0%

Book Description

This second edition of Digital Optical Communications provides a comprehensive treatment of the modern aspects of coherent homodyne and self-coherent reception techniques using algorithms incorporated in digital signal processing (DSP) systems and DSP-based transmitters to overcome several linear and nonlinear transmission impairments and frequency mismatching between the local oscillator and the carrier, as well as clock recovery and cycle slips. These modern transmission systems have emerged as the core technology for Tera-bits per second (bps) and Peta-bps optical Internet for the near future.

Featuring extensive updates to all existing chapters, Advanced Digital Optical Communications, Second Edition:

  • Contains new chapters on optical fiber structures and propagation, optical coherent receivers, DSP equalizer algorithms, and high-order spectral DSP receivers
  • Examines theoretical foundations, practical case studies, and MATLAB® and Simulink® models for simulation transmissions
  • Includes new end-of-chapter practice problems and useful appendices to supplement technical information

Downloadable content available with qualifying course adoption

Advanced Digital Optical Communications, Second Edition supplies a fundamental understanding of digital communication applications in optical communication technologies, emphasizing operation principles versus heavy mathematical analysis. It is an ideal text for aspiring engineers and a valuable professional reference for those involved in optics, telecommunications, electronics, photonics, and digital signal processing.

Table of Contents

  1. Cover Page
  2. Half title page
  3. Copyright page
  4. Dedication
  5. Contents
  6. Preface
  7. Acknowledgments
  8. Author
  9. Acronyms
  10. Chapter 1 Introduction
    1. 1.1 Digital Optical Communications and Transmission Systems: Challenging Issues
    2. 1.2 Enabling Technologies
      1. 1.2.1 Modulation Formats and Optical Signal Generation
        1. 1.2.1.1 Binary Level
        2. 1.2.1.2 Binary and Multilevel
        3. 1.2.1.3 In-Phase and Quadrature-Phase Channels
        4. 1.2.1.4 External Optical Modulation
      2. 1.2.2 Advanced Modulation Formats
      3. 1.2.3 Incoherent Optical Receivers
      4. 1.2.4 DSP-Coherent Optical Receivers
      5. 1.2.5 Transmission of Ultra-Short Pulse Sequence
      6. 1.2.6 Electronic Equalization
        1. 1.2.6.1 Feed-Forward Equalizer
        2. 1.2.6.2 Decision Feedback Equalization
        3. 1.2.6.3 Minimum Mean Square Error Equalization
        4. 1.2.6.4 Placement of Equalizers
        5. 1.2.6.5 MLSE Electronic Equalizers
      7. 1.2.7 Ultra-Short Pulse Transmission
    3. 1.3 Organization of the Book Chapters
    4. References
  11. Chapter 2 Optical Fibers
    1. 2.1 Overview
    2. 2.2 Optical Fiber: General Properties
      1. 2.2.1 Geometrical Structures and Index Profile
      2. 2.2.2 Fundamental Mode of Weakly Guiding Fibers
        1. 2.2.2.1 Solutions of the Wave Equation for Step-Index Fiber
        2. 2.2.2.2 Single-Mode and Few-Mode Conditions
        3. 2.2.2.3 Gaussian Approximation: Fundamental Mode Revisited
        4. 2.2.2.4 Cutoff Properties
        5. 2.2.2.5 Power Distribution
        6. 2.2.2.6 Approximation of Spot Size r0 of Step-Index Fiber
      3. 2.2.3 Equivalent Step-Index Description
    3. 2.3 Nonlinear Effects
      1. 2.3.1 Nonlinear Self-Phase Modulation Effects
      2. 2.3.2 Self-Phase Modulation
      3. 2.3.3 Cross-Phase Modulation
      4. 2.3.4 Stimulated Scattering Effects
        1. 2.3.4.1 Stimulated Brillouin Scattering
        2. 2.3.4.2 Stimulated Raman Scattering
        3. 2.3.4.3 Four-Wave Mixing Effects
    4. 2.4 Signal Attenuation in Optical Fibers
      1. 2.4.1 Intrinsic or Material Absorption Losses
      2. 2.4.2 Waveguide Losses
      3. 2.4.3 Attenuation Coefficient
    5. 2.5 Signal Distortion through Optical Fibers
      1. 2.5.1 Material Dispersion
      2. 2.5.2 Waveguide Dispersion
        1. 2.5.2.1 Alternative Expression for Waveguide Dispersion Parameter
        2. 2.5.2.2 Higher-Order Dispersion
      3. 2.5.3 Polarization-Mode Dispersion
    6. 2.6 Transfer Function of Single-Mode Fibers
      1. 2.6.1 Linear Transfer Function
      2. 2.6.2 Nonlinear Fiber Transfer Function
      3. 2.6.3 Transmission Bit Rate and the Dispersion Factor
    7. 2.7 Fiber Nonlinearity Revisited
      1. 2.7.1 SPM and XPM Effects
      2. 2.7.2 SPM and Modulation Instability
      3. 2.7.3 Effects of Mode Hopping
      4. 2.7.4 SPM and Intrachannel Nonlinear Effects
