Anomalous pattern detection

The second approach uses the pattern library in an inverse fashion, meaning that the library encodes only positive patterns marked with green plus signs in the following image. When an observed behavior (blue circle) cannot be matched against the library, it is considered anomalous:

Anomalous pattern detection

This approach requires us to model only what we have seen in the past, that is, normal patterns. If we return to the doctor example, the main reason we visited the doctor in the first place was because we did not feel fine. Our perceived state of feelings (for example, headache, sore skin) did not match our usual feelings, therefore, we decided to seek doctor. We don't know which disease caused this state nor do we know the treatment, but we were able to observe that it doesn't match the usual state.

A major advantage of this approach is that it does not require us to say anything about non-normal patterns; hence, it is appropriate for modeling known-unknowns and unknown-unknowns. On the other hand, it does not tell us what exactly is wrong.

Analysis types

Several approaches have been proposed to tackle the problem either way. We broadly classify anomalous and suspicious behavior detection in the following three categories: pattern analysis, transaction analysis, and plan recognition. In the following sections, we will quickly look into some real-life applications.

Pattern analysis

An active area of anomalous and suspicious behavior detection from patterns is based on visual modalities such as camera. Zhang et al (2007) proposed a system for a visual human motion analysis from a video sequence, which recognizes unusual behavior based on walking trajectories; Lin et al (2009) described a video surveillance system based on color features, distance features, and a count feature, where evolutionary techniques are used to measure observation similarity. The system tracks each person and classifies their behavior by analyzing their trajectory patterns. The system extracts a set of visual low-level features in different parts of the image, and performs a classification with SVMs to detect aggressive, cheerful, intoxicated, nervous, neutral, and tired behavior.

Transaction analysis

Transaction analysis assumes discrete states/transactions in contrast to continuous observations. A major research area is Intrusion Detection (ID) that aims at detecting attacks against information systems in general. There are two types of ID systems, signature-based and anomaly-based, that broadly follow the suspicious and anomalous pattern detection as described in the previous sections. A comprehensive review of ID approaches was published by Gyanchandani et al (2012).

Furthermore, applications in ambient-assisted living that are based on wearable sensors also fit to transaction analysis as sensing is typically event-based. Lymberopoulos et al (2008) proposed a system for automatic extraction of the users' spatio-temporal patterns encoded as sensor activations from the sensor network deployed inside their home. The proposed method, based on location, time, and duration, was able to extract frequent patterns using the Apriori algorithm and encode the most frequent patterns in the form of a Markov chain. Another area of related work includes Hidden Markov Models (HMMs) (Rabiner, 1989) that are widely used in traditional activity recognition for modeling a sequence of actions, but these topics are already out of scope of this book.

Plan recognition

Plan recognition focuses on a mechanism for recognizing the unobservable state of an agent, given observations of its interaction with its environment (Avrahami-Zilberbrand, 2009). Most existing investigations assume discrete observations in the form of activities. To perform anomalous and suspicious behavior detection, plan recognition algorithms may use a hybrid approach, a symbolic plan recognizer is used to filter consistent hypotheses, passing them to an evaluation engine, which focuses on ranking.

These were advanced approaches applied to various real-life scenarios targeted at discovering anomalies. In the following sections, we'll dive into more basic approaches for suspicious and anomalous pattern detection.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
52.15.38.176