References

1. Accucore Components, information brochure, TSC Ferrite International, Wadsworth, IL, USA, 2001, www.tscinternational.com

2. Afonin, A., The Application of Metal Powder Technology for Linear Motors, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 271–274.

3. Afonin, A., Szymczak, P. and Bobako, S., Linear Drives with Controlled Current Layer, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 275–278.

4. Adamiak, K., Barlow, D., Choudhury, C.P., Cusack, P.M., Dawson, G.E., Eastham, A.R., Grady, B., Ho, E., Yuan Hongpin, Pattison, L. and Welch, J., The Switched Reluctance Motor as a Low-Speed Linear Drive, Int. Conf. on Maglev and Linear Drives, Las Vegas, USA, 1987, pp. 39–43.

5. AGS20000 Linear Motor Gantries, Aerotech, Inc., Pittsburgh, PA, USA, 2002, www.aerotechinc.com

6. Akmeşe, R. and Eastham, J.F., Design of Permanent Magnet Flat Linear Motors for Standstill Applications, IEEE Trans. on MAG, Vol. 28, 1992, No. 5, pp. 3042–3044.

7. Albicini, F., Andriollo, M., Martinelli, G. and Morini, A., General Expressions of Propulsion Force in EDS-Maglev Transport Systems with Superconducting Coils, IEEE Trans. on AS, Vol. 3, 1993, No. 1, pp 425–429.

8. Amber, G.H. and Amber, P.S., Anatomy of Automation, Prentice-Hall, Engle-wood Cliffs, NJ, 1962.

9. Amoros, J.G. and Andrada, P., Sensitivity Analysis of Geometrical Parameters on a Double-Sided Linear Switched Reluctance Motor IEEE Trans. on IE, Vol. 57, 2010, No. 1, pp. 311–319.

10. American Superconductors (AMSC), Westborough, MA, USA, www.amsuper.com

11. Anders, M., Binder, A. and Suess, M., A Spherical Linear Motor as Direct Drive of an Airborne Optical Infrared Telescope, IEEJ Trans. on IA, Vol. 126, 2006, No. 10, pp. 1363–1367.

12. Anorad Linear Motors, information brochure, Anorad, Hauppauge, NY, USA, 2007, www.anorad.com

13. Ansys Manual, Ansys, Inc., Southpointe, PA, USA, www.ansys.com

14. Atherton, D.L. et al, Design, Analysis and Test Results for a Superconducting Linear Synchronous Motor, Proc. IEE, Vol. 124, 1977, No. 4, pp. 363–372.

15. Atzpodien, H.C., Magnetic Levitation System on Route from Berlin to Hamburg—Planning, Financing, State of Project, 14th Int. Conf. on Magnetically Levitated Systems Maglev’95, Bremen, Germany, 1995, pp. 25–29.

16. Ayoma, H., Araki, H., Yoshida, T., Mukai, R. and Takedoni, S., Linear Motor System for High Speed and High Accuracy Position Seek, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 461–464.

17. Azukizawa, T., Optimum Linear Synchronous Motor Design for High Speed Ground Transportation, IEEE Trans. on PAS, Vol. 102, 1983, No 10, pp. 3306–3314.

18. Baker, N.J., Mueller, M.A., Tavner, P.J. and Li Ran, Prototype Development of Direct-Drive Linear Electrical Machines for Marine Energy Converters, World Renewable Energy Congress (WREC), 2005, Elsevier, pp. 271-276.

19. Balagurov, V.A., Galtieev, F.F. and Larionov, A.N., Permanent Magnet Electrical Machines (in Russian), Energia, Moscow, 1964.

20. Bardeen, J., Cooper, L.N., and Schrieffer, J.R., Theory of Superconductivity, Phys. Review, Vol. 108, 1957, pp. 1175–1204.

21. Bart, L., Gysen, J., Ilhan, E., Meessen, K.J., Paulides, J.J.H. and Lomonova, E.A., Modeling of Flux Switching Permanent Magnet Machines with Fourier Analysis, IEEE Trans. on MAG, Vol. 46, 2010, No. 6, pp. 1499–1502.

22. Beakley, B., Linear Motors for Precision Positioning, Motion Control, October 1991.

23. Bednorz, J.G. and Mueller, K.A., Possible High Tc Superconductivity in the Ba-La-Cu-O System, Zeitschrift für Physics B - Condensed Matter, Vol. 64, 1986, pp. 189–193.

24. Bianchi N., Analytical Field Computation of a Tubular Permanent-Magnet Linear Motor, IEEE Trans. on MAG, Vol. 36, No. 5, 2000, pp. 3798–3801.

25. Binns, K.J., Lawrenson, P.J. and Trowbridge, C.W., The Analytical and Numerical Solution of Electric and Magnetic Fields, John Wiley & Sons, New York, 1992.

26. Bladel, J. Van, Electromagnetic Fields, 2nd ed., John Wiley & Sons, Wiley-Interscience, IEEE Press, Hoboken, 2007.

27. Blakley, J.J., A Linear Oscillating Ferroresonant Machine, IEEE Trans. on MAG, Vol. 19, 1983, No. 4, pp. 1574–1579.

28. Blaugher, R.D., Low-Calorie, High-Energy Generators and Motors, IEEE Spectrum, Vol. 34, 1997, No. 7, pp. 36–42.

29. Boçarov, V.I. and Nagorsky, V.D., High-Speed Ground Transport with Linear Propulsion and Magnetic Suspension System (in Russian), Transport, Moscow, 1985.

30. Boldea, I. and Nasar, S.A., Linear Electric Actuators and Generators, Cambridge University Press, New York, 2005.

31. Boldea, I. and Nasar, S.A., Linear Motion Electromagnetic Systems, John Wiley & Sons, New York, 1985.

32. Breil, J., Oedl, G. and Sieber, B., Synchronous Linear Drives for many Secondaries with Open Loop Control, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 142–146.

33. CEDRAT Software for Field Calculation, CEDRAT Group, Meylan Cedex, France, www.cedrat.com/en/software-solutions/flux.html

34. Ceramawire, Elizabeth City, NC, USA, http://www.ceramawire.com/msds.html

35. Concordia, C., Synchronous Machines: Theory and Performance, J Wiley & Sons, New York, 1951.

36. Chai, H.D., Permeance Model and Reluctance Force between Toothed Structures, in Theory and Applications of Step Motors, ed. Kuo, B.C., West Publishing, 1974, pp. 141–153.