      5. 2.7.5 Nonlinear Phase Noises in Cascaded Multispan Optical Link
    8. 2.8 Special Dispersion Optical Fibers
    9. 2.9 SMF Transfer Function: Simplified Linear and Nonlinear Operating Region
    10. 2.10 Numerical Solution: Split-Step Fourier Method
      1. 2.10.1 Symmetrical SSFM
        1. 2.10.1.1 Modeling of PMD
        2. 2.10.1.2 Optimization of Symmetrical SSFM
    11. 2.11 Concluding Remarks
    12. References
  12. Chapter 3 Optical Transmitters
    1. 3.1 Optical Modulators
      1. 3.1.1 Phase Modulators
      2. 3.1.2 Intensity Modulators
        1. 3.1.2.1 Phasor Representation and Transfer Characteristics
        2. 3.1.2.2 Chirp-Free Optical Modulators
      3. 3.1.3 Structures of Photonic Modulators
      4. 3.1.4 Operating Parameters of Optical Modulators
    2. 3.2 Return-to-Zero Optical Pulses
      1. 3.2.1 Generation
      2. 3.2.2 Phasor Representation
        1. 3.2.2.1 Phasor Representation of CSRZ Pulses
        2. 3.2.2.2 Phasor Representation of RZ33 Pulses
    3. 3.3 Differential Phase Shift Keying
      1. 3.3.1 Background
      2. 3.3.2 Optical DPSK Transmitter
    4. 3.4 Generation of Modulation Formats
      1. 3.4.1 Amplitude–Modulation ASK-NRZ and ASK-RZ
        1. 3.4.1.1 Amplitude–Modulation OOK-RZ Formats
        2. 3.4.1.2 Amplitude–Modulation CSRZ Formats
      2. 3.4.2 Discrete Phase Modulation NRZ Formats
        1. 3.4.2.1 Differential Phase Shift Keying
        2. 3.4.2.2 Differential Quadrature Phase Shift Keying
        3. 3.4.2.3 Generation of M-ary Amplitude Differential Phase Shift Keying Using One MZIM
      3. 3.4.3 Continuous Phase Modulation PM-NRZ Formats
        1. 3.4.3.1 Linear and Nonlinear MSK
        2. 3.4.3.2 MSK as a Special Case of CPFSK
        3. 3.4.3.3 MSK as ODQPSK
        4. 3.4.3.4 Configuration of Photonic MSK Transmitter Using Two Cascaded Electro-Optic Phase Modulators
        5. 3.4.3.5 Configuration of Optical MSK Transmitter Using Mach–Zehnder Intensity Modulators: I–Q Approach
      4. 3.4.4 Single-Sideband Optical Modulators
        1. 3.4.4.1 Operating Principles
        2. 3.4.4.2 Optical RZ MSK
      5. 3.4.5 Multicarrier Multiplexing Optical Modulators
      6. 3.4.6 Spectra of Modulation Formats
    5. 3.5 Spectral Characteristics of Digital Modulation Formats
    6. 3.6 I–Q Integrated Modulators
      1. 3.6.1 In-Phase and Quadrature-Phase Optical Modulators
      2. 3.6.2 I–Q Modulator and Electronic Digital Multiplexing for Ultra-High Bit Rates
    7. 3.7 Digital-to-Analog Converter for DSP-Based Modulation and Transmitter
      1. 3.7.1 Fujitsu DAC
      2. 3.7.2 Structure
      3. 3.7.3 Generation of I and Q Components
    8. 3.8 Concluding Remarks
    9. 3.9 Problems on Transmitter (Tx) for Advanced Modulation Formats for Long-Haul Transmission Systems
    10. References
  13. Chapter 4 Optical Receivers and Transmission Performance: Fundamentals
    1. 4.1 Introduction
    2. 4.2 Digital Optical Receivers
      1. 4.2.1 Photonic and Electronic Noise
        1. 4.2.1.1 Electronic Noise of Receiver
        2. 4.2.1.2 Shot Noise
        3. 4.2.1.3 Thermal Noise
        4. 4.2.1.4 ASE Noise of Optical Amplifier
        5. 4.2.1.5 Optical Amplifier Noise Figure
        6. 4.2.1.6 Electronic Beating Noise
        7. 4.2.1.7 Accumulated ASE Noise in Cascaded Optical Amplifiers
    3. 4.3 Performance Evaluation of Binary Amplitude Modulation Format
      1. 4.3.1 Received Signals
        1. 4.3.1.1 Case 1: OFF or a Transmitted 0 Is Received
        2. 4.3.1.2 Case 2: ON Transmitted 1 Received
      2. 4.3.2 Probability Distribution Functions
      3. 4.3.3 Receiver Sensitivity
      4. 4.3.4 OSNR and Noise Impact
        1. 4.3.4.1 Optical Signal-to-Noise Ratio
        2. 4.3.4.2 Determination of the Impact of Noise
    4. 4.4 Quantum Limit of Optical Receivers under Different Modulation Formats
      1. 4.4.1 Direct Detection
      2. 4.4.2 Coherent Detection
      3. 4.4.3 Coherent Detection with Matched Filter
        1. 4.4.3.1 Coherent ASK Systems
        2. 4.4.3.2 Coherent Phase and Frequency Shift Keying Systems
    5. 4.5 Binary Coherent Optical Receiver
    6. 4.6 Noncoherent Detection for Optical DPSK and MSK
      1. 4.6.1 Photonic Balanced Receiver
      2. 4.6.2 Optical Frequency Discrimination Receiver
    7. 4.7 Transmission Impairments
      1. 4.7.1 Chromatic Dispersion
      2. 4.7.2 Chromatic Linear Dispersion
      3. 4.7.3 Polarization-Mode Dispersion
      4. 4.7.4 Fiber Nonlinearity
    8. 4.8 MATLAB® and Simulink® Simulator for Optical Communications Systems
