Contents

Preface

Acknowledgments

Unit Conversion Factors

Chapter 1    Basic Concepts

I.    Fundamentals

A.    Introduction and Scope

B.    Basic Laws

C.    Experience

II.   Objective

A.    A Note on Problem Solving

III.  Phenomenological Rate or Transport Laws

A.    Fourier’s Law of Heat Conduction

B.    Fick’s Law of Diffusion

C.    Ohm’s Law of Electrical Conductivity

D.    Newton’s Law of Viscosity

1.    Momentum Flux and Shear Stress

2.    Vectors and Dyads

3.    Newtonian and Non-Newtonian Fluids

IV.  The “System”

 V.   Turbulent Macroscopic (Convective) Transport Models

Summary

Problems

Notation

References

Chapter 2    Dimensional Analysis and Scale-Up

I.    Introduction

II.   Units and Dimensions

A.    Dimensions

B.    Units

C.    Conversion Factors

III.  Conservation of Dimensions

A.    Numerical Values

B.    Consistent Units

IV.  Dimensional Analysis

A.    Pipeline Analysis

B.    Uniqueness

C.    Dimensionless Variables

D.    Problem Solution

E.    Alternate Groups

V.    Scale-Up

VI.  Dimensionless Groups in Fluid Mechanics

VII.  Accuracy and Precision

Summary

Problems

Notation

Chapter 3    Fluid Properties in Perspective

I.    Classification of Materials and Fluid Properties

II.   Determination of Fluid Viscous (Rheological) Properties

A.    Cup and Bob (Couette) Viscometer

B.    Tube Flow (Poiseuille) Viscometer

III.  Types of Non-Newtonian Fluid Behavior

A.    Newtonian Fluid

B.    Bingham Plastic Model

C.    Power Law Model

D.    Structural Viscosity Models

1.    Carreau Model

2.    Other Models

IV.  Temperature Dependence of Viscosity

A.    Liquids

B.    Gases

V.    Density

VI.  Surface Tension

Summary

Problems

Notation

References

Chapter 4    Fluid Statics

I.    Stress and Pressure

II.   The Basic Equation of Fluid Statics

A.    Constant Density Fluids

B.    Ideal Gas: Isothermal

C.    Ideal Gas: Isentropic

D.    The Standard Atmosphere

III.  Moving Systems

A.    Vertical Acceleration

B.    Horizontally Accelerating Free Surface

C.    Rotating Fluid

IV.  Buoyancy

V.    Static Forces on Solid Boundaries

Summary

Problems

Notation

Chapter 5    Conservation Principles

I.    The System

II.   Conservation of Mass

A.    Macroscopic Mass Balance

B.    Microscopic Mass Balance

III.  Conservation of Energy

A.    Internal Energy

1.    Ideal Gas

2.    Nonideal Gas

3.    Solids and Liquids

B.    Enthalpy

1.    Ideal Gas

2.    Nonideal Gas

3.    Solids and Liquids

IV.  Irreversible Effects

A.    Kinetic Energy Correction

 V.  Conservation of Linear Momentum

A.    One-Dimensional Flow in a Tube

B.    The Loss Coefficient

C.    Conservation of Angular Momentum

D.    Moving Boundary Systems and Relative Motion

E.    Microscopic Momentum Balance

Summary

Problems

Notation

Reference

Chapter 6    Pipe Flow

I.    Flow Regimes

II.   General Relations for Pipe Flows

A.    Energy Balance

B.    Momentum Balance

C.    Continuity

D.    Energy Dissipation

III.  Newtonian Fluids

A.    Laminar Flow

B.    Turbulent Flow

1.    Boundary Layer

2.    Turbulent Momentum Flux

3.    Mixing Length Theory

4.    Friction Loss in Smooth Pipe

5.    Friction Loss in Rough Tubes

6.    Friction Loss in Rough Pipe

7.    Wall Roughness

C.    All Flow Regimes

IV.  Power Law Fluids

A.    Laminar Flow

B.    Turbulent Flow

C.    All Flow Regimes

V.    Bingham Plastics

A.    Laminar Flow

B.    Turbulent Flow

C.    All Reynolds Numbers

VI.  Pipe Flow Problems

A.    Unknown Driving Force

1.    Newtonian Fluid

2.    Power Law Fluid

3.    Bingham Plastic

B.    Unknown Flow Rate

1.    Newtonian Fluid

2.    Power Law Fluid

3.    Bingham Plastic

C.    Unknown Diameter

