91
REFERENCES
[106] Suehiro, J., Noutomi, D., Shutou, M., and Hara, M. Selective detection of specic
bacteria using DEP impedance measurement method combined with an antigen–an-
tibody reaction. Journal of Electrostatics. 2003; 58(3-4):229‒246. DOI: 10.1016/S0304-
3886(03)00062-7. 15
[107] Suehiro, J., Ohtsubo, A., Hatano, T., and Hara, M. Selective detection of bacteria by a DEP
impedance measurement method using an antibody-immobilized electrode chip. Sensors
and Actuators B: Chemical. 2006; 119(1):319‒326. DOI: 10.1016/j.snb.2005.12.027. 15
[108] Huang, L., Tu, L., Zeng, X., Mi, L., Li, X., and Wang, W. Study of a microuidic chip
integrating single cell trap and 3D stable rotation manipulation, Micromachines, 2016,
7(8), 141. DOI: 10.3390/mi7080141. 15
[109] Zhang, P., Ren, L., Zhang, X., Shan, Y., Wang, Y., Ji, Y., Yin, H., Huang, W. E., Xu, J., and
Ma, B. Raman-activated cell sorting based on DEP single-cell trap and release. Analytical
Chemistry. 2015; 87(4):2282‒2289. DOI: 10.1021/ac503974e. 15
[110] Tu, L., Huang, L., and Wang, W. A novel micromachined Fabry-Perot interferometer in-
tegrating nano-holes and dielectrophoresis for enhanced biochemical sensing, Biosensors
and Bioelectronics, 2019, 127, 19-24. DOI: 10.1016/j.bios.2018.12.013. 15
[111] Gonzalez-Moragas, L., Roig, A., and Laromaine, A. C. elegans as a tool for in vivo
nanoparticle assessment. Advances in Colloid and Interface Science. 2015; 219:10‒26. DOI:
10.1016/j.cis.2015.02.001.
[112] Edison, A., Hall, R., Junot, C., Karp, P., Kurland, I., Mistrik, R., Reed, L., Saito, K., Salek,
R., Steinbeck, C., Sumner, L., and Viant, M. e time is right to focus on model organ-
ism metabolomes. Metabolites. 2016; 6(1):8. DOI: 10.3390/metabo6010008.
[113] Bradham, C. A., Foltz, K. R., Beane, W. S., Arnone, M. I., Rizzo, F., Coman, J. A.,
Mushegian, A., Goel, M., Morales, J., Geneviere, A. M., Lapraz, F., Robertson, A. J.,
Kelkar, H., Loza-Coll, M., Townley, I. K., Raisch, M., Roux, M. M., Lepage, T., Gache,
C., McClay, D. R., and Manning, G. e sea urchin kinome: A rst look. Developmental
Biology. 2006; 300(1):180‒193. DOI: 10.1016/j.ydbio.2006.08.074.
[114] Clavera, C. and Torres, M. Mitochondrial apoptotic pathways induced by drosophila
programmed cell death regulators. Biochemical and Biophysical Research Communications.
2003; 304(3):531‒537. DOI: 10.1016/S0006-291X(03)00626-0.
[115] Litke, R., Boulanger, É., and Fradin, C. Caenorhabditis elegans, un modèle détude
du vieillissement. Médecine/Sciences. 2018; 34(6-7):571-579. DOI: 10.1051/med-
sci/20183406017.
92
REFERENCES
[116] Kaeberlein, M., Burtner, C. R., and Kennedy, B. K. Recent developments in yeast aging.
PLoS Genetics. 2007; 3(5):e84. DOI: 10.1371/journal.pgen.0030084.
[117] Hwang, H. and Lu, H. Microuidic tools for developmental studies of small model or-
ganismsnematodes, fruit ies, and zebrash. Biotechnology Journal. 2013; 8(2):192‒205.
DOI: 10.1002/biot.201200129.
[118] Park, K-W. and Li, L. Cytoplasmic expression of mouse prion protein causes severe toxic-
ity in Caenorhabditis elegans. Biochemical and Biophysical Research Communications. 2008;
372(4):697‒702. DOI: 10.1016/j.bbrc.2008.05.132.