37. Chen, A., Nilssen, R. and Nysveen, A., Analytical Design of High-Torque Flux-Switching Permanent Magnet Machine by a Simplified Lumped Parameter Magnetic Circuit, Int. Conf. on Electr. Machines ICEM’10, Rome, Italy, Available on CD.

38. Chung, S.U., Lee, H.J., Hong, D.K., Lee, J.Y., Woo, B.C. and Koo D.H., Development of Flux Reversal Linear Synchronous Motor for Precision Position Control, Int. Journal of Precision Engineering and Manufacturing, Vol. 12, 2011, No. 3, pp. 443–450.

39. Compter, J., Towards Planar Drives for Lithography, Keynote Address, Int. Symp. on Linear Drives for Ind. Appl. LDIA’07, Lille, France, 2007, available on CD.

40. Compumotor Digiplan: Positioning Control Systems and Drives, Parker Hannifin Corporation, Rohnert Park, CA, USA, 2011.

41. Computational Magnetics, ed. Sykulski, J.K., Chapman & Hall, London, 1995.

42. Coris, N., Coleman, R. and Piaget, D., Status and New Development of Linear Drives and Subsystems, Keynote Address, Int. Symp. on Linear Drives for Ind. Appl. LDIA’07, Lille, France, 2007, available on CD.

43. Cruise, R.J. and Landy, C.F., Design Considerations of Linear Motor Hoists for Underground Mining Operations, 7th South African Universities Power Engineering Conf. SAUPEC’98, Stellenbosch, RSA, 1998, pp. 65–68.

44. Cruise, R.J. and Landy, C.F., Linear Synchronous Motor Propelled Hoist for Mining Applications, 31st IEEE IA Conf., San Diego, CA, 1996.

45. Concise Encyclopedia of Traffic and Transportation Systems, ed. Papageorgiu, M., Pergamon Press, 1991, pp. 36–49.

46. Coulomb, J. and Meunier, G., Finite Element Implementation of Virtual Work Principle for Magnetic and Electric Force and Torque Computation, IEEE Trans. on MAG, Vol. 20, 1984, No. 5, pp. 1894–1896.

47. Dabrowski, M., Magnetic Field and Circuits of Electrical Machines (in Polish), WNT, Warsaw, Poland, 1971.

48. Dawson, G.E., Eastham, A.R., Gieras, J.F., Ong, R. and Ananthasivam K., Design of Linear Induction Drives by Field Analysis and Finite-Element Techniques, IEEE Trans. on IA, 1986, Vol. 22, No. 5, pp. 865–873.

49. DeGarmo, E.P., Black, J.T. and Kohser, R.A., Materials and Processes in Manufacturing, Macmillan, New York, 1988.

50. Demenko, A., Equivalent RC Networks with Mutual Capacitances for Electromagnetic Field Simulation of Electrical Machine Transients, IEEE Trans. on MAG, Vol. 28, 1992, No. 2, pp. 1406–1409.

51. Demenko, A., Time-Stepping FE Analysis of Electric Motor Drives with Semiconductor Converters, IEEE Trans. on MAG, Vol. 30, 1994, No. 5, pp. 3264–3267.

52. Deng, Z., Boldea, I. and Nasar, S.A., Forces and Parameters of Permanent Magnet Linear Synchronous Machines, IEEE Trans. on MAG, Vol. 23, No. 1, 1987, pp. 305–309.

53. Donahue, B., The Line on Linear, Today’s Machining World, June 2010, pp. 16–20.

54. Edwards J.D., An Introduction to MagNet for Static 2D Modeling, Case Studies: Rotational Geometry, Infolytica, Montreal, Canada, 2007.

55. Eidelberg, B., Linear Motors Drive Advances in Indsutrial Laser Applications, Industrial Laser Review, 1995, No. 1, pp. 15–18.

56. Eidelberg, B., Simulation of Linear Motor Machines, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 30–33.

57. Elgerd, O.I., Electric Energy Systems Theory: Introduction, McGraw-Hill, New York, 1971.

58. Ellerthorpe, S. and J. Blaney, J., Force Estimation for Linear Step Motor with Variable Airgap, 25th Annual Symp. on Incremental Motion Control Systems and Devices, San Jose, CA, USA, 1996, pp. 327–335.

59. Everes, W., Henneberger, G., Wunderlich, H. and Selig, A., A Linear Homopolar Motor for a Transportation System, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 46-49.

60. Fitzgerald, A.E. and Kingsley, C., Electric Machinery, 2nd edition, McGraw-Hill, New York, 1961.

61. Gieras, J.F., Electrodynamic Forces in Electromagnetic Levitation Systems, Acta Technica ČSAV, 1982, No. 5, pp. 532–535.

62. Gieras, J.F. and Miszewski, M., Performance Characteristics of the Air-Core Linear Synchronous Motor (in Polish), Rozprawy Elektrot. PAN, Warszawa, Poland, Vol. 29, 1983, No. 4, pp. 1101–1124.

63. Gieras, J.F., Linear Induction Drives, Clarendon Press, Oxford, UK, 1994.

64. Gieras, J.F., Spannenberg, A., Wing, M. and Yamada, H., Analysis of a Linear Synchronous Motor with Buried Permanent Magnets, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 323–326.

65. Gieras, J.F. and Wang, R., Calculation of Forces in a Hybrid Linear Stepping Motor for Machine Tools, 7th European Conf. on Power Electronics and Appl. EPE’97, Trondheim, Norway, 1997, Vol. 3, pp. 591–595.

66. Gieras, J.F., Santini, E. and Wing. M., Calculation of Synchronous Reactances of Small Permanent-Magnet Alternating-Current Motors: Comparison of Analytical Approach and Finite Element Method with Measurements, IEEE Trans. on MAG, Vol. 34, 1998, No. 5, pp. 3712–3720.

67. Gieras, J.F., Status of Linear Motors in the United States, Int. Symp. on Linear Drives for Ind. Appl. LDIA’03, Birmingham, UK, 2003.

