References

[1] Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf.. 2003;46:36393653.

[2] Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow. 2000;21:5864.

[3] Xuan Y, Roetzel W. Conceptions for heat transfer correlations of nanofluids. Int. J. Heat Mass Transf.. 2000;43:37013707.

[4] Abu-Nada E, Oztop HF. Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int. J. Heat Fluid Flow. 2009;30:669678.

[5] Ding Y, Wen D. Particle migration in a flow of nanoparticle suspensions. Powder Technol.. 2005;149(2-3):8492.

[6] Akbarinia A, Laur R. Investigation the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach. Int. J. Heat Fluid Flow. 2009;30:706714.

[7] Mirmasoumi S, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl. Therm. Eng.. 2008;28:717727.

[8] Buongiorno J. Convective transport in nanofluids. ASME J. Heat Transf.. 2006;128:240250.

[9] Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int. J. Heat Fluid Flow. 2007;28(2):211219.

[10] Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf.. 1998;11:151170.

[11] Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, Di Melfi RJ. Novel thermal properties of nanostructured materials. Mater. Sci. Forum. 1999;312-314:629634.

[12] Palm SJ, Roy G, Nguyen CT. Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties. Appl. Therm. Eng.. 2006;26:22092218.

[13] Maxwell JC. A Treatise on Electricity and Magnetism. second ed. Cambridge: Oxford University Press; 1904: pp. 435–441.

[14] Brinkman H. The viscosity of concentrated suspensions and solutions. J. Chem. Phys.. 1952;20:571.

[15] Abu-Nada E, Chamkha AJ. Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–Water nanofluid. Int. J. Therm. Sci.. 2010;49(12):23392352.

[16] Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp. Therm. Fluid Sci.. 2007;32(2):397402.

[17] Einstein A. Investigation on the Theory of Brownian Motion. New York: Dover; 1956.

[18] Pak BC, Cho Y. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle. Exp. Heat Transf.. 1998;11:151170.

[19] Jang SP, Lee JH, Hwang KS, Choi SUS. Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through microand minitubes. Appl. Phys. Lett.. 2007;91:243112.

[20] Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J. Nanopart. Res.. 2004;6:577588.

[21] Maïga SEB, Palm SM, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Flow. 2005;26:530546.

[22] Orozco D. Hydrodynamic behavior of suspension of polar particles. Encyclopedia Surf. Colloid Sci.. 2005;4:23752396.

[23] Nguyen CT, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Mintsa HA. Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?. Int. J. Therm. Sci.. 2008;47:103111.

[24] Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. J. Phys. D Appl. Phys.. 2009;42:055501.

[25] Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D. Experimental investigation of nanofluids in confined laminar radial flows. Int. J. Therm. Sci.. 2009;48:14861493.

[26] Jang SP, Choi SUS. The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett.. 2004;84:43164318.

[27] Wang BX, Zhou LR, Peng XF. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transf.. 2003;46:26652672.

[28] Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett.. 2005;87(15): Available from: http://aip.scitation.org/doi/abs/10.1063/1.2093936?journalCode=apl.

[29] Charuyakorn P, Sengupta S, Roy SK. Forced convection heat transfer in micro encapsulated phase change material slurries. Int. J. Heat Mass Transf.. 1991;34:819833.

[30] Eastman JA, Phillpot SR, Choi US, Keblinski P. Thermal transport in nanofluids. Annu. Rev. Mater. Res.. 2000;34:219246.

[31] Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanopart. Res.. 2003;5(1):167171.

[32] Patel HE, Sundarrajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK. A microconvection model for thermal conductivity of nanofluid. Pramana J. Phys.. 2005;65:863869.

[33] Angue Mintsa H, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci.. 2009;48:363371.

[34] Khan M, Malik R. Forced convective heat transfer to Sisko nanofluid past a stretching cylinder in the presence of variable thermal conductivity. J. Mol. Liquids. 2016;218:17.

[35] Sasmal C, Nirmalkar N. Momentum and heat transfer characteristics from heated spheroids in water based nanofluids. Int. J. Heat Mass Transf.. 2016;96:582601.