1.    Newtonian Fluid

2.    Power Law Fluid

3.    Bingham Plastic

D.    Use of Tables

VII.  Tube Flow (Poiseuille) Viscometer

VIII. Turbulent Drag Reduction

Summary

Problems

Notation

References

Chapter 7    Internal Flow Applications

I.    Noncircular Conduits

A.    Laminar Flows

1.    Flow in a Slit

2.    Flow in a Film

3.    Annular Flow

B.    Turbulent Flows

II.   Most Economical Diameter

A.    Newtonian Fluids

B.    Non-Newtonian Fluids

1.    Power Law Fluid

2.    Bingham Plastic

III.  Friction Loss in Valves and Fittings

A.    Loss Coefficient

B.    Equivalent L/D Method

C.    Crane Method

D.    2-K (Hooper) Method

E.    3-K (Darby) Method

IV.  Non-Newtonian Fluids

V.    Pipe Flow Problems with Fittings

A.    Unknown Driving Force

1.    Newtonian Fluid

2.    Power Law Fluid

3.    Bingham Plastic

B.    Unknown Flow Rate

1.    Newtonian Fluid

2.    Power Law Fluid

3.    Bingham Plastic

C.    Unknown Diameter

1.    Newtonian Fluids

2.    Power Law Fluid

3.    Bingham Plastic

VI.  Slack Flow

VII. Pipe Networks

Problems

Notation

References

Chapter 8    Pumps and Compressors

I.    Pumps

A.    Positive Displacement Pumps

B.    Centrifugal Pumps

II.   Pump Characteristics

III.  Pumping Requirements and Pump Selection

A.    Required Head

B.    Composite Curves

IV.  Cavitation and NPSH

A.    Vapor Lock and Cavitation

B.    Net Positive Suction Head

C.    Specific Speed

D.    Suction Specific Speed

V.    Compressors

A.    Isothermal Compression

B.    Isentropic Compression

C.    Staged Operation

D.    Efficiency

Summary

Problems

Notation

References

Chapter 9    Compressible Flows

I.    Gas Properties

A.    Ideal Gas

B.    The Speed of Sound

II.   Pipe Flow

A.    Isothermal Flow

B.    Adiabatic Flow

C.    Choked Flow

1.    Isothermal

2.    Adiabatic

D.    The Expansion Factor

E.    Frictionless Adiabatic Flow

F.    General Fluid Properties

III.  Generalized Gas Flow Expressions: Ideal Gas

A.    Governing Equations

1.    Continuity

2.    Energy

3.    Momentum

B.    Applications

C.    Solution of High-Speed Ideal Gas Problems

1.    Unknown Driving Force

2.    Unknown Flow Rate

3.    Unknown Diameter

Summary

Problems

Notation

References

Chapter 10  Flow Measurement

I.    Scope

II.   Pitot Tube

III.  Venturi and Nozzle

IV.  Orifice Meter

A.    Incompressible Flow

B.    Compressible Flow

C.    Friction Loss Coefficient

D.    Other Geometries

V.    Orifice Problems

A.    Unknown Pressure Drop

B.    Unknown Flow Rate

C.    Unknown Diameter

VI.  Noninvasive Techniques

A.    Vortex-Shedding Flow Meter

B.    Magnetic Flow Meter

C.    Ultrasonic Flow Meter

D.    The Coriolis Flow Meter

Summary

Problems

Notation

References

Chapter 11  Safety Relief and Control Valves

I.    Safety Relief Valves

A.    Background

B.    Valve Sizing

1.    Flow Model

2.    Fluid Property Model

3.    Flow Data

C.    Fluid Models

1.    Incompressible Fluids

2.    Ideal Gases

3.    The Homogeneous Direct Integration Method for Any Single- or Two-Phase Flow

4.    Nonequilibrium (Flashing) Flows

D.    The Discharge Coefficient

II.   Control Valves

A.    Valve Characteristics

B.    Overview of Control Valve Sizing

C.    The Equation Constant

1.    Incompressible Fluids

D.    Valve Coefficients

1.    The Valve Sizing Coefficient

2.    FP: The Piping Geometry Factor

3.    FL2(Km): The Liquid Pressure Recovery Factor

4.    Fd: The Valve Style Modifier

E.    Cavitating and Flashing Liquids

1.    Introduction

2.    FF = rc: The Liquid Critical Pressure Ratio

3.    xT: The Pressure Differential Ratio Factor for a Control Valve without Attached Fittings at Choked Flow