68. Gieras J.F., Advancements in Electrical Machines, Springer Verlag, Berlin, 2008.

69. Gieras, J.F., Linear Electric Motors in Aircraft Technology: an Overview, Int. Symp. on Linear Drives for Ind. Appl. LDIA’09, Seoul, S. Korea, 2009, available on CD.

70. Gieras J.F., Permanent Magnet Motor Technology: Design and Applications, 3rd edition, Taylor & Francis, CRC Press, Boca Raton, FL, 2010.

71. Goncavales, G. J., Modeling of Two-Dimensional Electromagnetic Field in both Linear and Tubular Actuators, Int. Conf. Electrical Machines ICEM 2004, Cracow, Poland, 2004, Paper 407, available on CD.

72. Gordon, S. and Hillery, M.T., Development of a High-Speed CNC Cutting Machine Using Linear Motors, Journal of Materials Processing Technology, 2005, No. 166, pp. 321–329.

73. Guderjahn, C.A., Wipf, S.I., Fink, H.J., Boom, R.W., MacKenzie, K.E., Williams, D. and Downey, T., Magnetic Suspension and Guidance for High Speed Rockets by Superconducting Magnets, Journal of Applied Physics, Vol. 40, 1998, No. 5, pp. 3519–3521.

74. Gurol, S., Baldi, R. and Post R., General Atomics Urban Maglev Program Status, 20th Int. Conf. on Magnetically Levitated Systems and Linear Drives MAGLEV2008, San Diego, CA, USA, 2008, Paper No. 99, available on CD.

75. Haas, G.J., Industrial Laser Solutions, 2003, No 11, pp. 17-19, www.industriallaser.com

76. Hagiz, G., My Love Affair with Computers and CNC, 2007, http://numeryx.com

77. Hague, B., The Principles of Electromagnetism Applied to Electrical Machines, Dover Publications, New York, 1929.

78. Hakala, H., Application of Linear Motors in Elevator Hoisting Machines, Ph.D., Publication No. 157, Tampere University of Technology, Finland, 1995.

79. Halbach, K., Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material, Nuclear Instruments and Methods, Vol. 169, 1980, pp. 1–10.

80. Halbach, K., Application of Permanent Magnets in Accelerators and Electron Storage Rings, Journal of Applied Physics, vol. 57, 1985, pp. 109–117.

81. Hamler, A., Trlep, M. and Hribernik, B., Optimal Secondary Segment Shapes of Linear Reluctance Motors Using Stochastic Searching, IEEE Trans. on MAG, Vol. 34, 1998, No. 5, pp. 3519–3521.

82. Hannakam, L., Wirbelströme in dünnen leitenden Platten infolge bewegter stromdurchflossener Leiter, etz-a, Vol. 86, 1965, No. 13, pp. 427–431.

83. Hashimoto, M., Kitano, J., Inden, K., Tanitsu, H., Kawaguchi, I., Kaga, S., Nakashima, T., Koike, S., Migiya, Y. and Sogihara, H., Driving Control Characteristic Using the Inverter System at Yamanashi Maglev Test Line, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 287–291.

84. Heidenhein General Catalogue: Linear Encoders, Heidenhain, GmbH, Traunreut, Germany, 1998, www.heidenhain.com

85. Heidenhain Catalogue: Linear Encoders for Numerical Controlled Machine Tools, Heidenhain GmbH, Traunreut, Germany, September 2005, www.heidenhain.de

86. Heller, B. and Hamata, V., Harmonic Field Effects in Induction Motors, Academia, Prague, Czech Republics, 1977.

87. Henneberger, G. and Reuber, C., A Linear Synchronous Motor for a Clean Room Conveyance System, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 227–230.

88. Hinds, W. and Nocito, B., The Sawyer Linear Motor, in Theory and Applications of Step Motors ed. Kuo, B.C., West Publishing, 1974, pp. 327–340.

89. Hippner, M. and Piech, Z., Ripple Free Linear Synchronous Motor, Int. Conf. on Electr. Machines ICEM’98, Istanbul, Turkey, 1998, pp. 845–850.

90. Hoang, E., Ahmed, A.H.B. and Lucidarme, J., Switching Flux Permanent Magnet Polyphase Synchronous Machines, 7th European Conf. on Power Electronics and Appl. EPE’97, Vol. 3, Trondheim, Norway, 1977, pp. 903–908.

91. Hor, P.J., Zhu, Z.Q., Churn, P.M., Howe, D. and Rees-Jones, J., Design and Analysis of a Novel Long-Stroke Tubular Permanent Magnet Linear Motor, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 34–37.

92. Howe, D. and Zhu, Z.Q., Status of Linear Permanent Magnet and Reluctance Motor Drives in Europe, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 1–8.

93. Huth, E., Canders, W.R. and Mosebach, H., Linear Motor Transfer Technology (LMTT) for Container Terminals, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 38–41.

94. Ilhan, E., Gysen, B.L.J., Paulides, J.J.H. and Lomonova, E.A., Analytical Hybrid Model for Flux Switching Permanent Magnet Machines, IEEE Trans. on MAG, Vol. 46, 2010, No. 6, pp. 1762–1765.

95. Ishii, T., Elevators for Skyscrapers, IEEE Spectrum, 1994, No. 9, pp. 42–46.

96. Jahns, T.M., Kliman, G.B. and Neumann, T.W., Interior PM Synchronous Motors for Adjustable-Speed Drives, IEEE Trans. on IA, Vol. 22, 1986, No. 4, pp. 738–747.

97. Jahns, T.M., Motion Control with Permanent-Magnet a.c. Machines, Proc. IEEE, Vol. 82, 1994, No. 8, pp. 1241–1252.

98. Jahns, T.M., Variable Frequency Permanent Magnet a.c. Machine Drives, in Power Electronics and Variable Frequency Drives, ed. Bose, B.K., IEEE Press, New York, 1997.

99. Jansen, J.W., van Lierop, C.M.M., de Boeij, J., Lomonowa, E.A., Duarte, J.L. and Vandenput, A.J.A., Moving Magnet Multi-DOF Planar Actuator Technology with Contactless Energy and Data Transfer, Keynote Address, Int. Symp. for Linear Drives for Ind. Appl. LDIA’07, Lille, France, 2007, available on CD.

100. Jung, I.S., Yoon, S.B., Shim, J.H. and Hyun, D.S., Analysis of Forces in a Short Primary Type and a Short Secondary Type Permanent Magnet Linear Synchronous Motor, IEEE Trans. on EC, Vol. 14, No. 4, pp. 1265–1269.