[36] Hayat T, Imtiaz M, Alsaedi A, Alzahrani F. Effects of homogeneous–heterogeneous reactions in flow of magnetite-Fe3O4 nanoparticles by a rotating disk. J. Mol. Liquids. 2016;216:845855.

[37] Sheikholeslami M, Hatami M, Ganji DD. Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technol.. 2013;246:327336.

[38] Sheikholeslami M, Ganji DD, Ashorynejad HR. Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol.. 2013;239:259265.

[39] Sheikholeslami M, Ganji DD. Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol.. 2013;235:873879.

[40] M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, H.B. Rokni, Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano particle by Adomian decomposition method, Appl. Math. Mech.-Engl. Ed. 33(1) (2012) 1553–1564.

[41] M. Sheikholeslami, H.R. Ashorynejad, G. Domairry, I. Hashim, Flow and heat transfer of Cu-Water nanofluid between a stretching sheet and a porous surface in a rotating system, J. Appl. Math. 2012 (2012) 19.

[42] Sheikholeslami M, Ellahi R, Ashorynejad HR, Domairry G, Hayat T. Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J. Comput. Theoret. Nanosci.. 2014;11:111.

[43] Sheikholeslami M, Ganji DD. Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Scientia IranicaB. 2014;21(1):203212.

[44] Sheikholeslami M, Hatami M, Domairry G. Numerical simulation of two phase unsteady nanofluid flow and heat transfer between parallel plates in presence of time dependent magnetic field. J. Taiwan Inst. Chem. Eng.. 2015;46:4350.

[45] Sheikholeslami M, Domairry G. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput. Methods Appl. Mech. Eng.. 2015;283:651663.

[46] Sheikholeslami M, Rashidi MM, Al Saad DM, Firouzi F, Rokni HB, Domairry G. Steady nanofluid flow between parallel plates considering thermophoresis and Brownian effects. J. King Saud Univ. Sci.. 2016;28(4):380389.

[47] D. Domairry, M. Sheikholeslami, H.R. Ashorynejad, R.S.R.Gorla, M. Khani, Natural convection flow of a non-Newtonian nanofluid between two vertical flat plates, Proc IMechE Part N: J Nanoeng. Nanosyst. 225(3) (2012) 115–122.

[48] Malvandi A, Hedayati F, Ganji DD. Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Powder Technol.. 2014;253:377384.

[49] Malvandi A. The unsteady flow of a nanofluid in the stagnation point region of a time-dependent rotating sphere. Therm. Sci.. 2015;19(5):16031612.

[50] Ashorynejad HR, Sheikholeslami M, Pop I, Ganji DD. Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transf.. 2013;49:427436.

[51] Sheikholeslami M, Ganji DD. Heated permeable stretching surface in a porous medium using nanofluids. J. Appl. Fluid Mech.. 2014;7(3):535542.

[52] Sheikholeslami M, Ganji DD. Three dimensional heat and mass transfer in a rotating system using nanofluid. Powder Technol.. 2014;253:789796.

[53] Sheikholeslami M, Hatami M, Ganji DD. Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. J. Mol. Liquids. 2014;190:112120.

[54] Sheikholeslami M, Ganji DD. Numerical investigation for two phase modeling of nanofluid in a rotating system with permeable sheet. J. Mol. Liquids. 2014;194:1319.

[55] Sheikholeslami M, Ganji DD. Unsteady nanofluid flow and heat transfer in presence of magnetic field considering thermal radiation. J Braz. Soc. Mech. Sci. Eng.. 2015;37:895902.

[56] Sheikholeslami M, Abelman S, Ganji DD. Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. Int. J. Heat Mass Transf.. 2014;79:212222.

[57] Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater.. 2015;374:3643.

[58] Sheikholeslami Kandelousi M. KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys. Lett. A. 2014;378:33313339.

[59] Sheikholeslami M. Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J. Braz. Soc. Mech. Sci. Eng.. 2015;37:16231633.

[60] Sheikholeslami M, Abelman S. Two phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field. IEEE Trans. Nanotechnol.. 2015;14(3):561569.

[61] Sheikholeslami M, Hatami M, Ganji DD. Numerical investigation of nanofluid spraying on an inclined rotating disk for cooling process. J. Mol. Liquids. 2015;211:577583.

