Contents

Preface

Acknowledgments

Author

Chapter 1    Introduction to Medium- and High-Power Switching Converters

1.1    Market for Medium- and High-Power Converters

1.1.1    Technology Status

1.1.2    Transportation Electrification Systems

1.1.2.1    Automotive

1.1.2.2    Aviation

1.1.2.3    Railways

1.1.2.4    Marine Power Systems

1.1.3    Traditional Industrial Applications

1.1.3.1    Motor Drives

1.1.3.2    Grid-Tied Power Supplies

1.1.3.3    Medium Voltage

1.2    Book Coverage

1.3    Adjustable Speed Drives

1.3.1    AC/DC Converter

1.3.2    Intermediate Circuit

1.3.3    DC Capacitor Bank

1.3.4    Soft-Charge Circuit

1.3.5    DC Reactor

1.3.6    Brake Circuit

1.3.7    Three-Phase Inverter

1.3.8    Protection Circuits

1.3.9    Sensors

1.3.10  Motor Connection

1.3.11  Controller

1.4    Grid Interfaces or Distributed Generation

1.4.1    Grid Harmonics

1.4.2    Power Factor

1.4.3    DC Current Injection

1.4.4    Electromagnetic Compatibility and Electromagnetic Inference

1.4.5    Frequency and Voltage Variations

1.4.6    Maximum Power Connected at Low-Voltage Grid

1.5    Multiconverter Power Electronic Systems

1.6    Conclusion

References

PART I  Conventional Power Converters

Chapter 2    High-Power Semiconductor Devices

2.1    A View on the Power Semiconductor Market

2.2    Power MOSFETs

2.2.1    Operation

2.2.2    Control

2.3    Insulated Gate Bipolar Transistors

2.3.1    Operation

2.3.2    Control, Gate Drivers

2.3.2.1    Requirements

2.3.2.2    Optimal Design of the Gate Resistor

2.3.3    Protection

2.4    Power Loss Estimation

2.5    Active Gate Drivers

2.6    Gate Turn-off Thyristors (GTOs)

2.7    Advanced Power Devices

2.7.1    Specialty Devices

2.7.1.1    IGCT

2.7.1.2    IGBT-RC

2.7.1.3    IGBT-RB

2.7.2    High-Frequency, High-Voltage Devices

2.7.3    Using New Substrate Materials (SiC, GaN, and so on)

2.8    Datasheet Information

Problems

References

Chapter 3    Basic Three-Phase Inverters

3.1    High-Power Devices Operated as Simple Switches

3.2    Inverter Leg with Inductive Load Operation

3.3    What Is a PWM Algorithm?

3.4    Basic Three-Phase Voltage Source Inverter: Operation and Functions

3.5    Performance Indices: Definitions and Terms Used in Different Countries

3.5.1    Frequency Analysis

3.5.2    Modulation Index for Three-Phase Converters

3.5.3    Performance Indices

3.5.3.1    Content in Fundamental (z)

3.5.3.2    Total Harmonic Distortion (THD) Coefficient

3.5.3.3    Harmonic Current Factor (HCF)

3.5.3.4    Current Distortion Factor

3.6    Direct Calculation of Harmonic Spectrum from Inverter Waveforms

3.6.1    Decomposition in Quasi-Rectangular Waveforms

3.6.2    Vectorial Method

3.7    Preprogrammed PWM for Three-Phase Inverters

3.7.1    Preprogrammed PWM for Single-Phase Inverter

3.7.2    Preprogrammed PWM for Three-Phase Inverter

3.7.3    Binary-Programmed PWM

3.8    Modeling a Three-Phase Inverter with Switching Functions

3.9    Braking Leg in Power Converters for Motor Drives

3.10  DC Bus Capacitor within an AC/DC/AC Power Converter

3.11  Conclusion

Problems

References

Chapter 4    Carrier-Based Pulse Width Modulation and Operation Limits

4.1    Carrier-Based Pulse Width Modulation Algorithms: Historical Importance

4.2    Carrier-Based PWM Algorithms with Improved Reference

4.3    PWM Used within Volt/Hertz Drives: Choice of Number of Pulses Based on the Desired Current Harmonic Factor

4.3.1    Operation in the Low-Frequencies Range (Below Nominal Frequency)

4.3.2    High Frequencies (>60 Hz)

4.4    Implementation of Harmonic Reduction with Carrier PWM

4.5    Limits of Operation: Minimum Pulse Width

4.5.1    Avoiding Pulse Dropping by Harmonic Injection

4.6    Limits of Operation

4.6.1    Deadtime

4.6.2    Zero Current Clamping

4.6.3    Overmodulation

4.6.3.1    Voltage Gain Linearization

4.7    Conclusion

Problems

References

Chapter 5    Vectorial PWM for Basic Three-Phase Inverters

5.1    Review of Space Vector Theory

5.1.1    History and Evolution of the Concept

5.1.2    Theory: Vectorial Transforms and Advantages

5.1.2.1    Clarke Transform

5.1.2.2    Park Transform

5.1.3    Application to Three-Phase Control Systems

5.2    Vectorial Analysis of the Three-Phase Inverter

5.2.1    Mathematical Derivation of Current Space Vector Trajectory in Complex Planes for Six-Step Operation (with Resistive and Resistive-Inductive Loads)

