Index

a

  • activated carbon (AC)  300, 376
  • amines  11, 12
  • antibacterial activity  31, 39–41, 251, 254–255
  • anticancer drug  35, 36, 200, 209, 210, 218
  • atmospheric pressure CVD (APCVD)  324
  • atomic force microscopy (AFM)  87, 107, 109–111, 134, 151–152, 290, 308, 309
  • autocorrelation function  143
  • autocorrelation techniques  143

b

c

d

  • 2D dichalcogenides  317–330
    • application
      • biomedical  330
      • optoelectronics  327–329
      • photocatalysis  329
      • sensors  329
      • spintronics  329
    • atomic structure  317
    • modification of properties  325–327
    • properties  318–321
    • synthesis methods  321–325
  • defectinduced band  146
  • derivative thermos‐gravimetry (DTG)  271–274
  • detectivity (D*)  52
  • 2D graphene sheets  102, 298
  • dipping and dryingstrategy  306
  • direct piezoelectric coefficients  257
  • direct piezoelectric effect  257
  • dispersion  24, 39, 53, 87, 96, 100, 105, 125, 128–130, 133, 136, 161, 177, 187, 287, 322, 341, 342, 343, 393
  • 2D materials  1
    • 2D transition metal dichalcogenides  183–184
    • definition  175–176
    • electronic band structure  176–178
    • electronic industry  176–178
    • electronic transport properties  178–179
    • electronics applications  176
    • field‐effect transistors  180–184
    • nonvolatile resistive memories  184–189
      • ongraphene and its derivatives  185–187
    • preliminary reports  175
    • resistive switching memories  187–189
  • 2D nanomaterials  31, 200
    • application  163
      • field‐effect transistors  373
      • gas sensors  373–374
      • lithium‐ion batteries  374
      • lithium‐ion batteries anodes  374–375
      • lithium‐ion batteries cathodes  375–376
      • photodetectors  371
      • phototransistors  371–372
      • p–n junction photodetectors  372–373
    • applications of  291–294
    • black phosphorus  206–208
    • carbonitrides  206
    • challenges  294
    • characterization techniques for  290–291
    • classification  202–208
    • grapheme
      • doping and surface modifications  378–379
      • gas sensors  379
      • insupercapacitors  376–377
      • nanocomposites  377–378
    • graphene  202–203
      • current collector  376
    • layered double hydroxides  205
    • mode of action of  212–215
    • photocatalytic study of  293–294
    • synthesis methods  160–162
    • transition metal dichalcogenides  203–205
    • types  158–160
  • 2D transition metal dichalcogenides (TMDCs)  141, 144, 158, 176–179, 181, 183–185, 318, 321–326, 327, 329, 330, 397
  • 2D transition metal dichalcogenides (TMDs)  49, 218, 397
  • Doppler's effect  143
  • double layer capacitance  298
  • Doxorubicin  35–37, 209, 330
  • drug/gene delivery  31, 34–37, 202
  • Dynamic Light Scattering (DLS)  141–144

e

f

  • feedback mechanism  151
  • Ficusauriculata249
    • antimicrobial activity  251
    • leaves extract  249–255
    • materials and methods  250–255
    • methodology  250–251
    • results  251–255
  • field emission scanning electron microscopy (FESEM)  109, 110, 131, 149, 251
  • field‐effect transistors (FETs)  176, 178–184, 188, 189, 325, 373, 379
  • flexible electronic devices  298
  • flexiblesupercapacitors  298, 300–304
  • fluorescence quenching mechanism  38
  • fluorescence resonance energy transfer (FRET)  34, 88
  • freeze thaw stabilized latex  126
  • FT‐IR spectrum  252
  • FTIR spectroscopy  96, 115–116
  • functionalizednanomaterials  141