101. Jung I.S., Hyun D.S., Dynamic Characteristics of PM Linear Synchronous Motor Driven by PWM Inverter by Finite Element Method, IEEE Trans. on MAG, vol. 35, 1999, No. 5, pp. 3697–3699.

102. Kajioka, M., Torii, S. and Ebihara, D., A Comparison of Linear Motor Performance Supported by Air bearings, 2nd Int. Symp. on Linear Drives for Ind. Appl., LDIA’98, Tokyo, Japan, 1998, pp. 252–255.

103. Kakino, Y., Tools for High Speed and High Acceleration Feed Drive System of NC Machine Tools, 2nd Int. Symp. on Linear Drives for Ind. Appl., LDIA’98, Tokyo, Japan, 1998, pp. 15–21.

104. Kaminski, G., Electric Motors with Multi-DOF Motion (in Polish), OWPW, Warsaw, Poland, 1994.

105. Karita, M., Nakagawa, H. and Maeda, M., High Thrust Density Linear Motor and its Applications, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 183–186.

106. Kawanishi, T., Linear Motor Application for Architecture, 1st Int. Symp. on Linear Drives for Ind. Appl., LDIA’95, Nagasaki, Japan, 1995, pp. 239–242.

107. Khan, S.A. and Ivanov, A.A., Methods of Calculation of Magnetic Fields and Static Characteristics of Linear Step Motor For Control Rod Drives of Nuclear Reactors, IEEE Trans. on MAG, Vol. 28, 1992, No. 5, pp. 2277–2279.

108. Khan, S.H. and Ivanov, A.A., An Analytical Method for the Calculation of Static Characteristics of Linear Step Motor For Control Rod Drives in Nuclear Reactors, IEEE Trans. on MAG, Vol. 31, 1995, No. 3, pp. 2324–2330.

109. Kim, W.J. and Murphy, B.C., Development of a Novel Direct-Drive Tubular Linear Brushless Permanent-Magnet Motor, Int. Journal of Control, Automation and Systems, Vol. 2, 2004, No. 3, pp. 279–288.

110. King, R., Precision Laser Scribes Aircraft Skins, Design News, 1994, No. 5-9, pp. 66–67.

111. Kitamori, T., Inoue, A., Yoshimura, M., Matsudaira, Y. and Hosaka, S., Outline of the Second Train Set for the Yamanashi Maglev Test Line, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 220–224.

112. Kollmorgen Linear Motors Aim to Cut Cost of Semiconductors and Electronics Manufacture, Kollmorgen, Radford, VA, USA, 1997.

113. Kostenko, M. and Piotrovsky, L., Electrical Machines, Vol. 2: Alternating Current Machines, Mir Publishers, Moscow, 1974.

114. Kurobe, H., Kaminishi, K., Miyamoto, S. and Seki, A., Current Test Status of the Superconducting Maglev System on the Yamanashi Test Line, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 56–61.

115. Kwon, B.I., Woo, K.I., Rhyu, S.H. and Park, S.C., Analysis of Direct Thrust Control in Permanent Magnet Type Linear Synchronous Motor by FEM, 2nd Int. Symp. on Linear Drives for Ind. Appl., LDIA’98, Tokyo, Japan, 1998, pp. 404–407.

116. Kyutoku, S., Shinya, T., Development of Linear Synchronous Motor for Air Suspension Table, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 223–226.

117. Laithwaite, E.R., A History of Linear Electric Motors, Macmillan, London, 1987.

118. Laugis, J. and Lehtla, T., Control of Special Purpose Linear Drives, 7th European Conf. on Power Electronics and Appl. EPE’97, Trondheim, Norway, Vol. 3, pp. 541–546.

119. Linear and Rotary Positioning Stages Engineering Reference, Parker Hannifin, Rohnert Park, CA, USA, 2005, www.parkermotion.com/engineeringcorner

120. Linear Motor Conveyance System for Hospitals, Shinko Electric Co. Ltd., Tokyo, Japan, 1999, www.shinko-elec.co.jp

121. Linear-Motor-Driven Vertical Transportation System, Elevator Word, September, 1996, pp. 66–72, www.elevator-world.com

122. Linear Step Motor, information brochure, Tokyo Aircraft Instrument Co., Ltd., Tokyo, 1998.

123. Linear Synchronous Motors, MagneMotion, 1999, www.magnemotion.com/linear.html

124. Lingaya, S. and Parsch, C.P., Characteristics of the Force Components on an Air-Core Linear Synchronous Motor with Superconducting Excitation Magnets, in Electric Machines and Electromechanics, Hemisphere Publishing, 1979, No. 4, pp. 113–123.

125. LinMot Design Manual, Sulzer Electronics, Ltd, Zürich, Switzerland, 1999.

126. Liwinski W., Transverse induction heaters (in Polish), WNT, Warsaw, Poland, 1968.

127. Locci, N. and Marongiu, I., Modelling and Testing a New Linear Reluctance Motor, Int. Conf. on Electr. Machines ICEM’92, vol. 2, Manchester, UK, pp. 706–710.

128. Luukko, J., Kaukonen, J., Niemelaä, M., Pyrhönen, O., Tiitinen, P. and Väänänen, J., Permanent Magnet Synchronous Motor Drive Based on Direct Flux Linkage Control, 7th European Conf. on Power Electronics and Appl. EPE’97, Trondheim, Norway, 1997, Vol. 3, pp. 683–688.

129. Macro Sensors Technical Bulletin 1101: Hermetically Sealed Frictionless Position Sensors, Macro Sensors, Pennsauken, NJ, USA, 2008, www.macrosensors.com

130. Magnetic Sensors, BEI Sensors & System Company, Goleta, CA, USA, 1998.

131. Mandel, R., Linear Motors Drive Aerospace Machining to Higher Speeds, 2000, www.manufacturingcenter.com/dfx/archives/1100

132. Mangan, J. and Warner, A., Magnet Wire Bonding, Joyal Product, Inc., Linden, NJ, USA, 1998, www.joyalusa.com

133. Marshall, S.V., Skitek, G.G., Electromagnetic Concepts and Applications, Prentice–Hall, Englewood Cliffs, NJ, 1987.

134. Masada, E., Linear Drives for Industry Applications in Japan—History, Existing State and Future Prospects, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 9–12.