[62] Sheikholeslami M, Mustafa MT, Ganji DD. Nanofluid flow and heat transfer over a stretching porous cylinder considering thermal radiation. Iran. J. Sci. Technol.. 2015;39(3.1):433440.

[63] Chamkha AJ, Aly AM. MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects. Chem. Eng. Commun.. 2011;198:425441.

[64] Chamkha AJ, Rashad AM. MHD forced convection flow of a nanofluid adjacent to a non-isothermal wedge. Comput. Therm. Sci.. 2014;6:2739.

[65] Sheremet MA, Pop I. Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf.. 2014;79:137145.

[66] Sheremet MA, Pop I, Rahman MM. Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf.. 2015;82:396405.

[67] Sheremet MA, Dinarvand S, Pop I. Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. Physica E. 2015;69:332341.

[68] Ghalambaz M, Sheremet MA, Pop I. Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. PLoS One. 2015;10:e0126486.

[69] Sheremet MA, Pop I, Ishak A. Double-diffusive mixed convection in a porous open cavity filled with a nanofluid using Buongiorno’s model. Transport Porous Med.. 2015;109:131145.

[70] Sheremet MA, Pop I. Free convection in a triangular cavity filled with a porous medium saturated by a nanofluid: Buongiorno’s mathematical model. Int. J. Numer. Methods Heat Fluid Flow. 2015;25:11381161.

[71] Sheremet MA, Pop I. Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das’ nanofluid model. Eur. Phys. J. Plus. 2015;130:107.

[72] Sheremet MA, Pop I, Rosca NC. Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno’s mathematical model. J. Taiwan Inst. Chem. Eng.. 2016;61:211222.

[73] Khan JA, Mustafa M, Hayat T, Sheikholeslami M, Alsaedi A. Three-dimensional flow of nanofluid induced by an exponentially stretching sheet: an application to solar energy. PLoS One. 2015;10(3):e0116603.

[74] Hsiao K-L. Nanofluid flow with multimedia physical features for conjugate mixed convection and radiation. Comput. Fluids. 2014;104:18.

[75] Garoosi F, Hoseininejad F. Numerical study of natural and mixed convection heat transfer between differentially heated cylinders in an adiabatic enclosure filled with nanofluid. J. Mol. Liquids. 2016;215:117.

[76] Garoosi F, Garoosi S, Hooman K. Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model. Powder Technol.. 2014;268:279292.

[77] Garoosi F, Rohani B, Mehdi Rashidi M. Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol.. 2015;275:304321.

[78] Teamah MA, El-Maghlany WM. Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int. J. Therm. Sci.. 2012;58:130.

[79] Santra AK, Sen S, Chakraborty N. Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. Int. J. Therm. Sci.. 2008;47:11131122.

[80] Das MK, Ohal PS. Natural convection heat transfer augmentation in a partially heated and partially cooled square cavity utilizing nanofluids. Int. J. Numer. Methods Heat Fluid Flow. 2009;19:411431.

[81] Oztop HF, Abu-Nada E, Varol Y, Al-Salem K. Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures. Superlattices Microstruct.. 2011;49:453467.

[82] Selimefendigil F, Öztop HF. MHD mixed convection of nanofluid filled partially heated triangular enclosure with a rotating adiabatic. J. Taiwan Inst. Chem. Eng.. 2014;45:21502162.

[83] Selimefendigil F, Öztop HF. Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J. Taiwan Inst. Chem. Eng.. 2015;56:4256.

[84] Selimefendigil F, Öztop HF. Pulsating nanofluids jet impingement cooling of a heated horizontal surface. Int. J. Heat Mass Transf.. 2014;69:5465.

[85] Selimefendigil F, Öztop HF. Numerical study of MHD mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. Int. J. Heat Mass Transf.. 2014;78:741754.

[86] Selimefendigil F, Öztop HF. Numerical investigation and reduced order model of mixed convection at a backward facing step with a rotating cylinder subjected to nanofluid. Comput. Fluids. 2015;109:2737.

[87] Selimefendigil F, Öztop HF. Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2–water nanofluids: effect of nanoparticle shape. Int. Commun. Heat Mass Transf.. 2016;71:919.