5.2.2    Definition of Flux of a (Voltage) Vector and Ideal Flux Trajectory

5.3    SVM Theory: Derivation of Time Intervals Associated to Active and Zero States by Averaging

5.4    Adaptive SVM: DC Ripple Compensation

5.5    Link to Vector Control: Different Forms and Expressions of Time Interval Equations in (d, q) Coordinate System

5.6    Definition of Switching Reference Function

5.7    Definition of Switching Sequence

5.7.1    Continuous Reference Function: Different Methods

5.7.2    Discontinuous Reference Function for Reduced Switching Loss

5.8    Comparison between Different Vectorial PWM

5.8.1    Loss Performance

5.8.2    Comparison of Total Harmonic Distortion/HCF

5.9    Overmodulation for SVM

5.10  Volt-per-Hertz Control of PWM Inverters

5.10.1  Low-Frequency Operation Mode

5.10.2  High-Frequency Operation Mode

5.11  Improving the Transient Response in High-Speed Converters

5.12  Conclusion

Problems

References

Chapter 6    Practical Aspects in Building Three-Phase Power Converters

6.1    Selection of Power Devices in a Three-Phase Inverter

6.1.1    Motor Drives

6.1.1.1    Load Characteristics

6.1.1.2    Maximum Current Available

6.1.1.3    Maximum Apparent Power

6.1.1.4    Maximum Active (Load) Power

6.1.2    Grid Applications

6.2    Protection

6.2.1    Overcurrent

6.2.2    Fuses

6.2.3    Overtemperature

6.2.4    Overvoltage

6.2.5    Snubber Circuits

6.2.5.1    Theory

6.2.5.2    Component Selection

6.2.5.3    Undeland Snubber Circuit

6.2.5.4    Regenerative Snubber Circuits for Very Large Power

6.2.5.5    Resonant Snubbers

6.2.5.6    Active Snubbering

6.2.6    Gate Driver Faults

6.3    System Protection Management

6.4    Reduction of Common Mode EMI through Inverter Techniques

6.5    Typical Building Structures of the Conventional Inverter Depending on the Power Level

6.5.1    Packages for Power Semiconductor Devices

6.5.2    Converter Packaging

6.5.3    Enclosures

6.6    Auxiliary Power

6.6.1    Requirements

6.6.2    IC for Power Supplies

6.6.3    Operation of a Flyback Power Converter

6.7    Conclusion

Problems

References

Chapter 7    Thermal Management and Reliability

7.1    Thermal Management

7.1.1    Theory

7.1.2    Transient Thermal Impedance

7.2    Theory of Reliability and Lifetime—Definitions

7.3    Failure and Lifetime

7.3.1    System Failure Rate

7.3.2    Component Failure Rate

7.3.3    Failure Rate for Diverse Components Used in Power Electronics

7.3.4    Failure Modes for a Power Semiconductor Device

7.3.5    Wear-Out Mechanisms in Power Semiconductors

7.4    Lifetime Calculation and Modeling

7.4.1    Problem Setting

7.4.2    Accelerated Tests for Electronic Equipment

7.4.2.1    Using the Activation Energy Method

7.4.2.2    Temperature Cycling

7.4.2.3    Accelerated Tests for Power Cycling

7.4.3    Modeling with Physics of Failure

7.5    Standards and Software Tools

7.5.1    Standards

7.5.2    Software Tools

7.5.2.1    Tools Derived from Theory of Reliability

7.5.2.2    Tools Derived from Microelectronics

7.5.2.3    Power Electronics Specifics

7.6    Factory Reliability Testing of Semiconductors

7.7    Design for Reliability

7.8    Conclusion

References

Chapter 8    Implementation of Pulse Width Modulation Algorithms

8.1    Analog Pulse Width Modulation Controllers

8.2    Mixed-Mode Motor Controller ICs

8.3    Digital Structures with Counters: FPGA Implementation

8.3.1    Principle of Digital PWM Controllers

8.3.2    Bus Compatible Digital PWM Interfaces

8.3.3    FPGA Implementation of Space Vector Modulation Controllers

8.3.4    Deadtime Digital Controllers

8.4    Markets for General-Purpose and Dedicated Digital Processors

8.4.1    History of Using Microprocessors/ Microcontrollers in Power Converter Control

8.4.2    DSPs Used in Power Converter Control

8.4.3    Parallel Processing in Multiprocessor Structures