g

  • gadolinium doped ceria (GDC)  266, 270
  • gas sensing  14, 47, 88, 206
  • gas sensors  14, 357, 373–374, 379
  • gas separations  361
  • GaSe‐based phototransistors  372
  • glycine nitrate combustion process (GNP)  268–269, 271
  • glycine nitrate combustion synthesis  272, 275, 276, 281
  • grapheme
    • latex nanocomposites  129–137
    • preparation and functionalization  128–129
  • graphene  47, 49, 81, 127, 202, 385
    • application  116, 303
    • carbon based nanomaterials  304–305
    • characterizations  109
    • chemical reduction  105
    • conductive polymer with  306–308
    • definition  98
    • electronic properties  105–106
    • epitaxial growth  102–103
    • field  1
    • field‐effect transistors  181–183
    • FTIR spectroscopy  115–116
    • magnetic properties  109
    • mechanical exfoliation  104–105
    • mechanical properties  107
    • morphology  109–111
    • optical properties  106–107
    • PEC  340
    • photo‐catalytic properties  108–109
    • Raman spectroscopy  111
    • surface properties  105
    • synthetic methods  98–101
    • thermal conductivity  107–108
    • thermogravimetric analysis  114–115
    • transport characteristics  2
    • using organic composites with  306
    • UV‐Vis spectroscopy  112–113
    • with other 2D‐layered materials  308–310
    • with other metal oxides/hydroxides  308
    • X‐ray diffraction  113–114
    • X‐ray photoelectron spectroscopy  111–112
  • graphene chemical derivatives
    • family  2
  • graphene oxide (GO)  203, 212, 304, 386
    • applications  88
    • characterized and properties  84–89
    • definition  84
    • properties  87
      • dispersibility  87–88
      • electrochemical properties  88
      • electronic properties  88
      • mechanical properties  88
      • morphological properties  87
      • optical properties  87–88
      • rich chemical active group  87
      • toxicity  87
    • radionuclides removal  24–28
      • co‐remediation anionic SeO 4 2 and cationic Sr 2+26–28
      • sorption of Eu(III)  25–26
      • U(VI) removal  24–25
    • reduction and functionalization  6–13
    • structure  84–87
    • synthesis  22–24
      • co‐precipitation  22–23
      • hydrothermal preparation  23–24
      • nanosheets  24
    • synthesis methods and chemistry alteration  3–6
    • synthetic  84
  • graphene oxide nanosheets  213, 392
  • graphite
    • applications  84
    • definition  81–82
    • properties  82–83
    • structure  82–83
    • synthetic  82
  • graphitic carbon nitride (g‐C 3N 4)  158, 200, 209, 294, 383, 387
  • green method
    • of nano‐composites synthesis  241, 242
    • of nanoparticles synthesis  236–241
  • green nanotechnology  249, 291
  • greener nanotechnology  235

h

  • heterogeneous electron transfer  340
  • heterogeneous photocatalysis  109, 292–293
  • hevea plus MG latex  126
  • hexagonal boron nitride (h‐BN)  1, 182, 188–189, 200, 370, 383
  • hexagonal boron nitride nanosheets (h‐BNNs)  38
  • high electrical conductivity  37, 50, 201, 219, 303, 306, 339, 375
  • High‐Resolution Transmission Electron Microscopy (HR‐TEM) mode  110, 149, 241, 251
  • Hummers process  31
  • hyaluronic acid (HA)  36, 209
  • hydrophilicity  32, 39, 209, 216
  • hydrophobic functional group  21
  • hydrothermal method  23–25, 205, 235, 267, 277, 278, 290, 343, 392, 395, 398, 401
  • hydrothermal/solvothermal method  343

i

  • immune therapy (ImT)  73–75
  • industrial applications  128, 291, 322
  • Infra‐Red spectroscopy (IR)  49, 51, 56, 57, 145–146, 241, 251, 252, 255, 290
  • intermediate temperature solid oxide fuel cells (IT‐SOFCs)  266, 269–270
  • ion‐intercalation exfoliation  161

k

  • Kelvin Probe Force Microscopy (KPFM)  152

l

  • Langmuir–Blodgett method  358, 359
  • laser ablation synthesis  288
  • latex  125
    • freeze thaw stabilized latex  126
    • hevea plus MG latex  126
    • polymer latex  136, 137
    • radiation vulcanized latex  126
    • synthetic latex  127
  • latex co‐coagulation method  129
  • layered double hydroxides (LDHs)  22, 24, 29, 200–202, 205, 210
  • light‐catalyst interaction  337
  • liquid exfoliation method  53, 161, 207, 322, 323, 393
  • lithium‐ion batteries  374
  • longitudinal mode  258
  • low‐pressure CVD (LPCVD)  182, 324