[119] Lee, H., Kim, S. A., Coakley, S., Mugno, P., Hammarlund, M., Hilliard, M. A., and
Lu, H. A multi-channel device for high-density target-selective stimulation and long-
term monitoring of cells and subcellular features in C. elegans. Lab on a Chip. 2014;
14(23):4513‒4522. DOI: 10.1039/C4LC00789A.
[120] Cho, Y., Porto, D. A., Hwang, H., Grundy, L. J., Schafer, W. R., and Lu, H. Automated
and controlled mechanical stimulation and functional imaging in vivo in C. elegans. Lab
on a Chip. 2017;17(15):2609‒2618. DOI: 10.1039/C7LC00465F.
[121] Gupta, B. and Rezai, P. Microuidic approaches for manipulating, imaging, and screening
C. elegans. Micromachines. 2016; 7(7):123. DOI: 10.3390/mi7070123.
[122] Kim, W., Hendricks, G. L., Lee, K., and Mylonakis, E. An update on the use of C. elegans
for preclinical drug discovery: screening and identifying anti-infective drugs. Expert Opin-
ion on Drug Discovery. 2017; 12(6):625‒633. DOI: 10.1080/17460441.2017.1319358.
[123] Khoshmanesh, K., Kiss, N., Nahavandi, S., Evans, C. W., Cooper, J. M., Williams, D. E.,
and Wlodkowic, D. Trapping and imaging of micron-sized embryos using DEP. Electro-
phoresis. 2011; 32(22):3129‒3132. DOI: 10.1002/elps.201100160.
[124] Chuang, H-S., Raizen, D. M., Lamb, A., Dabbish, N., and Bau, H. H. Dielectropho-
resis of Caenorhabditis elegans. Lab on a Chip. 2011; 11(4):599–604. DOI: 10.1039/
c0lc00532k.
[125] Gavrieli, Y. Identication of programmed cell death in situ via specic labeling of nuclear
DNA fragmentation. e Journal of Cell Biology. 1992; 119(3):493‒501. DOI: 10.1083/
jcb.119.3.493. 15
[126] Anchang, B., Davis, K. L., Fienberg, H. G., Williamson, B. D., Bendall, S. C., Karacosta,
L. G., Tibshirani, R., Nolan, G. P., and Plevritis, S. K. DRUG-NEM: Optimizing drug
combinations using single-cell perturbation response to account for intratumoral het-
erogeneity. Proceedings of the National Academy of Sciences. 2018; 115(18), E4294-E4303.
DOI: 10.1073/pnas.1711365115. 15
93
REFERENCES
[127] Steinert, G., Schölch, S., Niemietz, T., Iwata, N., García, S. A., Behrens, B., Voigt, A.,
Kloor, M., Benner, A., Bork, U., Rahbari, N. N., Büchler, M. W., Stoecklein, N. H., Weitz,
J., and Koch, M. Immune escape and survival mechanisms in circulating tumor cells of
colorectal cancer. Cancer Research. 2014; 74(6):1694‒1704. DOI: 10.1158/0008-5472.
CAN-13-1885. 15
[128] Paoletti, C., Muñiz, M. C., omas, D. G., Grith, K. A., Kidwell, K. M., Tokudome, N.,
Brown, M. E., Aung, K., Miller, M. C., Blossom, D. L., Schott, A. F., Henry, N. L., Rae, J.
M., Connelly, M. C., Chianese, D. A., and Hayes, D. F. Development of circulating tumor
cell-endocrine therapy index in patients with hormone receptor–positive breast cancer.
Clinical Cancer Research. 2015; 21(11):2487‒2498. DOI: 10.1158/1078-0432.CCR-14-
1913. 16
[129] Pethig, R. Review—Where is DEP (DEP) going? Journal of e Electrochemical Society.
2016; 164(5):B3049‒B3055. DOI: 10.1149/2.0071705jes. 16
[130] Kung, Y. C., Huang, K. W., Chong, W., and Chiou, P. Y. Tunnel DEP for tunable, sin-
gle-stream cell focusing in physiological buers in high-speed microuidic ows. Small.