135. Masada, E., Development of Maglev and Linear Drive Technology for Transportation in Japan, 14th Int. Conf. on Magnetically Levitated Systems Maglev’95, Bremen, Germany, 1995, pp. 11–16.

136. Masada, E., High Power Converters and their Future Applications, 7th Int. Power Electronics and Motion Control Conf. PEMC’96, Budapest, Hungary, Vol. 3, 1996, pp. K1–K4.

137. Matlack, J., Smart Linear Position Sensors, Motion System Design, 2010, pp. 32–33, www.motionsystemdesign.com

138. Matsui, N., Nakamura. M. and Kosaka, T., Instantaneous Torque Analysis of Hybrid Stepping Motors, IEEE Trans. on IA, Vol. 32, 1996, No. 5, pp. 1176–1182.

139. Matsuoka, K. and Kondou, K., Development of Permanent Magnet Linear Motor for the Next Generation High Speed Railways, Symp. on Power Electronics, Electr. Drives, Adv. Electr. Machines SPEEDAM’94, Taormina, Italy, 1994, pp. 237–242.

140. Menden, W., Mayer, W.J. and Rogg, D., State of Development and Future Prospects on the Maglev System Transrapid, M-Bahn and Starlim, Int. Conf. Maglev’89, Yokohama, Japan, 1989, pp. 11–18.

141. Mendrela, E.A., Comparision of the Performance of a Linear Reluctance Oscillating Motor Operating Under AC Supply with One Under DC Supply, IEEE Trans. on EC, Vol. 14, 1999, No. 3. pp. 328-332.

142. Mendrela, E. and Song, T., A Performance of Switched-Reluctance Linear Oscillating Motor Operating under Different Switching Circuits, 3rd Int. Conf. on Unconventional Electromech. and Electr. Systems UEES’97, Alushta, The Crimea, Ukraine, 1997, pp. 349–354.

143. Metglas®Amorphous Magnetic Alloys, information brochure, AlliedSignal Inc., Morristown, NJ, USA, 1999, www6.alliedsignal.com/metglas/magnetic/

144. Meeker, D., FEMM 4.0, User’s Manual, University of Virginia, Charlottesville, VA, USA, 2004.

145. Meisel, J., Principles of Electromechanical Energy Conversion, R.E. Krieger Publishing Company, Malabar, FL, 1984.

146. Miller, L., Superspeed Maglev System Transrapid: System Description, 14th Int. Conf. on Magnetically Levitated Systems Maglev’95, Bremen, Germany, 1995, pp. 37–43.

147. Miller, L. and Löser, F., System Characteristics of the Transrapid Superspeed Maglev System, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 19–24.

148. Mishler, W.R., Test Results on a Low Loss Amorphous Iron Induction Motor, IEEE Trans. on PAS, Vol. 100, 1981, No. 6, pp. 860–866.

149. Miyatake, M., Koseki, T. and Sone, S., Design and Traffic Control of Multiple Cars for an Elevator System Driven by Linear Synchronous Motors, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 94–97.

150. Mizuno, T. and Yamada, H., Magnetic Circuit Analysis of a Linear Synchronous Motor with Permanent Magnets, IEEE Trans. on MAG, Vol. 28, 1992, No. 5, pp. 3027–3029.

151. Moscrop, J., Cook, C. and Naghdy, F., Development and Performance Analysis of a Single-Axis Linear Motor Test-Bed, Australasian Universities Power Eng. Conf. AUPEC’01, Perth, Australia, 2001, pp. 607–612

152. Mosebach, H., Direct Two-Dimensional Analytical Thrust Calculation of Permanent Magnet Excited Linear Synchronous Machines, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 396–399.

153. Mosebach, H. and Canders, W.R., Average Thrust of Permanent Magnet Excited by Linear Synchronous Motors for Different Stator Current Waveforms, Int. Conf. on Electr. Machines ICEM’98, Istanbul, Turkey, 1998, Vol. 2, pp. 851–865.

154. Motor and Magnet Wire Industry Bulletin, DuPont High Performance Films, DuPontTMTMKapton®, 2006, Circleville, OH, USA, www.kapton.dupont.com

155. Muraguchi, Y., Karita, M., Nakagawa, H., Shinya, T. and Maeda, M., Method of Measuring Dynamic Characteristics for Linear Servo Motor and Comparison of their Performance, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 204–207.

156. Nai K., Forsythe W., Goodall R.M., Improving Ride Quality in High-Speed Elevators, Elevator World, 1997, No. 6, pp. 80–93.

157. Nakao, H., Takahashi, M., Sanada, Y., Yamashita, T., Yamaji, M., Miura, A., Terai, M., Igarashi, M., Kurihara, T. and Tomioka, K., Development of the New Type On-board GM Refrigeration System for the Superconducting Magnet in Maglev Use, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 250–255.

158. Nakashima, H. and Seki, A., The Status of the Technical Development for the Yamanashi Maglev Test Line, 14th Int. Conf. on Magnetically Levitated Systems MAGLEV’95, Bremen, Germany, 1995, pp. 31–35.

159. Nakashima, H. and Isoura, K., Superconducting Maglev Development in Japan, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 25–28.

160. Nasar, S.A. and Boldea, I., Linear Electric Motors, Prentice-Hall, Englewood Cliffs, NJ, 1987.

161. Northern Magnetics Linear Motors Technology, Normag (Baldor Electric Company), Santa Clarita, CA, USA, 1998.

162. OPERA 3-D User Guide, Vector Fields Ltd, Oxford, UK, 1999.

163. Osada, Y., Gotou, H., Sawada, K. and Okumura, F., Outline of Yamanashi Maglev Test Line and Test Schedule, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 50–55.

164. Pandilov, Z., Analytical Determination of the Position Loop Gain for Linear Motor CNC Machine Tool, Journal AMME, Vol. 26, 2008, No 2, pp. 171–174, www.journalamme.org

165. Park, R.H., Two-Reaction Theory of Synchronous mMchines: Generalized Method of Analysis—Part 1, Trans AIEE, July 1929, pp. 716–730.