      1. 4.8.1 Fiber Propagation Model
        1. 4.8.1.1 Nonlinear Schrödinger Equation
        2. 4.8.1.2 Symmetrical Split-Step Fourier Method
        3. 4.8.1.3 Modeling of PMD
        4. 4.8.1.4 Optimizing the Symmetrical SSFM
        5. 4.8.1.5 Fiber Propagation in Linear Domain
      2. 4.8.2 Nonlinear Effects via Fiber Propagation Model
        1. 4.8.2.1 SPM Effects
        2. 4.8.2.2 XPM Effects
        3. 4.8.2.3 FWM Effects
        4. 4.8.2.4 SRS Effects
        5. 4.8.2.5 SBS Effects
    9. 4.9 Performance Evaluation
      1. 4.9.1 BER from Monte Carlo Method
      2. 4.9.2 BER and Q Factor from Probability Distribution Functions
      3. 4.9.3 Histogram Approximation
      4. 4.9.4 Optical SNR
      5. 4.9.5 Eye Opening Penalty
      6. 4.9.6 Statistical Evaluation Techniques
        1. 4.9.6.1 Multi-Gaussian Distributions via Expectation Maximization Theorem
        2. 4.9.6.2 Selection of Number of Gaussian Distributions for MGD Fitting
      7. 4.9.7 Generalized Pareto Distribution
        1. 4.9.7.1 Selection of Threshold for GPD Fitting
        2. 4.9.7.2 Validation of Novel Statistical Methods
      8. 4.9.8 Novel BER Statistical Techniques
        1. 4.9.8.1 MGDs and EM Theorem
    10. 4.10 Effects of Source Linewidth
    11. 4.11 Concluding Remarks
    12. 4.12 Problems
    13. Appendix 4A: Sellmeier’s Coefficients for Different Core Materials
    14. Appendix 4B: Total Equivalent Electronic Noise
    15. References
  14. Chapter 5 Optical Coherent Detection and Processing Systems
    1. 5.1 Introduction
    2. 5.2 Coherent Receiver Components
    3. 5.3 Coherent Detection
      1. 5.3.1 Optical Heterodyne Detection
        1. 5.3.1.1 ASK Coherent System
        2. 5.3.1.2 PSK Coherent System
        3. 5.3.1.3 Differential Detection
        4. 5.3.1.4 FSK Coherent System
      2. 5.3.2 Optical Homodyne Detection
        1. 5.3.2.1 Detection and Optical PLL
        2. 5.3.2.2 Quantum Limit Detection
        3. 5.3.2.3 Linewidth Influences
      3. 5.3.3 Optical Intradyne Detection
    4. 5.4 Self-Coherent Detection and Electronic DSP
    5. 5.5 Electronic Amplifiers: Responses and Noise
      1. 5.5.1 Introduction
      2. 5.5.2 Wideband TIAs
        1. 5.5.2.1 Single Input, Single Output
        2. 5.5.2.2 Differential Inputs, Single/Differential Output
      3. 5.5.3 Amplifier Noise Referred to Input
    6. 5.6 Digital Signal Processing Systems and Coherent Optical Reception
      1. 5.6.1 DSP-Assisted Coherent Detection
        1. 5.6.1.1 DSP-Based Reception Systems
      2. 5.6.2 Coherent Reception Analysis
        1. 5.6.2.1 Sensitivity
        2. 5.6.2.2 Shot-Noise-Limited Receiver Sensitivity
        3. 5.6.2.3 Receiver Sensitivity under Nonideal Conditions
      3. 5.6.3 Digital Processing Systems
        1. 5.6.3.1 Effective Number of Bits
        2. 5.6.3.2 Digital Processors
    7. 5.7 Concluding Remarks
    8. References
  15. Chapter 6 Differential Phase Shift Keying Photonic Systems
    1. 6.1 Introduction
      1. 6.2 Optical DPSK Modulation and Formats
        1. 6.2.1 Generation of RZ Pulses
        2. 6.2.2 Phasor Representation
        3. 6.2.3 Phasor Representation of CSRZ Pulses
        4. 6.2.4 Phasor Representation of RZ33 Pulses
        5. 6.2.5 Discrete Phase Modulation—DPSK
          1. 6.2.5.1 Principles of DPSK and Theoretical Treatment of DPSK and DQPSK Transmission
          2. 6.2.5.2 Optical DPSK Transmitter
        6. 6.2.6 DPSK-Balanced Receiver
    2. 6.3 DPSK Transmission Experiment
      1. 6.3.1 Components and Operational Characteristics
      2. 6.3.2 Spectra of Modulation Formats
      3. 6.3.3 Dispersion Tolerance of Optical DPSK Formats
      4. 6.3.4 Optical Filtering Effects
      5. 6.3.5 Performance of CSRZ-DPSK over a Dispersion-Managed Optical Transmission Link
      6. 6.3.6 Mutual Impact of Adjacent 10G and 40G DWDM Channels
    3. 6.4 DQPSK Modulation Format
      1. 6.4.1 DQPSK
      2. 6.4.2 Offset DQPSK Modulation Format
        1. 6.4.2.1 Influence of the Minimum Symbol Distance on Receiver Sensitivity
        2. 6.4.2.2 Influence of Self-Homodyne Detection on Receiver Sensitivity
      3. 6.4.3 MATLAB® and Simulink® Model
        1. 6.4.3.1 Simulink® Model
        2. 6.4.3.2 Eye Diagrams
    4. 6.5 Comparisons of Different Formats and ASK and DPSK
      1. 6.5.1 BER and Receiver Sensitivity
        1. 6.5.1.1 RZ-ASK and NRZ-ASK
        2. 6.5.1.2 RZ-DPSK and NRZ-DQPSK
        3. 6.5.1.3 RZ-ASK and NRZ-DQPSK
      2. 6.5.2 Dispersion Tolerance
      3. 6.5.3 PMD Tolerance