[88] Selimefendigil F, Öztop HF. Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. J. Mol. Liquids. 2016;216:6777.

[89] Sheikholeslami M, Gorji-Bandpy M, Soleimani S. Two phase simulation of nanofluid flow and heat transfer using heatline analysis. Int. Commun. Heat Mass Transf.. 2013;47:7381.

[90] Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S. Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO-water nanofluid in presence of magnetic field. J. Taiwan Inst. Chem. Eng.. 2014;45:4049.

[91] Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S. Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu–water nanofluid using CVFEM. Adv. Powder Technol.. 2013;24:980991.

[92] Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S. MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM. Neural Comput Appl.. 2014;24:873882.

[93] Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S, Seyyedi SM. Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field. Int. Commun. Heat Mass Transf.. 2012;39:14351443.

[94] Soleimani S, Sheikholeslami M, Ganji DD, Gorji-Bandpay M. Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int. Commun. Heat Mass Transf.. 2012;39:565574.

[95] Sheikholeslami M, Gorji-Bandpy M, Ellahi R, Soleimani S, Hassan M. Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM. J. Magn. Magn. Mater.. 2014;349:188200.

[96] Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S. Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field. J. Mol. Liquids. 2014;193:174184.

[97] Sheikholeslami M, Ganji DD, Gorji-Bandpy M, Soleimani S. Magnetic field effect on nanofluid flow and heat transfer using KKL model. J. Taiwan Inst. Chem. Eng.. 2014;45:795807.

[98] Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S. Thermal management for free convection of nanofluid using two phase model. J. Mol. Liquids. 2014;194:179187.

[99] Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Rana P, Soleimani S. Magnetohydrodynamic free convection of Al2O3-water nanofluid considering thermophoresis and Brownian motion effects. Comput. Fluids. 2014;94:147160.

[100] Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S. Natural convection heat transfer in a nanofluid filled inclined L-shaped enclosure, IJST. Trans. Mech. Eng.. 2014;38:217226.

[101] Sheikholeslami M, Ganji DD. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy. 2014;75:400410.

[102] Sheikholeslami M, Ganji DD, Mehdi Rashidi M. Ferrofluid flow and heat transfer in a semi annulus enclosure in the presence of magnetic source considering thermal radiation. J. Taiwan Inst. Chem. Eng.. 2015;47:617.

[103] Sheikholeslami Kandelousi M. Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur. Phys. J. Plus. 2014;:129248: Available from: http://link.springer.com/article/10.1140/epjp/i2014-14248-2.

[104] Sheikholeslami M, Ellahi R, Hassan M, Soleimani S. A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int. J. Numer. Methods Heat Fluid Flow. 2014;24:8.

[105] Sheikholeslami M, Mehdi Rashidi M. Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid. J. Taiwan Inst. Chem. Eng.. 2015;56:615.

[106] Sheikholeslami M, Rashidi MM, Ganji DD. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Comput. Methods Appl. Mech. Eng.. 2015;294:299312.

[107] Sheikholeslami M, Ellahi R. Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl. Sci.. 2015;5:294306.

[108] Sheikholeslami M, Rashidi MM, Ganji DD. Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J. Mol. Liquids. 2015;212:117126.

[109] Sheikholeslami M, Vajravelu K, Mehdi Rashidi M. Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int. J. Heat Mass Transf.. 2016;92:339348.

[110] Sheikholeslami M, Soleimani Soheil, Ganji DD. Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry. J. Mol. Liquids. 2016;213:153161.

[111] Sheikholeslami M, Rashidi MM. Non-uniform magnetic field effect on nanofluid hydrothermal treatment considering Brownian motion and thermophoresis effects. J Braz. Soc. Mech. Sci. Eng.. 2016;38:11711184.

[112] Sheikholeslami M, Rashidi MM. Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur. Phys. J. Plus. 2015;130:115.

[113] Sheikholeslami M, Gorji-Bandpay M, Ganji DD. Investigation of nanofluid flow and heat transfer in presence of magnetic field using KKL model. Arab. J. Sci. Eng.. 2014;39(6):50075016.