8.5    Software Implementation in Low-Cost Microcontrollers

8.5.1    Software Manipulation of Counter Timing

8.5.2    Calculation of Time Interval Constants

8.6    Microcontrollers with Power Converter Interfaces

8.7    Motor Control Coprocessors

8.8    Using the Event Manager within Texas Instrument’s DSPs

8.8.1    Event Manager Structure

8.8.2    Software Implementation of Carrier-Based PWM

8.8.3    Software Implementation of SVM

8.8.4    Hardware Implementation of SVM

8.8.5    Deadtime

8.8.6    Individual PWM Channels

8.9    Using Flash Memories

8.10  About Resolution and Accuracy of PWM Implementation

8.11  Conclusion

References

Chapter 9    Practical Aspects in Closed-Loop Control

9.1    Role, Schematics

9.2    Current Measurement—Synchronization with PWM

9.2.1    Shunt Resistor

9.2.2    Hall Effect Sensors

9.2.3    Current Sensing Transformer

9.2.4    Synchronization with PWM

9.3    Current Sampling Rate—Oversampling

9.4    Current Control in (a,b,c) Coordinates

9.5    Current Transforms (3->2)—Software Calculation of Transforms

9.6    Current Control in (d, q)—Models—PI Calibration

9.7    Anti-Wind-Up Protection—Output Limitation and Range Definition

9.8    Conclusion

References

Chapter 10  Intelligent Power Modules

10.1  Market and Technology Considerations

10.1.1  History

10.1.2  Advantages and Drawbacks

10.1.3  IGBT Chip

10.1.4  Gate Driver

10.1.5  Packaging

10.1.6  Other Approaches

10.2  Review of IPM Devices Available

10.3  Use of IPM Devices

10.3.1  Local Power Supplies

10.3.2  Clamping the Regenerative Energy

References

PART II  Other Topologies

Chapter 11  Resonant Three-Phase Converters

11.1  Reducing Switching Losses through Resonance versus Advanced PWM Devices

11.2  Do We Still Get Advantages from Resonant High Power Converters?

11.3  Zero Voltage Transition of IGBT Devices

11.3.1  Power Semiconductor Devices under Zero Voltage Switching

11.3.2  Step-Down Conversion

11.3.3  Step-Up Power Transfer

11.3.4  Bi-Directional Power Transfer

11.4  Zero Current Transition of IGBT Devices

11.4.1  Power Semiconductor Devices under Zero Current Switching

11.4.2  Step-Down Conversion

11.4.3  Step-Up Conversion

11.5  Possible Topologies of Quasi-Resonant Converters

11.5.1  Pole Voltage

11.5.2  Resonant DC Bus

11.6  Special PWM for Three-Phase Resonant Converters

Problems

References

Chapter 12  Component-Minimized Three-Phase Power Converters

12.1  Solutions for Reduction of Number of Components

12.1.1  New Inverter Topologies

12.1.2  Direct Converters

12.2  B4 Inverter

12.2.1  Vectorial Analysis of the B4 Inverter

12.2.2  Definition of PWM Algorithms for the B4 Inverter

12.2.3  Influence of DC Voltage Variations and Method for Their Compensation

12.3  Two-Leg Converter Used in Feeding a Two-Phase IM …

12.4  Z-Source Inverter

12.5  Conclusion

References

Chapter 13  AC/DC Grid Interface Based on the Three-Phase Voltage Source Converter

13.1  Particularities—Control Objectives—Active Power Control

13.2  Meaning of PWM in the Control System

13.2.1  Single-Switch Applications

13.2.2  Six-Switch Converters

13.2.3  Topologies with Current Injection Devices

13.3  Closed-Loop Current Control Methods

13.3.1  Introduction

13.3.2  PI Current Loop

13.3.3  Transient Response Times

13.3.4  Limitation of the (vd,vq) Voltages

13.3.5  Minimum Time Current Control

13.3.6  Cross-Coupling Terms

13.3.7  Application of the Whole Available Voltage on the d-Axis

13.3.8  Switch Table and Hysteresis Control

13.3.9  Phase Current Tracking Methods

13.3.9.1  P-I-S controller

13.3.9.2  Feed-Forward Controller

13.4  Grid Synchronization

Problems

References

Chapter 14  Parallel and Interleaved Power Converters

14.1  Comparison between Converters Built of High-Power Devices and Solutions Based on Multiple Parallel Lower-Power Devices