F.    Viscous Fluids

G.    Compressible Fluids

1.    Subsonic Flow

2.    Choked Flow

H.    General (HDI) Method for All Fluids and All Conditions

 I.     Valve–System Interaction

 J.     Matching Valve Trim to the System

Summary

Problems

Notation

References

Chapter 12  External Flows

I.    The Drag Coefficient

A.    Stokes Flow

B.    Form Drag

C.    All Reynolds Numbers

D.    Cylinder Drag

E.    Boundary Layer Effects

II.   Falling Particles

A.    Unknown Velocity

B.    Unknown Diameter

C.    Unknown Viscosity

III.  Correction Factors

A.    Wall Effects

B.    Effect of Particle Shape

C.    Drops and Bubbles

IV.  Non-Newtonian Fluids

A.    Power Law Fluids

1.    Unknown Velocity

2.    Unknown Diameter

B.    Wall Effects

C.    Carreau Fluids

D.    Bingham Plastics

Summary

Problems

Notation

References

Chapter 13  Fluid–Solid Separations by Free Settling

I.    Fluid–Solid Separations

II.   Gravity Settling

III.  Centrifugal Separation

A.    Separation of Immiscible Liquids

IV.  Cyclone Separations

A.    General Characteristics

B.    Aerocyclones

1.    Velocity Distribution

2.    Pressure Drop

3.    Separation Efficiency

4.    Other Effects

C.    Hydrocyclones

Summary

Problems

Notation

References

Chapter 14  Flow in Porous Media

I.    Description of Porous Media

A.    Hydraulic Diameter

B.    Porous Medium Friction Factor

C.    Porous Medium Reynolds Number

II.   Friction Loss in Porous Media

A.    Laminar Flow

B.    Turbulent Flow

C.    All Reynolds Numbers

III.  Permeability

IV.  Multidimensional Flow

V.    Packed Columns

VI.  Filtration

A.    Governing Equations

B.    Constant Pressure Operation

C.    Constant Flow Operation

D.    Cycle Time

E.    Plate-and-Frame Filter

F.    Rotary Drum Filter

G.    Compressible Cake

Summary

Problems

Notation

References

Chapter 15  Fluidization and Sedimentation

I.    Fluidization

A.    Governing Equations

B.    Minimum Bed Voidage

C.    Nonspherical Particles

II.   Sedimentation

A.    Hindered Settling

B.    Fine Particles

C.    Coarse Particles

D.    All Flow Regimes

III.  Generalized Sedimentation/Fluidization

IV.  Thickening

Summary

Problems

Notation

References

Chapter 16  Two-Phase Flow

I.    Scope

II.   Definitions

III.  Fluid–Solid Two-Phase Pipe Flows

A.    Pseudohomogeneous Flows

B.    Heterogeneous Liquid-Solid Flows

C.    Pneumatic Solids Transport

1.    Horizontal Transport

2.    Vertical Transport

IV.  Gas–Liquid Two-Phase Pipe Flow

A.    Flow Regimes

B.    Homogeneous Gas–Liquid Models

1.    Omega Method for Homogeneous Equilibrium Flow

2.    Generalized (Homogeneous Direct Integration) Method for All Homogeneous Flow Conditions

C.    Separated Flow Models

D.    Slip and Holdup

Summary

Problems

Notation

References

Appendix A:  Viscosities and Other Properties of Gases and Liquids

Appendix B:  Generalized Viscosity Plot

Appendix C:  Properties of Gases

Appendix D:  Pressure–Enthalpy Diagrams for Various Compounds

Appendix E:  Microscopic Conservation Equations in Rectangular, Cylindrical, and Spherical Coordinates

Appendix F:  Standard Steel Pipe Dimensions and Capacities

Appendix G:  Flow of Water/Air through Schedule 40 Pipe

Appendix H:  Typical Pump Head Capacity Range Charts

Appendix  I:   Fanno Line Tables for Adiabatic Flow of Air in a Constant Area Duct

Index

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.224.51.67