166. Parker, R.J., Advances in Permanent Magnetism, John Wiley & Sons, New York, 1990.

167. Partial Differential Equations, Toolbox for use with Matlab, The MathWorks Inc., 1999.

168. PlatinumT L DDL Direct Drive Linear Motors, Kollmorgen, Radford, VA, USA, 1998, www.kollmorgen.com

169. Pepperl+Fuchs Group, Identification Systems Catalogue 2009, edition 2009-03-01, part no. 33152, Pepperl+Fuchs GmbH, Mannheim, Germany, 2009, www.pepperl-fuchs.com.

170. Post, R.F.: Inductrack Demonstration Model, Report No UCRL-ID-129664, Lawrence Livemore National Laboratory, Livermore, CA, USA, 1998, www.askmar.com/Inductrack/

171. Post, R.F., The Inductrack: A Home-Grown Maglev System for our Nation, Lockheed Martin Colloquium, Advanced Technology Center, Palo Alto, CA, USA, 2004, www.askmar.com/Inductrack/

172. Presher, A., New Class of Linear Motors, Design News, November 16, www.designnews.com/article/388467

173. Rais, V.R., Turowski, J. and Turowski, M., Reluctance Network Analysis of Coupled Fields in Reversible Electromagnetic Motor, Chapter 6.7 in Electromagnetic Fields in Electrical Engineering, Plenum Press, New York–London, 1988, pp. 279–283.

174. Rajagopal, K., Krishnaswamy, M., Singh, B. and Singh, B.P., High Thrust Density Linear Motor and its Applications, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 183–186.

175. Raschbichler, H.G. and Miller, L., Readiness for Application of the Transrapid Maglev System, RTR Railway Technical Review, vol. 33, 1991/92, pp. 3–7.

176. Rauch, S.E. and Johnson, L.J., Design Principles of Flux-Switch Alternators, AIEE Trans., Part III, Vol. 74, 1955, No. 12, pp. 1261–1269.

177. Rees, J.J., Dynamic Consideration and Candidacy Requirements for Linear Servo-Driven Motors in Factory Automation, 1st Int. Symp. on Linear Drives for Ind. Appl. LDIA’95, Nagasaki, Japan, 1995, pp. 255–258.

178. RG2 Linear Encoder System, Renishaw plc, New Mills, Gloucestershire, UK, 1998, www.renishaw.com

179. RLS Data Sheet LM10D17 01: DCRM Distance Coded Reference Mark System, RLS Merilna Tehnika D.O.O., Ljubljana-Dobrunje, Slovenia, 2009, No 1, www.ris.si

180. RLS Data Sheet LM10D01 10: LM Linear Magnetic Encoder System, RLS Merilna Tehnika D.O.O., Ljubljana-Dobrunje, Slovenia, 2010, No 10, www.ris.si

181. Rosenmayr, M., Casat, Glavitsch, A. and Stemmler, H., Swissmetro — Power Supply for a High-Power-Propulsion System with Short Stator Linear Motors, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mount Fuji, Yamanashi, Japan, 1998, pp. 280–286.

182. Sanada, M., Morimoto, S. and Takeda, Y., Interior Permanent Magnet Linear Synchronous Motor for High-Performance Drives, IEEE Trans. on IA, Vol. 33, 1997, No. 4, pp. 966–972.

183. Sanada, M., Morimoto, S. and Takeda, Y., Reluctance Equalization Design of Multi Flux Barrier Construction for Linear Synchronous Reluctance Motors, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 259–262.

184. Seki, K., Watada, Torii, S. and Ebihara, D., Experimental Device of Long Stator LSM with Discontinuous Arrangement and Result, 7th European Conf. on Power Electronics and Appl. EPE’97, Trondheim, Norway, 1997, Vol. 3, pp. 532–536.

185. Seki, K., Oka, K., Watada, M., Torii, S. and Ebihara, D., Synchronization of Discontinuously Arranged Linear Synchronous Motor for Transportation System, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 82–85.

186. Seok-Myeong, J. and Sang-Sub, J., Design and Analysis of the Linear Homopolar Synchronous Motor for Integrated Magnetic Propulsion and Suspension, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 74–77.

187. Setbacken, R., Feedback Devices in Motion Control Systems, RENCO Encoders, Fiftian Press, Santa Barbara, CA, USA, 1997.

188. Shiraki, M., Song, R., Itoh, A., Mizuno, T. and Yamada, H., High Speed High Accuracy Positioning System for Industrial Printer by LDM, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, Japan, 1998, pp. 98–101

189. Silvester, P.P. and Ferrari, R.L., Finite Elements for Electrical Engineers, Cambridge University Press, Cambridge, 1990.

190. Skalski, C.A., The Air-Core Linear Synchronous Motor: An Assessment of Current Development, MITRE Technical Report, McLean, VA, USA, 1975.

191. Smith, A.C., Magnetic Forces on a Misaligned Rotor of a PM Linear Actuator, Int. Conf. on Electr. Machines ICEM’90, Boston, MA, USA, 1990, pp. 1076–1081.

192. Smith, B., Going Direct, California Linear Drives, Carslbad, CA, USA, 2001, www.calinear.com

193. Software Developed by International Center for Numerical Methods in Engineering, EMANT, Barcelona, Spain, www.cimne.upc.es/emant/

194. Stec, T.F., Amorphous Magnetic Materials Metglass 2605S-2 and 2605TCA in Application to Rotating Electrical Machines, NATO ASI Modern Electrical Drives, Antalya, Turkey, 1994.

195. Stec T.F., Electric Motors from Amorphous Magnetic Materials, Int. Symp. on Nonlinear Electromagnetic Systems, Cardiff, UK, 1995, www.ammtechnologies.com

196. SuperPower, Schenectady, NY, USA, www.superpower-inc.com

197. Suwa, H., Turuga, H., Iida, T., Tujimoto, S., Kobayashi, Y. and Itabashi, Y., Features of Ground Coils for Yamanashi Maglev Test Line, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 292–296.

198. Synchronous Linear Motor 1FN6: The Electrical Gear Rack, Siemens AG Industry Sector, Drive Technologies. Motion Control, Erlangen, Germany, 2008.

199. Takahashi, Y., Yoshihiro, J., Hidenari, A., Motoaki, T. Motohiro, I. and Masatoshi, S., Vibration Characteristics and Mechanical Heat Load of Superconducting Magnets of Maglev Trains, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 244–249.