14.2  Hardware Constraints in Paralleling IGBTs

14.3  Gate Control Designs for Equal Current Sharing

14.4  Advantages and Disadvantages of Paralleling Inverter Legs with Respect to Using Parallel Devices

14.4.1  Inter-Phase Reactors

14.4.2  Control System

14.4.3  Converter Control Solutions

14.4.4  Current Control

14.4.5  Small-Signal Modeling for (d, q) Control in a Parallel Converter System

14.4.6  (d, q) versus (d, q, 0) Control

14.5  Interleaved Operation of Power Converters

14.6  Circulating Currents

14.7  Selection of the PWM Algorithm

14.8  System Controller

14.9  Conclusion

Problems

References

Chapter 15  AC/DC and DC/AC Current Source Converters

15.1  Introduction

15.2  Current Commutation

15.3  Using Switching Functions to Define Operation

15.4  PWM Control

15.4.1  Trapezoidal Modulation

15.4.2  Harmonic Elimination Programmed Modulation

15.4.3  Sinusoidal Modulation

15.4.4  Space Vector Modulation

15.5  Optimization of PWM Algorithms

15.5.1  Minimum Squared Error

15.5.2  Circular Corona

15.5.3  Reducing the Low Harmonics from the Geometrical Locus

15.5.4  Comparative Results

15.6  Resonance in the AC-Side of the CSI Converter-Filter Assembly

15.7  Conclusions

References

Chapter 16  AC/AC Matrix Converters as a 9-Switch Topology

16.1  Background

16.2  Implementation of the Power Switch

16.3  Current Commutation

16.4  Clamping the Reactive Energy

16.5  PWM Algorithms

16.5.1  Sinusoidal Carrier-Based PWM

16.5.2  Space Vector Modulation Considering All Possible Switching Vectors

16.5.2.1  Selection of the Closest Rotating and Stationary Vectors

16.5.2.2  Definition of Time Intervals

16.5.3  Space Vector Modulation Considering Stationary Vectors Only

16.5.4  Indirect Matrix Converter (Sparse Converter)

16.5.5  Implementation of PWM Control

16.6  Conclusion

References

Chapter 17  Multilevel Converters

17.1  Principle and Hardware Topologies

17.1.1  H-Bridge Modules

17.1.2  Flying Capacitor Multilevel Converter

17.1.3  Diode-Clamped Multilevel Converter

17.1.4  Combination Converters

17.2  Design and Rating Considerations

17.2.1  Semiconductor Ratings

17.2.2  Passive Filters

17.3  PWM Algorithms

17.3.1  Principle

17.3.2  Sinusoidal PWM

17.3.3  Space Vector Modulation

17.3.4  Harmonic Elimination

17.4  Application Specifics

17.4.1  HVDC Lines

17.4.2  FACTS

17.4.3  Motor Drives

References

Chapter 18  Use of IPM within a “Network of Switches” Concept

18.1  Grid Interface for Extended Power Range

18.2  Matrix Converter Made Up of VSI Power Modules

18.2.1  Conventional Matrix Converter Packaged with VSI Modules

18.2.2  Dyadic Matrix Converter with VSI Modules

18.3  Multilevel Converter Made Up of Multiple Power Modules

18.4  New Topology Built of Power Modules and Its Applications

18.4.1  Cyclo-Converters

18.4.2  Control System

18.4.3  PWM Generator

18.5  Generalized Vector Transform

18.6  IPM in IGBT-Based AC/AC Direct Converters Built of Current Source Inverter Modules

18.6.1  Hardware Development

18.6.2  Product Requirements

18.6.3  Performance

18.7  Using MATLAB-Based Multimillion FFT for Analysis of Direct AC/AC Converters

18.7.1  Introduction to Harmonic Analysis of Direct or Matrix Converters

18.7.2  Parameter Selection

18.7.3  FFT in MATLAB

18.7.4  Analysis of a Direct Converter

18.7.5  Automation of Multipoint THD and HCF Analysis

18.7.6  Comments on Computer Performance

References

Index

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.141.42.116