      4. 6.5.4 Robustness toward Nonlinear Effects
        1. 6.5.4.1 Robustness toward SPM
        2. 6.5.4.2 Robustness toward Cross-Phase Modulation
        3. 6.5.4.3 Robustness toward Four-Wave Mixing
        4. 6.5.4.4 Robustness toward Stimulated Raman Scattering
        5. 6.5.4.5 Robustness toward Stimulated Brillouin Scattering
    5. 6.6 Concluding Remarks
    6. Appendix 6A: MATLAB® and Simulink® Model for DQPSK Optical System
    7. References
  16. Chapter 7 Multilevel Amplitude and Phase Shift Keying Optical Transmission
    1. 7.1 Introduction
    2. 7.2 Amplitude and Differential Phase Modulation
      1. 7.2.1 ASK Modulation
        1. 7.2.1.1 NRZ-ASK Modulation
        2. 7.2.1.2 RZ-ASK Modulation
        3. 7.2.1.3 CSRZ-ASK Modulation
      2. 7.2.2 Differential Phase Modulation
      3. 7.2.3 Comparison of Different Amplitude and Phase Optical Modulation Formats
      4. 7.2.4 Multilevel Optical Transmitter Using Single Dual-Drive MZIM Transmitter
    3. 7.3 MADPSK Optical Transmission
      1. 7.3.1 Performance Evaluation
      2. 7.3.2 Implementation of MADPSK Transmission Models
      3. 7.3.3 Transmitter Model
      4. 7.3.4 Receiver Model
      5. 7.3.5 Transmission Fiber and Dispersion Compensation Fiber Model
      6. 7.3.6 Transmission Performance
        1. 7.3.6.1 Signal Spectrum, Signal Constellation, and Eye Diagram
        2. 7.3.6.2 BER Evaluation
        3. 7.3.6.3 ASK Subsystem Error Probability
        4. 7.3.6.4 DQPSK Subsystem Error Probability Evaluation
        5. 7.3.6.5 MADPSK System BER Evaluation
        6. 7.3.6.6 Chromatic DT
        7. 7.3.6.7 Critical Issues
        8. 7.3.6.8 Offset Detection
    4. 7.4 Star 16-QAM Optical Transmission
      1. 7.4.1 Introduction
      2. 7.4.2 Design of 16-QAM Signal Constellation
      3. 7.4.3 Signal Constellation
      4. 7.4.4 Optimum Ring Ratio for Star Constellation
        1. 7.4.4.1 Square 16-QAM
        2. 7.4.4.2 Offset-Square 16-QAM
      5. 7.4.5 Detection Methods
        1. 7.4.5.1 Direct Detection
        2. 7.4.5.2 Coherent Detection
      6. 7.4.6 Transmitter Design
      7. 7.4.7 Receiver for 16-Star QAM
        1. 7.4.7.1 Coherent Detection Receiver without Phase Estimation
        2. 7.4.7.2 Coherent Detection Receiver with Phase Estimation
        3. 7.4.7.3 Direct Detection Receiver
        4. 7.4.7.4 Coherent Receiver without Phase Estimation
        5. 7.4.7.5 Remarks
      8. 7.4.8 Other Multilevel and Multi-Subcarrier Modulation Formats for 100 Gbps Ethernet Transmission
        1. 7.4.8.1 Multilevel Modulation
        2. 7.4.8.2 Optical Orthogonal Frequency Division Multiplexing
        3. 7.4.8.3 100 Gbps 8-DPSK–2-ASK 16-Star QAM
      9. 7.4.9 Concluding Remarks
        1. 7.4.9.1 Offset MADPSK Modulation
        2. 7.4.9.2 MAMSK Modulation
        3. 7.4.9.3 Star QAM Coherent Detection
    5. References
  17. Chapter 8 Continuous Phase Modulation Format Optical Systems
    1. 8.1 Introduction
    2. 8.2 Generation of Optical MSK-Modulated Signals
    3. 8.3 Detection of M-ary CPFSK-Modulated Optical Signal
      1. 8.3.1 Optical MSK Transmitter Using Parallel I–Q MZIMs
        1. 8.3.1.1 Linear MSK
        2. 8.3.1.2 Weakly Nonlinear MSK
        3. 8.3.1.3 Strongly Nonlinear MSK
      2. 8.3.2 Optical MSK Receivers
    4. 8.4 Optical Binary Amplitude MSK Format
      1. 8.4.1 Generation
      2. 8.4.2 Optical MSK
    5. 8.5 Numerical Results and Discussion
      1. 8.5.1 Transmission Performance of Linear and Nonlinear Optical MSK Systems
      2. 8.5.2 Transmission Performance of Binary Amplitude Optical MSK Systems
    6. 8.6 Concluding Remarks
    7. References
  18. Chapter 9 Frequency Discrimination Reception for Optical Minimum Shift Keying
    1. 9.1 Introduction
    2. 9.2 ONFDR Operational Principles
    3. 9.3 Receiver Modeling
    4. 9.4 Receiver Design
      1. 9.4.1 Optical Filter Passband
      2. 9.4.2 Center Frequency of the Optical Filter
      3. 9.4.3 Optimum ODL
    5. 9.5 ONFDR Optimum Bandwidth and Center Frequency
    6. 9.6 Receiver Performance: Numerical Validation
    7. 9.7 ONFDR Robustness to Chromatic Dispersion
      1. 9.7.1 Dispersion Tolerance
      2. 9.7.2 10 Gbps Transmission
      3. 9.7.3 Robustness to PMD of ONFDR
      4. 9.7.4 Resilience to Nonlinearity (SPM) of ONFDR
      5. 9.7.5 Transmission Limits of OFDR-Based Optical MSK Systems
    8. 9.8 Dual-Level Optical MSK
      1. 9.8.1 Generation Scheme
      2. 9.8.2 Incoherent Detection Technique
      3. 9.8.3 Optical Power Spectrum
      4. 9.8.4 Receiver Sensitivity
      5. 9.8.5 Remarks