200. Tergan, V., Andreev, I. and Liberman, B., Fundamentals of Industrial Automation, Mir Publishers, Moscow, 1986.

201. The Contactless Power Supply System of the Future, Wampfler AG, Weil am Rhein-Maerkt, Germany, 1998.

202. The LIM Elevator Drive, Elevator World, 1991, No 3, pp. 34–41.

203. Thin Nonoriented Electric Steels, Cogent Power Ltd., Newport, UK, 2005, www.cogent-power.com

204. Tomczuk, B., Three-Dimensional Leakage Reactance Calculation and Magnetic Field Analysis for Unbounded Problems, IEEE Trans. on MAG, Vol. 28, 1992, No. 4, pp. 1935-1940.

205. Tomczuk, B., Analysis of 3-D Magnetic Fields in High Leakage Reactance Transformers, IEEE Trans. on MAG, vol. 30, 1994, No. 5, pp. 2734–2738.

206. Tomczuk, B. and Babczyk, K., Calculation of the Self- and Mutual Inductances and 3-D Magnetic Fields of Chokes with Air Gaps in the Core, Electrical Engineering (Archiv. für Elektrotechnik), Springer-Verlag, Berlin, Vol. 83, 2001, pp. 41–46.

207. Tomczuk, B. and Sobol, M., Time Analysis of an Oscillating Motor, XVII Int. Symp. on Electromagn. Phenomena in Nonlinear Circuit EPNC’02, Leuven, Belgium, 2002, pp. 23–26.

208. Tomczuk, B. and Sobol, M., Analysis of Tubular Linear Reluctance Motor (TLRM) under Various Voltage Supplying, Int. Conf. on Electr. Machines ICEM’04, Cracow, Poland, 2004, pp. 331–333.

209. Tomczuk, B. and Sobol, M., Field Analysis of the Magnetic Systems for Tubular Linear Reluctance Motors, IEEE Trans. on MAG, Vol. 41, 2005, No. 4, pp. 1300–1305.

210. Tomczuk, B. and Sobol, M., A Field-Network Model of a Linear Oscillating Motor (LOM) and its Dynamics Characteristics, IEEE Trans. on MAG, Vol. 41, 2005, No. 8, pp. 2362–2367.

211. Tomczuk, B. and Waindok, A., Magnetic Field Calculations of a Permanent Magnet Tubular Linear Motor (PMTLM), Conf. on Computer Appl. in Electr. Eng., Poznan, Poland, 2005, pp. 89–90.

212. Tomczuk, B., Numerical Methods of Analysis of Electromagnetic Fields of Transformer Systems (in Polish), OWPO, Opole, Poland, 2007.

213. Tomczuk, B., Schröder, G., and Waindok, A., Finite Element Analysis of the Magnetic Field and Electromechanical Parameters Calculation for a Slotted Permanent Magnet Tubular Linear Motor, IEEE Trans. on MAG, Vol. 43, 2007, No. 7, pp. 3229–3236.

214. Tomczuk, B., Zakrzewski, K., Waindok, A., Field Analysis in Permanent Magnet Tubular Linear Motor (PMTLM) under Variable Scaled Geometries, Electromotion, Vol. 14, No. 1, 2007, pp. 19–25.

215. Tomczuk, B. and Waindok, A., Integral Parameters of the Magnetic Field in the Permanent Magnet Linear Motor, Intelligent Computer Techniques in Applied Electromagnetics, series Studies in Computational Intelligence, Springer Verlag, Heidelberg, Germany, Vol. 119, 2008, pp. 277–281.

216. Tomczuk, B. and Waindok, A., Tubular Linear Actuator as a Part of Mechatronic System, Solid State Phenomena, Trans. Tech. Publications, Switzerland, Vol. 147-149, 2009, pp. 173–178.

217. Tomczuk, B. and Waindok, A., Linear Motors in Mechatronics — Achievements and Open Problems, in Transfer of Innovation to the Interdisciplinary Teaching of Mechatronics for the Advanced Technology Needs, OWPO, Opole, Poland, 2009, pp. 343–360.

218. Tomczuk, B., Zimon, J. and Waindok, A., Field-Circuit Method for the Non-Steady State Analysis in the Active Magnetic Bearings, 17th Int. Conf. COMPUMAG’09, Florianopolis, Brazil, 2009, pp. 183–184.

219. Tomczuk, B., Zimon, J. and Waindok, A., Effects of the Core Materials on Magnetic Bearing Parameters, 17th Int. Conf. COMPUMAG’09, Florianopolis, Brazil, 2009, pp. 39–40.

220. Tomczuk, B. and Waindok, A., A Coupled Field-Circuit Model of a 5-Phase Permanent Magnet Tubular Linear Motor, 21st Symp. on Electromagnetic Phenomena in Nonlinear Circuits EPNC’10, Dortmund, Germany, 2010, pp. 139–140.

221. Transrapid Maglev System, ed. Heinrich, K. and Kretzschmar, R., Hestra-Verlag, Darmstadt, Germany, 1989.

222. Trilogy PM Linear Motors, Trilogy Systems Corp., Webster, TX, USA, 1999, ww.trilogysystems.com

223. Trumper, D.L., Kim, W.J., Williams, M.E., Design and Analysis Framework for Linear Permanent-Magnet Machines, IEEE Trans. on IA, Vol. 32, 1996, No. 2, pp. 371–379.

224. Tsuchishima, H., Mizutani, T., Okai, T., Nakauchi, M., Terai, M., Inadama, S. and Asahara, T., Characteristics of Superconducting Magnets and Cryogenic System on Yamanashi Test Line, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 237–243.

225. Turowski, J., Turowski, M. and Kopec, M., Method of Fast Analysis of 3D Leakage Fields in Large Three-Phase Transformers, Compel, James & James Scie Publishers, Vol. 9, 1990, London, UK, pp. 107–116.

226. Turowski J., Technical Electrodynamics (in Polish), 2nd edition, WNT, Warsaw, Poland, 1993.

227. Utsumi, T. and Yamaguchi, I., Thrust Characteristics of a Rectangular Core LIM, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, 1998, pp. 248–251.

