox battery (VRB) 17, 105
advantages 90–91
capital costs vs. storage time 88–89, 89f
commercialization status 92–93
cost estimates 93–94
disadvantages 91
features 88–90
vs. lead-acid battery 93–94, 94f
per-cycle cost 108–109
performance characteristics 90
research areas 111
schematic illustration 86f
sulfur /sulfuric acid 92

Z

Zeolites 141–143
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.223.172.252