m

  • material library  200
  • mechanical cleavage  6, 160–161, 203
  • mechanical exfoliation method  359
  • medicine  31, 41–43, 73, 98, 241, 285, 291
  • metal conduct electricity  369
  • metal nanoparticles (MNPs)  64, 66, 145, 146, 153, 236, 399
  • metal organic frameworks (MOFs)  47, 162, 175, 201, 208, 357–363, 383
  • metal oxide semiconductor field‐effect transistors (MOSFETs)  181, 183
  • metal‐organic CVD (MOCVD)  324
  • metal‐organic frameworks (MOF)  357
    • applications  361–362
      • biomedicine  362
      • catalysis  362
      • energy conversion and storage  361–362
      • gas separations  361
      • sensing platforms  362
    • bottom‐up method  359
      • interfacial synthesis method  360
      • liquid‐air interfaces  360
      • liquid‐liquid interfaces  360
      • sonication synthesis method  360–361
      • surfactant‐assisted method  360
      • template method  360
    • characteristics  357
    • composites  362–363
    • synthetic strategies  357–361
    • top‐down method  358
      • chemical exfoliation  359
      • Langmuir‐Blodgett method  359
      • mechanical exfoliation method  359
      • solvent‐induced exfoliation  359
      • sonication exfoliation  358–359
  • microwave irradiation method  344
  • modern 2D nanomaterial  202
  • molecular beam epitaxy  325
  • molybdenum disulfide (MoS 2)  36
    • based resistive memories  187–188
    • fibers  42
  • molybdenum metal  36
  • MXenes  31, 39, 42, 47, 48, 50, 63, 158, 161, 175, 200, 202, 206, 210, 211, 214, 220, 370, 383

n

  • nanocarriers  74, 161, 199, 200, 208, 217, 362
    • for drug loading and releasing  200
  • nanocrystalline materials  285
  • nanoelectronics  176, 178, 183, 291
  • nanoengineered (NE) hydrogels  41
  • nanographene oxide (nGO)  31, 35, 38, 159, 209
  • nanomaterials  157
    • classification  286–290
    • definition  286
  • nanoparticles  249
    • metal nanoparticles (MNPs)  64, 66, 145, 146, 153, 236, 399
    • zinc‐oxide nanoparticles (ZnONPs)  251–255
  • nanosheets (NSs)  33
    • graphene oxide nanosheets  213, 392
    • NGO nanosheets  159
    • WS 2 nanosheets  38, 218, 324
  • nanostructured materials  157, 235–244
  • nanostructured synthesis  236–241
  • nanotechnology  73, 157, 199, 235, 249
    • history  286
    • in warfare  291
  • NGO nanosheets  159
  • nuclear magnetic resonance spectroscopy  145

o

p

  • p‐glycoprotein (P‐gp) expression  36
  • palladium (Pd)  63, 149, 158, 159, 202
  • perovskite NKN  47, 186, 259–262, 387, 394
  • pH dependency  340
  • photoacoustic tomography (PAT)  35, 36
  • photocatalysis
    • 2D nanomaterials  293–294
    • application  291–294
    • basic principle  292
    • history  292
  • photocatalytic dye degradation  384, 397–401
  • photocatalytic hydrogen production  293, 391–395
  • photoconductive gain  52
  • photocurrent generation mechanisms  50
  • photodetectors (PDs)  371
    • characterization parameters  51–52
      • detectivity  52
      • external quantum efficiency  52
      • gain  52
      • noise equivalent power  52
      • response time  52
      • responsivity  51–52
    • graphene  49
    • 2D heterostructures  56–58
    • 2D materials
      • BP  55
      • graphene  55–56
      • MoS 255
    • MXenes  50
    • physical mechanism enabling photodetection  50–51
    • synthesis method  53
      • chemical vapor deposition  53–55
      • liquid exfoliation  53
      • mechanical exfoliation  53
    • traditional semiconductors  47
    • transition metal dichalcogenides  49
    • Xenes  50
  • photodynamic therapy (PDT)  31–34, 63, 65, 159, 162, 209, 215–218
    • 2D nanomaterials
      • application  217–218
      • photosensitizer  217–218
    • mechanism  215–217
  • photoelectriceffect  146
  • photoelectrocatalysis  383–402
  • photoelectrocatalytic hydrogen production  395–397
  • photoelectrochemical (PEC) water splitting application  335
    • catalyst/electrode  336–337
    • grapheme
      • metal oxide composites  345–348
      • nanocomposites  341–342
      • synthesis  342–345
    • graphene  340–341
    • photo‐anode/cathode  335–336
    • photo‐electrochemical water splitting  337–340
    • properties  336
  • photosensitizer (PS)  32, 34, 64–67, 71, 162, 163, 210, 215–218, 392
  • photothermal therapy (PTT)  31–34, 63–76, 163, 201, 207, 209, 211, 214, 220, 330
  • phototransistor  55, 56, 371–372
  • physical vapor deposition  162, 181
  • planar supercapacitors  303
  • plasmonic metal nanoparticles composite materials  399
  • platinum (Pt)  186, 336
  • poly acrylic acid (PAA)  38
  • poly(ethylene glycol) (PEG)  31–37, 42, 67–70, 75, 163, 209–211, 218, 241, 330
  • polyethylene imine (PEI)  34, 36, 37, 75
  • polyethylene terephthalate (PET)  34, 36, 39, 102, 188
  • polymer latex  136, 137
  • polymer lattices  125–127, 137
  • porous medium  357
  • post‐graphene materials  47
  • powder microstructure
    • BET analysis  278
    • EDAX analysis  277
    • SEM analysis  276–277
    • TEM analysis  277
  • powder synthesis process  270–271
  • pre‐vulcanized latex (PVL)  126
  • printed flexible electrodes  310
  • pristine 2D metal oxide nanomaterials  388
  • pseudocapacitors (PCs)  300
  • pure ceria oxide  267