2016; 12(32):4343‒4348. DOI: 10.1002/smll.201600996. 16
[131] Jang, L. S., Huang, P. H., and Lan, K. C. Single-cell trapping utilizing negative DEP quad-
rupole and microwell electrodes. Biosensors and Bioelectronics. 2009; 24(12):3637‒3644.
DOI: 10.1016/j.bios.2009.05.027. 16
[132] Guo, X. and Zhu, R. Controllably moving individual living cell in an array by modulating
signal phase shift based on DEP. Biosensors and Bioelectronics. 2015; 68:529‒535. DOI:
10.1016/j.bios.2015.01.052. 16
[133] Kemna, E. W. M., Wolbers, F., Vermes, I., and van den Berg, A. On chip electrofusion
of single human B cells and mouse myeloma cells for ecient hybridoma generation.
Electrophoresis. 2011; 32(22):3138‒3146. DOI: 10.1002/elps.201100227. 16
[134] Huang, L., He, W., and Wang, W. A cell electro-rotation micro-device using polarized
cells as electrodes, Electrophoresis, Special Issue: Fundamentals 2019, 2019, 40(5), 784-791.
DOI: 10.1002/elps.201800360. 16
[135] Wu, Y., Ren, Y., Tao, Y., Hou, L., and Jiang, H. High-throughput separation, trapping,
and manipulation of single cells and particles by combined dielectrophoresis at a bipolar
electrode array. Analytical Chemistry. 2018; 90(19):11461‒11469. DOI: 10.1021/acs.
analchem.8b02628. 16, 17
94
REFERENCES
[136] Şen, M., Ino, K., Ramón-Azcón, J., Shiku. H,, and Matsue, T. Cell pairing using a DEP-
based device with interdigitated array electrodes. Lab on a Chip. 2013; 13(18):3650–3652.
DOI: 10.1039/c3lc50561h. 16, 17
[137] Gel, M., Kimura, Y., Kurosawa, O., Oana, H., Kotera, H., and Washizu, M. DEP cell
trapping and parallel one-to-one fusion based on eld constriction created by a micro-or-
ice array. Biomicrouidics. 2010; 4(2):022808. DOI: 10.1063/1.3422544. 16, 17
[138] Bahrieh, G., Erdem, M., Özgür, E., Gündüz, U., and Külah, H. Assessment of eects of
multi drug resistance on dielectric properties of K562 leukemic cells using electrorotation.
RSC Adv. 2014;4(85):44879‒44887. DOI: 10.1039/C4RA04873C. 16, 17
[139] Zeinali, S., Çetin, B., Oliaei, S. N. B., and Karpat, Y. Fabrication of continuous ow
microuidics device with 3D electrode structures for high throughput DEP applications
using mechanical machining. Electrophoresis. 2015;36(13):1432‒1442. DOI: 10.1002/
elps.201400486. 18
[140] Voldman, J., Gray, M. L., Toner, M., and Schmidt, M. A. A microfabrication-based dy-
namic array cytometer. Analytical Chemistry. 2002; 74(16):3984‒3990. DOI: 10.1021/
ac0256235. 19
[141] So, J. H. and Dickey, M. D. Inherently aligned microuidic electrodes composed of liquid
metal. Lab on a Chip. 2011; 11(5), 905‒911. DOI: 10.1039/c0lc00501k. 19
[142] Elvington, E. S., Salmanzadeh, A., Stremler, M. A., and Davalos, R. V. Label-free isola-
tion and enrichment of cells through contactless DEP. Journal of Visualized Experiments.
2013(79): e50634. DOI: 10.3791/50634. 19
[143] Čemažar, J., Douglas, T. A., Schmelz, E. M., and Davalos, R. V. Enhanced contactless
DEP enrichment and isolation platform via cell-scale microstructures. Biomicrouidics.
2016; 10(1):014109. DOI: 10.1063/1.4939947. 19
[144] Shaee, H., Caldwell, J. L., and Davalos, R. V. A microuidic system for biological par-
ticle enrichment using contactless dielectrophoresis. Journal of Laboratory Automation.