    9. 9.9 Concluding Remarks
    10. References
  19. Chapter 10 Partial Responses and Single-Sideband Optical Modulation
    1. 10.1 Partial Responses: DBM Formats
      1. 10.1.1 Introduction
      2. 10.1.2 DBM Formatter
      3. 10.1.3 40 Gbps DB Optical Fiber Transmission Systems
      4. 10.1.4 Electro-Optic Duobinary Transmitter
      5. 10.1.5 DB Encoder
      6. 10.1.6 External Modulator
      7. 10.1.7 DB Transmitters and Precoder
      8. 10.1.8 Alternative Phase DB Transmitter
      9. 10.1.9 Fiber Propagation
    2. 10.2 DB Direct Detection Receiver
    3. 10.3 System Transmission and Performance
      1. 10.3.1 DB Encoder
      2. 10.3.2 Transmitter
      3. 10.3.3 Transmission Performance
      4. 10.3.4 Alternating-Phase and Variable-Pulse-Width DB: Experimental Setup and Transmission Performance
        1. 10.3.4.1 Transmission Setup
        2. 10.3.4.2 Test Bed for Variable-Pulse-Width Alternating-Phase DBM Optical Transmission
        3. 10.3.4.3 CSRZ-DPSK Experimental Transmission Platform and Transmission Performance
      5. 10.3.5 Remarks
    4. 10.4 DWDM VSB Modulation-Format Optical transmission
      1. 10.4.1 Transmission System
      2. 10.4.2 VSB Filtering and DWDM Channels
      3. 10.4.3 Transmission Dispersion and Compensation Fibers
      4. 10.4.4 Transmission Performance
        1. 10.4.4.1 Effects of Channel Spacing on Q Factor
        2. 10.4.4.2 Effects of GVD on Q Factor
        3. 10.4.4.3 Effects of Filter Passband on the Q Factor
    5. 10.5 Single-Sideband Modulation
      1. 10.5.1 Hilbert Transform SSB MZ Modulator Simulation
      2. 10.5.2 SSB Demodulator Simulation
    6. 10.6 Concluding Remarks
    7. References
  20. Chapter 11 OFDM Optical Transmission Systems
    1. 11.1 Introduction
      1. 11.1.1 Principles of oOFDM: OFDM as a Multicarrier Modulation Format
        1. 11.1.1.1 Spectra
        2. 11.1.1.2 Orthogonality
        3. 11.1.1.3 Subcarriers and Pulse Shaping
        4. 11.1.1.4 OFDM Receiver
      2. 11.1.2 FFT- and IFFT-Based OFDM Principles
    2. 11.2 Optical OFDM Transmission Systems
      1. 11.2.1 Impacts of Nonlinear Modulation Effects on Optical OFDM
      2. 11.2.2 Dispersion Tolerance
      3. 11.2.3 Resilience to PMD Effects
    3. 11.3 OFDM and DQPSK Formats for 100 Gbps Ethernet
    4. 11.4 Concluding Remarks
    5. References
  21. Chapter 12 Digital Signal Processing in Optical Transmission Systems under Self-Homodyne Coherent Reception
    1. 12.1 Introduction
    2. 12.2 Electronic Digital Processing Equalization
    3. 12.3 System Representation of Equalized Transfer Function
      1. 12.3.1 Generic Equalization Formulation
        1. 12.3.1.1 Signal Representation and Channel Pure Phase Distortion
        2. 12.3.1.2 Equalizers at Receiver
        3. 12.3.1.3 Equalizers at the Transmitter
        4. 12.3.1.4 Equalization Shared between Receiver and Transmitter
        5. 12.3.1.5 Performance of FFE and DFE
      2. 12.3.2 Impulse and Step Responses of the Single-Mode Optical Fiber
    4. 12.4 Electrical Linear Double-Sampling Equalizers for Duobinary Modulation Formats for Optical Transmission
    5. 12.5 MLSE Equalizer for Optical MSK Systems
      1. 12.5.1 Configuration of MLSE Equalizer in OFDR
      2. 12.5.2 MLSE Equalizer with Viterbi Algorithm
      3. 12.5.3 MLSE Equalizer with Reduced-State Template Matching
    6. 12.6 MLSE Scheme Performance
      1. 12.6.1 Performance of MLSE Schemes in 40 Gbps Transmission
      2. 12.6.2 Transmission of 10 Gbps Optical MSK Signals over 1472 km SSMF Uncompensated Optical Link
      3. 12.6.3 Performance Limits of Viterbi-MLSE Equalizers
      4. 12.6.4 Viterbi-MLSE Equalizers for PMD Mitigation
      5. 12.6.5 The Uncertainty and Transmission Limitation of the Equalization Process
    7. 12.7 Nonlinear MLSE Equalizers for MSK Optical Transmission Systems
      1. 12.7.1 Nonlinear MLSE
      2. 12.7.2 Trellis Structure and Viterbi Algorithm
        1. 12.7.2.1 Trellis Structure
        2. 12.7.2.2 Viterbi Algorithm
      3. 12.7.3 Optical Fiber as an FSM
    8. 12.8 Uncertainties in Optical Signal Transmission
      1. 12.8.1 Uncertainty in ASK Modulation Optical Receiver without Equalization
      2. 12.8.2 Uncertainty in MSK Optical Receiver with Equalization
    9. 12.9 Electronic Dispersion Compensation of Modulation Formats
    10. 12.10 Concluding Remarks
    11. References
  22. Chapter 13 DSP-Based Coherent Optical Transmission Systems
    1. 13.1 Introduction
    2. 13.2 Quadrature Phase Shift Keying Systems
      1. 13.2.1 Carrier Phase Recovery