[114] Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Natural convection in a nanofluid filled concentric annulus between an outer square cylinder and an inner elliptic cylinder. Scientia Iranica Trans. B. 2013;20(4):113.

[115] Sheikholeslami M, Bandpay MG, Ganji DD. Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int. Commun. Heat Mass Transf.. 2012;39:978.

[116] Sheikholeslami M, Gorji-Bandpy M, Seyyedi SM, Ganji DD, Rokni HB, Soleimani S. Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries. Powder Technol.. 2013;247:8794.

[117] Sheikholeslami M, Gorji-Bandpy M, Domairry G. Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM). Appl. Math. Mech. -Engl.. 2013;34(7):115.

[118] Ashorynejad HR, Mohamad AA, Sheikholeslami M. Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using lattice Boltzmann method. Int. J. Therm. Sci.. 2013;64:240250.

[119] Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy. 2013;60:501510.

[120] Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol.. 2014;254:8293.

[121] Sheikholeslami M, Gorji-Bandpy M. Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technol.. 2014;256:490498.

[122] Sheikholeslami M, Gorji-Bandpy M, Ganji DD. MHD free convection in an eccentric semi-annulus filled with nanofluid. J. Taiwan Inst. Chem. Eng.. 2014;45:12041216.

[123] Sheikholeslami M, Gorji-Bandpy M, Ellahi R, Zeeshan A. Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J. Magn. Magn. Mater.. 2014;369:6980.

[124] Sheikholeslami M, Ganji DD. Entropy generation of nanofluid in presence of magnetic field using lattice Boltzmann method. Physica A. 2015;417:273286.

[125] Sheikholeslami M, Gorji-Bandpy M, Vajravelu K. Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of Al2O3–water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder. Int. J. Heat Mass Transf.. 2015;80:1625.

[126] Sheikholeslami M, Ellahi R. Simulation of ferrofluid flow for magnetic drug targeting using lattice Boltzmann method. Z. Naturforsch. A. 2015;70(2):115124.

[127] Sheikholeslami M, Gorji-Bandpy M, Ashorynejad HR. Lattice Boltzmann method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity. Physica A. 2015;432:5870.

[128] Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int. J. Heat Mass Transf.. 2015;89:799808.

[129] Sheikholeslami M, Ashorynejad HR, Rana P. Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J. Mol. Liquids. 2016;214:8695.

[130] Kefayati GHR. Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic source. Theoret. Comput. Fluid Dyn.. 2013;27:865883.

[131] Kefayati GHR. Lattice Boltzmann simulation of natural convection in a nanouid-filled inclined square cavity at presence of magnetic field. Scientia Iranica. 2013;20(5):15171527.

[132] Kefayati GHR. Lattice Boltzmann simulation of natural convection in partially heated cavities utilizing kerosene/ cobalt ferrofluid, IJST. Trans. Mech. Eng.. 2013;37:107118.

[133] Kefayati GHR. Effect of a magnetic field on natural convection in a nanofluid-filled enclosure with a linearly heated wall using LBM. Arab. J. Sci. Eng.. 2014;39:41514163.

[134] Mahmoudi A, Mejri I, Abbassi MA, Omri A. Analysis of MHD natural convection in a nanofluid-filled open cavity with non uniform boundary condition in the presence of uniform heat generation/absorption. Powder Technol.. 2015;269:275289.

[135] Mahmoudi A, Mejri I, Omri A. Study of natural convection cooling of a nanofluid subjected to a magnetic field. Physica A. 2016;451:333348.

[136] Mejri I, Mahmoudi A. MHD natural convection in a nanofluid-filled open enclosure with a sinusoidal boundary condition. Chem. Eng. Res. Des.. 2015;98:116.

[137] Sheikholeslami M, Bani Sheykholeslami F, Khoshhal S, Mola-Abasia H, Ganji DD, Houman B, Rokni. Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network. Neural Comput Appl.. 2014;25:171178.

[138] Sheikholeslami M, Mustafa MT, Ganji DD. Effect of Lorentz forces on forced-convection nanofluid flow over a stretched surface. Particuology. 2016;26:108113.

[139] Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int. J. Heat and Mass Transf.. 2017;106:12611269.