228. Vaez-Zadeh, S. and Isfahani, H., Multiobjective Design Optimization of Air-Core Linear Permanent-Magnet Synchronous Motors for Improved Thrust and Low Magnet Consumption, IEEE Trans. on MAG, Vol. 42, 2006, No. 3, pp. 446–452.

229. Vector Fields Software, Cobham Technical Services, Kidlington, Oxfordshire, UK, www.cobham.com/about-cobham/avionics-and-surveillance/about-us/technical-services/kidlington.aspx

230. Waindok A., Computer Simulation and Measurement Verification of the Permanent Magnet Tubular Linear Motor (PMTLM) Characteristics, (in Polish), Ph.D., Opole University of Technology, Opole, Poland, 2008.

231. Waindok, A. and Mazur, G., A Mathematical and Physical Models of the Three-Stage Reluctance Accelerator, 2nd Int. Students’ Conf. on Electrodynamic and Mechatronics, Gora sw. Anny, Poland, 2009, pp. 29–30.

232. Wang, R. and Gieras, J.F., Performance Calculations for a PM Hybrid Linear Stepping Motor by the Finite Element and Reluctance Network Approach, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, 1998, pp. 400–403.

233. Wang, R. and Gieras, J.F., Analysis of Characteristics of a Permanent Magnet Hybrid Linear Stepping Motor, Int. Conf. on Electr. Machines ICEM’98, Istanbul, Turkey, 1998, pp. 835–838.

234. Wegerer, K., Ellman, S., Becker, P. and Hahn, W., Requirements, Design and Characteristics of the Maglev Vehicle Transrapid 08, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 202–208.

235. Węgliński, B., Soft Magnetic Powder Composites — Dielectromagnetics and Magnetodielectrics, Reviews on Powder Metallurgy and Physical Ceramics, vol. 4, 1990, No. 2, pp. 79–153.

236. What Every Engineer Should Know About Finite Element Analysis, ed. Brauer, J.R., Marcel Dekker, New York, 1988.

237. Wiescholek, U., High-Speed Magnetic Levitation System Transrapid, 14th Int. Conf. on Magnetically Levitated Systems Maglev’95, Bremen, Germany, 1995, pp. 17–23.

238. White, D.C. and Woodson, H.H., Electromechanical Energy Conversion, John Wiley & Sons, New York, 1959.

239. Yamanashi Maglev Test Line—Guide of Electric Facilities, Central Japan Railway Company, Tokyo, 1992.

240. Yamada, H., Handbook of Linear Motor Applications (in Japanese), Kogyo Chosaki Publishing Co., Tokyo, Japan, 1986.

241. Yamazaki, M., Gotou, Y., Aoki, S., Hashimoto, S. and Sogabe, M., Guideways and Structures on the Yamanashi Maglev Test Line and their Dynamic Response Characteristics, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 178–183.

242. Yoon S.B., Jung I.S., Kim K.C. and Hyun D.S., Dynamic Analysis of a Reciprocating Linear Actuator for Gas Compression Using Finite Element Method, IEEE Trans. on MAG, Vol. 33, 1997, No. 5, pp. 4113–4115.

243. Yoshida, K., Takaki, T. and Muta, H., System Dynamics Simulation of Controlled PM LSM Maglev Vehicles, 10th Int. Conf. on Maglev and Linear Motors, MAGLEV’88, Hamburg, Germany, 198, pp. 269–278.

244. Yoshida, K., Muta, H. and Teshima, N., Underwater Linear Motor Car, Int. Journal of Appl. Electromagnetics in Materials, Vol. 2, 1991, pp. 275–280

245. Yoshida, K., Liming, S., Takami. H. and Sonoda, A., Repulsive Mode Levitation and Propulsion Experiments of an Underwater Travelling LSM Vehicle ME02, 2nd Int. Symp. on Linear Drives for Ind. Appl. LDIA’98, Tokyo, 1998, pp. 347–349.

246. Yoshida, K., Takami. H., Kong, X. and Sonoda, A., Mass Reduction and Propulsion Control of PM LSM Test Vehicle for Container Transportation, IEEE Int. Electr. Machines and Drives Conf. IEMDC’99, Seattle, WA, USA, 1999, pp. 72–74.

247. Yoshioka, H., Suzuki, E., Seino, H., Azakami, M., Oshima, H. and Nakanishi, T., Results of Running Tests and Characteristics of the Dynamics of the MLX01 Yamanashi Maglev Test Line Vehicles, 15th Int. Conf. on Magnetically Levitated Systems and Linear Drives Maglev’98, Mt. Fuji, Yamanashi, Japan, 1998, pp. 225–230.

248. Zajac, P., Demystifying Linear Motor Integration, Motion System Design, January 2011, pp. 24–26.

249. Zakrzewski, K., Physical Modelling of Leakage Field and Stray Losses in Steel Constructional Parts of Electrotechnical Devices, Archiv. für Elektrotechnik, Springer-Verlag, Berlin, Vol. 69, 1986, pp. 129–135.

250. Zakrzewski, K. and Tomczuk, B., Comparison of Finite Difference Method (FDM) and Integral Equations Method (BIM) in Calculation of Piecewise Nonhomogeneous Magnetic Fields, in Electromagnetic Fields in Electrical Engineering, ed. Turowski, J. and Zakrzewski, K., James & James Science Publishers, London, 1990, pp. 139–142.

251. Zhu, Z.Q., Pang, Y., Howe, D., Iwasaki, S., Deodhar, R. and Pride, A., Analysis of Electromagnetic Performance of of Flux-Switching Permanent Magnet Machines by Non-Linear Adaptive Lumped Parameter Magnetic Circuit Model, IEEE Trans. on MAG, Vol. 41, 2005, No. 11, pp. 4277–4287.

252. Zhu, Z.Q., Chen, Z., Howe, D., and Iwasaki, S., Electromagnetic Modeling of a Novel Linear Oscillating Actuator, IEEE Trans on MAG, Vol. 44, No 11, 2008, pp. 3855–3858.

253. Zienkiewicz, O.C. and Morgan, K., Finite Elements and Approximation, John Wiley & Sons, New York, 1983.

254. Zolghadri, M.R., Diello, D. and Roye, D., Direct Torque Control System for Synchronous Motor, 7th European Conf. on Power Electronics and Applications EPE’97, Trondheim, Norway, 1997, Vol. 3, pp. 694–699.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.128.30.77