      2. 13.2.2 112G QPSK Coherent Transmission Systems
      3. 13.2.3 I–Q Imbalance Estimation Results
      4. 13.2.4 Skew Estimation
      5. 13.2.5 Fractionally Spaced Equalization of CD and PMD
      6. 13.2.6 Linear and Nonlinear Equalization, and Back Propagation Compensation of Linear and Nonlinear Phase Distortion
    3. 13.3 16QAM Systems
    4. 13.4 Terabits/Second Superchannel Transmission Systems
      1. 13.4.1 Overview
      2. 13.4.2 Nyquist Pulse and Spectra
      3. 13.4.3 Superchannel System Requirements
        1. 13.4.3.1 Transmission Distance
        2. 13.4.3.2 CD Tolerance
        3. 13.4.3.3 PMD Tolerance
        4. 13.4.3.4 SOP Rotation Speed
        5. 13.4.3.5 Modulation Format
        6. 13.4.3.6 Spectral Efficiency
      4. 13.4.4 System Structure
        1. 13.4.4.1 DSP-Based Coherent Receiver
        2. 13.4.4.2 Optical Fourier Transform–Based Structure
        3. 13.4.4.3 Processing
      5. 13.4.5 Timing Recovery in Nyquist QAM Channel
      6. 13.4.6 128 Gbps 16QAM Superchannel Transmission
      7. 13.4.7 450 Gbps 32QAM Nyquist Transmission Systems
      8. 13.4.8 DSP-Based Heterodyne Coherent Reception Systems
    5. 13.5 Concluding Remarks
    6. References
  23. Chapter 14 DSP Algorithms and Coherent Transmission Systems
    1. 14.1 Introduction
    2. 14.2 General Algorithms for Optical Communications Systems
      1. 14.2.1 Equalization of DAC-Limited Bandwidth for Tbps Transmission
        1. 14.2.1.1 Motivation
        2. 14.2.1.2 Experimental Setup and Bandwidth-Limited Equalization
      2. 14.2.2 Linear Equalization
        1. 14.2.2.1 Basic Assumptions
        2. 14.2.2.2 Zero-Forcing Linear Equalization
        3. 14.2.2.3 ZF-LE for Fiber as Transmission Channel
        4. 14.2.2.4 Feedback Transversal Filter
        5. 14.2.2.5 Tolerance to Additive Gaussian Noises
        6. 14.2.2.6 Equalization with Minimizing MSE in Equalized Signals
        7. 14.2.2.7 Constant Modulus Algorithm for Blind Equalization and Carrier Phase Recovery
      3. 14.2.3 NLE or DFE
        1. 14.2.3.1 DD Cancellation of ISI
        2. 14.2.3.2 Zero-Forcing Nonlinear Equalization
        3. 14.2.3.3 Linear and Nonlinear Equalization of Factorized Channel Response
        4. 14.2.3.4 Equalization with Minimizing MSE in Equalized Signals
    3. 14.3 Maximum A Posteriori Technique for Phase Estimation
      1. 14.3.1 Method
      2. 14.3.2 Estimates
    4. 14.4 Carrier Phase Estimation
      1. 14.4.1 Remarks
      2. 14.4.2 Correction of Phase Noise and Nonlinear Effects
      3. 14.4.3 Forward Phase Estimation QPSK Optical Coherent Receivers
      4. 14.4.4 Carrier Recovery in Polarization Division Multiplexed Receivers: A Case Study
        1. 14.4.4.1 FO Oscillations and Q Penalties
        2. 14.4.4.2 Algorithm and Demonstration of Carrier Phase Recovery
        3. 14.4.4.3 Modified Gardner Phase Detector for Nyquist Coherent Optical Transmission Systems
    5. 14.5 Systems Performance of MLSE Equalizer–MSK Optical Transmission Systems
      1. 14.5.1 MLSE Equalizer for Optical MSK Systems
        1. 14.5.1.1 Configuration of MLSE Equalizer in Optical Frequency Discrimination Receiver
        2. 14.5.1.2 MLSE Equalizer with Viterbi Algorithm
        3. 14.5.1.3 MLSE Equalizer with Reduced-State Template Matching
      2. 14.5.2 MLSE Scheme Performance
        1. 14.5.2.1 Performance of MLSE Schemes in 40 Gbps Transmission Systems
        2. 14.5.2.2 Transmission of 10 Gbps Optical MSK Signals over 1472 km SSMF Uncompensated Optical Links
        3. 14.5.2.3 Performance Limits of Viterbi-MLSE Equalizers
        4. 14.5.2.4 Viterbi-MLSE Equalizers for PMD Mitigation
        5. 14.5.2.5 Uncertainty and Transmission Limitation of the Equalization Process
    6. 14.6 Adaptive Joint CR and Turbo Decoding for Nyquist Terabit Optical Transmission in the Presence of Phase Noise
      1. 14.6.1 Motivation
      2. 14.6.2 Terabit Experiment Setup and Algorithm Principle
    7. References
  24. Chapter 15 Optical Soliton Transmission System
    1. 15.1 Introduction
    2. 15.2 Fundamentals of Nonlinear Propagation Theory
    3. 15.3 Numerical Approach
      1. 15.3.1 Beam Propagation Method
      2. 15.3.2 Analytical Approach—ISM
        1. 15.3.2.1 Soliton N = 1 by Inverse Scattering
        2. 15.3.2.2 Soliton N = 2 by Inverse Scattering
    4. 15.4 Fundamental and Higher-Order Solitons
      1. 15.4.1 Soliton Evolution for N = 1, 2, 3, 4, and 5
      2. 15.4.2 Soliton Breakdown
    5. 15.5 Interaction of Fundamental Solitons