[140] Sheikholeslami M. Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. J. Mol. Liq.. 2017;225:903912.

[141] Sheikholeslami M, Rokni HB. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput. Methods in Appl. Mech. Engineer.. 2017;317:419430.

[142] Sheikholeslami M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J. Mol. Liq.. 2017;229:137147.

[143] Sheikholeslami M. Numerical simulation of magnetic nanofluid natural convection in porous media. Phys. Lett. A. 2017;381:494503.

[144] Sheikholeslami M, Ganji DD. External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid. William Andrew, Elsevier; 2016: pp. 1–354.

[145] Sheikholeslami M, Chamkha AJ. Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer. Heat Transf.. 2016;69(10):11861200.

[146] Sheikholeslami M, Rashidi MM, Hayat T, Ganji DD. Free convection of magnetic nanofluid considering MFD viscosity effect. J. Mol. Liquids. 2016;218:393399.

[147] Sheikholeslami M, Hayat T, Alsaedi A. MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf.. 2016;96:513524.

[148] Safarnia H, Sheikholeslami M, Ganji DD. Electrohydrodynamic nanofluid flow and forced convective heat transfer in a channel. Eur. Phys. J. Plus. 2016;131:96.

[149] Sheikholeslami M, Mollabasi H, Ganji DD. Analytical investigation of MHD Jeffery–Hamel nanofluid flow in non-parallel walls. Int. J. Nanosci. Nanotechnol.. 2015;11(4):243251.

[150] Sheikholeslami M, Chamkha AJ. Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall. Numer. Heat Transf.. 2016;69(7):781793.

[151] Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices. Renew. Sustain. Energy Rev.. 2015;49:444469.

[152] Sheikholeslami M, Ganji DD. Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method. London: Academic Press; 2015: pp. 1–226.

[153] Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf.. 2013;57:582594.

[154] Sheikholeslami M, Vajravelu K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl. Mathematics Comput.. 2017;298:272282.

[155] Sheikholeslami M. CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. Eur. Phys. J. Plus. 2016;131:413.

[156] Sheikholeslami M, Ganji DD. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J. Taiwan Inst. Chem. Eng.. 2016;65:4377.

[157] Sheikholeslami M, Rokni HB. Nanofluid two phase model analysis in existence of induced magnetic field. Int. J. Heat Mass Transf.. 2017;107:288299.

[158] Sheikholeslami M, Chamkha AJ. Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J. Mol. Liq.. 2017;225:750757.

[159] Sheikholeslami M, Hayat T, Alsaedi A. Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int. J. Heat Mass Transf.. 2017;106:745755.

[160] Sheikholeslami M, Hayat T, Alsaedi A, Abelman S. EHD nanofluid force convective heat transfer considering electric field dependent viscosity. Int. J. Heat Mass Transf.. 2016;: Available from: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.10.099.

[161] Sheikholeslami M, Ganji DD. Transportation of MHD nanofluid free convection in a porous semi annulus using numerical approach. Chem. Phys. Lett.. 2017;669:202210.

[162] Sheikholeslami M, Ganji DD. Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source. Chem. Phys. Lett.. 2017;667:307316.

[163] Sheikholeslami M, Ganji DD. Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect. J. Mol. Liq.. 2016;224:526537.

[164] Sheikholeslami M, Gerdroodbary MB, Ganji DD. Numerical investigation of forced convective heat transfer of Fe3O4-water nanofluid in presence of external magnetic source. Comput. Methods Appl. Mech. Engineer.. 2017;315:831845.

[165] Sheikholeslami M, Zaigham Zia QM, Ellahi R. Influence of induced magnetic field on free convection of nanofluid considering Koo-Kleinstreuer-Li (KKL) correlation. Appl. Sci.. 2016;6(11):324.

[166] Sheikholeslami M. Influence of Coulomb forces on Fe3O4-H2O nanofluid thermal improvement. Int. J. Hydrogen Energy. 2016;: Availavle from: http://dx.doi.org/10.1016/j.ijhydene.2016.09.185.

[167] Sheikholeslami M. Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Comput. Appl.. 2016;: Available from: http://link.springer.com/article/10.1007/s00521-016-2740-7.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.129.19.251