2010; 15(3):224‒232. DOI: 10.1016/j.jala.2010.02.003. 19
[145] Huang, L., Zhao, P., and Wang, W. 3D cell electrorotation and imaging for measur-
ing multiple cellular biophysical properties, Lab on a Chip, 2018, 18, 2359-2368. DOI:
10.1039/C8LC00407B. 20
[146] Lewpiriyawong, N. and Yang, C. AC-DEP characterization and separation of submi-
cron and micron particles using sidewall AgPDMS electrodes. Biomicrouidics. 2012;
6(1):012807. DOI: 10.1063/1.3682049. 20
95
REFERENCES
[147] Marchalot, J., Chateaux, J-F., Faivre, M., Mertani, H. C., Ferrigno, R., and Deman, A-L.
DEP capture of low abundance cell population using thick electrodes. Biomicrouidics.
2015; 9(5):054104. DOI: 10.1063/1.4928703. 20
[148] Deman, A. L., Brun, M., Quatresous, M., Chateaux, J. F., Frenea-Robin, M., Haddour,
N., Semet, V., and Ferrigno, R. Characterization of C-PDMS electrodes for electroki-
netic applications in microuidic systems. Journal of Micromechanics and Microengineering.
2011; 21(9):095013. DOI: 10.1088/0960-1317/21/9/095013. 23
[149] Huang, L., Zhao, P., Wu, J., Chuang, H-S., and Wang, W. On-demand dielectrophoretic
immobilization and high-resolution imaging of C. elegans in microuids, Sensors and
Actuators B: Chemical, 2018, 259, 703-708. DOI: 10.1016/j.snb.2017.12.106. 23
[150] Wang, L., Flanagan, L. A., Jeon, N. L., Monuki, E., and Lee, A. P. Dielectrophoresis
switching with vertical sidewall electrodes for microuidic ow cytometry. Lab on a Chip.
2007; 7(9):1114–1120. DOI: 10.1039/b705386j. 23
[151] Li, S., Li, M., Hui, Y. S., Cao, W., Li, W., and Wen, W. A novel method to construct 3D
electrodes at the sidewall of microuidic channel. Microuidics and Nanouidics. 2012;
14(3-4):499‒508. DOI: 10.1007/s10404-012-1068-6. 23
[152] Kang, Y., Cetin, B., Wu, Z., and Li, D. Continuous particle separation with localized
AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochimica
Acta. 2009; 54(6):1715‒1720. DOI: 10.1016/j.electacta.2008.09.062. 23
[153] Miao, Q., Reeves, A. P., Patten, F. W., and Seibel, E. J. Multimodal 3D imaging of cells
and tissue, bridging the gap between clinical and research microscopy. Annals of Biomed-
ical Engineering. 2011; 40(2):263‒276. DOI: 10.1007/s10439-011-0411-5. 24
[154] Habaza, M., Kirschbaum, M., Guernth-Marschner, C., Dardikman, G., Barnea, I., Ko-
renstein, R., Duschl, C., and Shaked, N. T. Rapid 3D refractive-index imaging of live
cells in suspension without labeling using DEP cell rotation. Advanced Science. 2017;
4(2):1600205. DOI: 10.1002/advs.201600205. 24
[155] Chen, D., Sun, M., and Zhao, X. Oocytes polar body detection for automatic enucleation.
Micromachines. 2016; 7(2):27. DOI: 10.3390/mi7020027. 25
[156] Bin, C., Kelbauskas, L., Chan, S., Shetty, R. M., Smith, D., and Meldrum, D. R. Rotation
of single live mammalian cells using dynamic holographic optical tweezers. Optics and
Lasers in Engineering. 2017; 92:70‒75. DOI: 10.1016/j.optlaseng.2016.12.019. 25
[157] Merola, F., Miccio, L., Memmolo, P. , Di Caprio, G., Galli, A., Puglisi, R., Balduzzi, D.,
Coppola, G., Netti, P., and Ferraro, P. Digital holography as a method for 3D imaging
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.119.105.239