      1. 15.5.1 Two Solitons’ Interaction with Different Pulse Separation
      2. 15.5.2 Two Solitons’ Interaction with Different Relative Amplitude
      3. 15.5.3 Two Solitons’ Interaction under Different Relative Phases
      4. 15.5.4 Triple Solitons’ Interaction under Different Relative Phases
      5. 15.5.5 Triple Solitons’ Interaction with Different Relative Phases and r = 1.5
    6. 15.6 Soliton Pulse Transmission Systems and ISM
      1. 15.6.1 ISM Revisited
        1. 15.6.1.1 Step 1: Direct Scattering
        2. 15.6.1.2 Step 2: Evolution of the Scattering Data
        3. 15.6.1.3 Step 3: Inverse Spectral Transform
      2. 15.6.2 ISM Solutions for Solitons
        1. 15.6.2.1 Step 1: Direct Scattering Problem
        2. 15.6.2.2 Step 2: Evolution of the Scattering Data
        3. 15.6.2.3 Step 3: Inverse Scattering Problem
      3. 15.6.3 N-Soliton Solution (Explicit Formula)
      4. 15.6.4 Special Case A = N
      5. 15.6.5 N-Soliton Solution (Asymptotic Form as τ → ±∞)-Soliton Solution (Asymptotic Form as τ → ±∞)
      6. 15.6.6 Bound States and Multiple Eigenvalues
    7. 15.7 Interaction between Two Solitons in an Optical Fiber
      1. 15.7.1 Soliton Pair with Initial Identical Phases
      2. 15.7.2 Soliton Pair with Initial Equal Amplitudes
      3. 15.7.3 Soliton Pair with Initial Unequal Amplitudes
      4. 15.7.4 Design Strategy
    8. 15.8 Generation of Bound Solitons
      1. 15.8.1 Generation of Bound Solitons in Actively Phase Modulation Mode-Locked Fiber Ring Resonators
        1. 15.8.1.1 Introduction
        2. 15.8.1.2 Formation of Bound States in an FM MLFL
        3. 15.8.1.3 Experimental Setup and Results
        4. 15.8.1.4 Simulation of Dynamics of Bound States in an FM MLFL
      2. 15.8.2 Active Harmonic MLFL for Soliton Generation
        1. 15.8.2.1 Experiment Setup
        2. 15.8.2.2 Tunable Wavelength Harmonic Mode-Locked Pulses
        3. 15.8.2.3 Measurement of the Fundamental Frequency
        4. 15.8.2.4 Effect of the Modulation Frequency
        5. 15.8.2.5 Effect of the Modulation Depth/Index
        6. 15.8.2.6 Effect of Fiber Ring Length
        7. 15.8.2.7 Effect of Pump Power
    9. 15.9 Concluding Remarks
    10. References
  25. Chapter 16 Higher-Order Spectrum Coherent Receivers
    1. 16.1 Bispectrum Optical Receivers and Nonlinear Photonic Preprocessing
      1. 16.1.1 Introductory Remarks
      2. 16.1.2 Bispectrum
      3. 16.1.3 Bispectrum Coherent Optical Receiver
        1. 16.1.4 Triple Correlation and Bispectra
        2. 16.1.4.1 Definition
        3. 16.1.4.2 Gaussian Noise Rejection
        4. 16.1.4.3 Encoding of Phase Information
        5. 16.1.4.4 Eliminating Gaussian Noise
      4. 16.1.5 Transmission and Detection
        1. 16.1.5.1 Optical Transmission Route and Simulation Platform
        2. 16.1.5.2 FWM and Bispectrum Receiving
        3. 16.1.5.3 Performance
    2. 16.2 Nonlinear Photonic Signal Processing Using Higher-Order Spectra
      1. 16.2.1 Introductory Remarks
      2. 16.2.2 FWM and Photonic Processing for Higher-Order Spectra
        1. 16.2.2.1 Bispectral Optical Structures
        2. 16.2.2.2 Phenomena of FWM
      3. 16.2.3 Third-Order Nonlinearity and Parametric FWM Process
        1. 16.2.3.1 Nonlinear Wave Equation
        2. 16.2.3.2 FWM Coupled-Wave Equations
        3. 16.2.3.3 Phase Matching
        4. 16.2.3.4 Coupled Equations and Conversion Efficiency
      4. 16.2.4 Optical Domain Implementation
        1. 16.2.4.1 Nonlinear Wave Guide
        2. 16.2.4.2 Third Harmonic Conversion
        3. 16.2.4.3 Conservation of Momentum
        4. 16.2.4.4 Estimate of Optical Power Required for FWM
      5. 16.2.5 Transmission Models and Nonlinear Guided Wave Devices
    3. 16.3 System Applications of Third-Order Parametric Nonlinearity in Optical Signal Processing
      1. 16.3.1 Parametric Amplifiers
        1. 16.3.1.1 Wavelength Conversion and Nonlinear Phase Conjugation
        2. 16.3.1.2 High-Speed Optical Switching
        3. 16.3.1.3 Triple Correlation
        4. 16.3.1.4 Remarks
      2. 16.3.2 Nonlinear Photonic Preprocessing in Coherent Reception Systems
    4. 16.4 Concluding Remarks
    5. References
  26. Chapter 17 Temporal Lens and Adaptive Electronic/Photonic Equalization
    1. 17.1 Introduction
    2. 17.2 Space–Time Duality and Equalization
      1. 17.2.1 Space–Time Duality
        1. 17.2.1.1 Paraxial Diffraction
        2. 17.2.1.2 Governing Nonlinear Schrödinger Equation
        3. 17.2.1.3 Diffractive and Dispersive Phases
        4. 17.2.1.4 Spatial Lens
        5. 17.2.1.5 Time Lens