r

  • radiation vulcanized latex  126
  • radiation vulcanized natural rubber latex (RVNRL)  126, 133, 135
  • radiotherapy  63, 64, 65, 66, 68–70, 162, 199, 209, 215
  • Raman spectroscopy  111, 145–146
  • reduced graphene oxide (rGO or RGO)  6, 31
    • definition  89
    • electrochemical method  95
    • photo‐catalytic method  94
    • properties  97–98
    • structure  95–96
    • synthesis  89–90
    • thermal and hydrothermal reduction  90–94
  • Refractive Index (RI)  142–144
  • regenerative medicine  31, 41–43
  • Remnant Polarization  258–261
  • response time (τ)  49, 52, 55, 58

s

t

  • temperature  340
    • intermediate temperature solid oxide fuel cells  266, 269–270
    • and Pressure  340
  • tetrapropylammonium hydroxide (TPAOH)  161
  • thermal conductivity  107, 108, 127, 130, 137, 203, 288, 321, 341
  • thermal stability  107, 114, 115, 159, 244, 300, 339, 375
  • thermo‐gravimetry and derivative thermo‐gravimetry (TG‐DTG)  271–274
  • thermogravimetric analysis (TGA)  109, 114–115, 133, 136
  • thermos‐gravimetric (TG)  271–274, 290
  • Three Phase Boundary area (TPB)  265, 266, 269, 270
  • three‐dimensional (3‐D)  286, 287
  • tissue engineering  31, 41–43, 200, 208, 209, 219–220
  • top‐down approach  288
    • arc discharge synthesis  289
    • laser ablation synthesis  288
    • mechanical milling  289
  • top‐down method  160
    • chemical intercalation and exfoliation  322
    • electrochemical exfoliation  322–323
    • ion‐intercalation exfoliation  161
    • liquid exfoliation  322
    • mechanical cleavage  160–161
    • metal‐organic frameworks  358
      • chemical exfoliation  359
      • Langmuir‐Blodgett method  359
      • mechanical exfoliation method  359
      • solvent‐induced exfoliation  359
      • sonication exfoliation  358–359
    • micromechanical exfoliation  321–322
    • selective etching  161
    • thinning by thermal annealing, laser and chemical etching  323
    • ultrasonication  161
  • top‐down technique  99, 286
  • transition metal dichalcogenides(TMDCs)  47, 49, 63, 141, 144, 158, 176–179, 181, 183–185, 200, 203–205, 293, 318, 321–325, 327, 329, 330, 397
  • transition metal dichalcogenides (TMDs)  47–49, 55, 63, 141, 162, 176, 183–184, 200–205, 208, 210, 218, 220, 293, 318, 321, 397
  • transmission electron microscopy (TEM)  9, 26–27, 85, 109–111, 147, 149–151, 213, 241, 251, 254, 277, 290, 394
  • transmission mode  150
  • tumor associated antigens (TAAs)  73
  • tumor micro environments (TME)  66, 73
  • two dimensional MXenes  39
  • two‐ dimensional (2‐D)  286–288
  • two‐dimensional (2D) bismuth (III) sulfide (Bi 2S 3)  69, 158, 159, 209
  • two‐dimensional (2D) nanomaterials  31, 201, 383

u

w

  • water splitting reaction  338–340, 391
  • wet chemistry  162
  • WS 2 nanosheets  38, 218, 324

x

z

  • zero‐dimensional (0‐D)  157, 286, 287, 369
  • zinc‐oxide nanoparticles (ZnONPs)
    • antibacterial activity  254–255
    • FT‐IR spectrum  252–253
    • SEM analysis  254
    • TEM analysis  254
    • XRD analysis  251–252
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.137.192.3