        6. 17.2.1.6 Temporal Imaging
        7. 17.2.1.7 Electro-Optic Phase Modulator as a Time Lens
      2. 17.2.2 Equalization in Transmission System
        1. 17.2.2.1 Equalization with Sinusoidal Driven Voltage Phase Modulator
        2. 17.2.2.2 Equalization with Parabolic Driven Voltage Phase Modulator
    3. 17.3 Simulation of Transmission and Equalization
      1. 17.3.1 Single-Pulse Transmission
        1. 17.3.1.1 Equalization of Second-Order Dispersion
        2. 17.3.1.2 Equalization of TOD
      2. 17.3.2 Pulse Train Transmission
        1. 17.3.2.1 Second-Order Dispersion
        2. 17.3.2.2 Equalization of TOD
      3. 17.3.3 Equalization of Timing Jitter and PMD
    4. 17.4 Equalization in 160 Gbps Transmission System
      1. 17.4.1 System Overview
        1. 17.4.1.1 System Configurations
        2. 17.4.1.2 Experimental Setup
      2. 17.4.2 Simulation Model Overview
        1. 17.4.2.1 System Overview
        2. 17.4.2.2 Transmitter Block
        3. 17.4.2.3 Transmission Link
        4. 17.4.2.4 Demultiplexer
        5. 17.4.2.5 Equalizer System
        6. 17.4.2.6 Errors Calculation
      3. 17.4.3 Simulation Results
        1. 17.4.3.1 Single-Pulse Transmission
        2. 17.4.3.2 160 Gbps Transmission and Equalization
    5. 17.5 Concluding Remarks
    6. References
  27. Chapter 18 Comparison of Modulation Formats for Digital Optical Communications
    1. 18.1 Identification of Modulation Features for Combating Impairment Effects
      1. 18.1.1 Binary Digital Optical Signals
      2. 18.1.2 M-ary Digital Optical Signals
      3. 18.1.3 Multi-Subcarrier Digital Optical Signals
      4. 18.1.4 Modulation Formats and Electronic Equalization
    2. 18.2 Amplitude, Phase, and Frequency Modulation Formats in Dispersion-Compensating Span Transmission Systems
      1. 18.2.1 ASK—DPSK and DPSK—DQPSK under Self-Homodyne Reception
        1. 18.2.1.1 Dispersion Sensitivity of Different Modulation Formats of ASK and DPSK
      2. 18.2.2 NRZ-ASK and NRZ-DPSK under Self-Homodyne Reception
      3. 18.2.3 RZ-ASK and RZ-DPSK under Self-Homodyne Reception
      4. 18.2.4 CSRZ-ASK and CSRZ-DPSK under Self-Homodyne Reception
      5. 18.2.5 ASK and DPSK Spectra
      6. 18.2.6 ASK and DPSK under Self-Homodyne Reception in Long-Haul Transmission
    3. 18.3 Nonlinear Effects in ASK and DPSK under Self-Homodyne Reception in Long-Haul Transmission
      1. 18.3.1 Performance of DWDM RZ-DPSK and CSRZ-DPSK
      2. 18.3.2 Nonlinear Effects on CSRZ-DPSK and RZ-DPSK
      3. 18.3.3 Nonlinear Effects on CSRZ-ASK and RZ-ASK
      4. 18.3.4 Continuous Phase versus Discrete Phase Shift Keying under Self-Homodyne Reception
      5. 18.3.5 Multi-Subcarrier versus Single/Dual Carrier Modulation under Self-Homodyne Reception
      6. 18.3.6 Multilevel versus Binary or I–Q Modulation under Self-Homodyne Reception
      7. 18.3.7 Single-Sideband and Partial Response Modulation under Self-Homodyne Reception
    4. 18.4 100 G and Tbps Homodyne Reception Transmission Systems
      1. 18.4.1 Generation of Multi-Subcarriers
      2. 18.4.2 Nyquist Signal Generation Using DAC by Equalization in Frequency Domain
      3. 18.4.3 Function Modules of a Nyquist-WDM System
      4. 18.4.4 DSP Architecture
      5. 18.4.5 Key Hardware Subsystems
        1. 18.4.5.1 Recirculating Frequency Shifting
        2. 18.4.5.2 Nonlinear Excitation Comb Generation and Multiplexed Laser Sources
        3. 18.4.5.3 Experimental Platform for Comb Generators
      6. 18.4.6 Non-DCF 1 Tbps and 2 Tbps Superchannel Transmission Performance
        1. 18.4.6.1 Transmission Platform
        2. 18.4.6.2 Performance
        3. 18.4.6.3 Coding Gain of FEC and Transmission Simulation
        4. 18.4.6.4 MIMO Filtering Process to Extend Transmission Reach
      7. 18.4.7 Multicarrier Scheme Comparison
    5. 18.5 Modulation Formats and All-Optical Networking
      1. 18.5.1 Advanced Modulation Formats in Long-Haul Transmission Systems
      2. 18.5.2 Advanced Modulation Formats in All-Optical Networks
      3. 18.5.3 Hybrid 40 Gbps over 10 Gbps Optical Networks: 328 km SSMF + DCF for 320 km Tx—Impact of Adjacent 10 G/40 G Channels
    6. 18.6 Ultra-Fast Optical Networks
    7. 18.7 Concluding Remarks
    8. References
  28. Annex 1: Technical Data of Single-Mode Optical Fibers
  29. Annex 2: Coherent Balanced Receiver and Method for Noise Suppression
  30. Annex 3: RMS Definition and Power Measurement
  31. Annex 4: Power Budget
  32. Annex 5: Modeling of Digital Photonic Transmission Systems
  33. Index
18.116.239.195