Contents

Preface

Author

Introduction

PART I Design of radar Digital Signal Processing and Control algorithms

Chapter 1 Principles of Systems Approach to Design Complex Radar Systems

1.1   Methodology of Systems Approach

1.2   Main Requirements of Complex Radar Systems

1.3   Problems of System Design for Automated Complex Radar Systems

1.4   Radar Signal Processing System as an Object of Design

1.5   Summary and Discussion

References

Chapter 2 Signal Processing by Digital Generalized Detector in Complex Radar Systems

2.1   Analog-to-Digital Signal Conversion: Main Principles

2.1.1   Sampling Process

2.1.2   Quantization and Signal Sampling Conversion

2.1.3   Analog-to-Digital Conversion: Design Principles and Main Parameters

2.1.3.1   Sampling and Quantization Errors

2.1.3.2   Reliability

2.2   Digital Generalized Detector for Coherent Impulse Signals

2.2.1   Matched Filter

2.2.2   Generalized Detector

2.2.3   Digital Generalized Detector

2.3   Convolution in Time Domain

2.4   Convolution in Frequency Domain

2.5   Examples of Some DGD Types

2.6   Summary and Discussion

References

Chapter 3 Digital Interperiod Signal Processing Algorithms

3.1   Digital Moving-Target Indication Algorithms

3.1.1   Principles of Construction and Efficiency Indices

3.1.2   Digital Rejector Filters

3.1.3   Digital Moving-Target Indicator in Radar System with Variable Pulse Repetition Frequency

3.1.4   Adaptation in Digital Moving-Target Indicators

3.2 DGD for Coherent Impulse Signals with Known Parameters

3.2.1   Initial Conditions

3.2.2   DGD for Target Return Pulse Train

3.2.3   DGD for Binary Quantized Target Return Pulse Train

3.2.4   DGD Based on Methods of Sequential Analysis

3.2.5   Software DGD for Binary Quantized Target Return Pulse Train

3.3   DGD for Coherent Impulse Signals with Unknown Parameters

3.3.1   Problem Statements of Digital Detector Synthesis

3.3.2   Adaptive DGD

3.3.3   Nonparametric DGD

3.3.3.1   Sign-Nonparametric DGD

3.3.3.2   Rank-Nonparametric DGD

3.3.4   Adaptive-Nonparametric DGD

3.4   Digital Measurers of Target Return Signal Parameters

3.4.1   Digital Measurer of Target Range

3.4.2   Algorithms of Angular Coordinate Estimation under Uniform Radar Antenna Scanning

3.4.3   Algorithms of Angular Coordinate Estimation under Discrete Radar Antenna Scanning

3.4.4   Doppler Frequency Measurer

3.5   Complex Generalized Algorithms of Digital Interperiod Signal Processing

3.6   Summary and Discussion

References

Chapter 4 Algorithms of Target Range Track Detection and Tracking

4.1   Main Stages and Signal Reprocessing Operations

4.1.1   Target Pip Gating: Shape Selection and Dimensions of Gates

4.1.2   Algorithm of Target Pip Indication by Minimal Deviation from Gate Center

4.1.3   Target Pip Distribution and Binding within Overlapping Gates

4.2   Target Range Track Detection Using Surveillance Radar Data

4.2.1   Main Operations under Target Range Track Detection

4.2.2   Statistical Analysis of “2m + 1/n” Algorithms under False Target Range Track Detection

4.2.3   Statistical Analysis of “2m + l/n” Algorithms under True Target Range Track Detection

4.3   Target Range Tracking Using Surveillance Radar Data

4.3.1   Target Range Autotracking Algorithm

4.3.2   United Algorithm of Detection and Target Range Tracking

4.4   Summary and Discussion

References

Chapter 5 Filtering and Extrapolation of Target Track Parameters Based on Radar Measure

5.1   Initial Conditions

5.2   Process Representation in Filtering Subsystems

5.2.1   Target Track Model

5.2.2   Measuring Process Model

5.3   Statistical Approach to Solution of Filtering Problems of Stochastic (Unknown) Parameters

5.4 Algorithms of Linear Filtering and Extrapolation under Fixed Sample Size of Measurements

5.4.1   Optimal Parameter Estimation Algorithm by Maximal Likelihood Criterion for Polynomial Target Track: A General Case

5.4.2   Algorithms of Optimal Estimation of Linear Target Track Parameters

5.4.3   Algorithm of Optimal Estimation of Second-Order Polynomial Target Track Parameters

5.4.4   Algorithm of Extrapolation of Target Track Parameters

5.4.5   Dynamic Errors of Target Track Parameter Estimation Using Polar Coordinate System

5.5   Recurrent Filtering Algorithms of Undistorted Polynomial Target Track Parameters

5.5.1   Optimal Filtering Algorithm Formula Flowchart

5.5.2   Filtering of Linear Target Track Parameters

5.5.3   Stabilization Methods for Linear Recurrent Filters

5.5.3.1   Introduction of Additional Term into Correlation Matrix of Extrapolation Errors

5.5.3.2   Introduction of Artificial Aging of Measuring Errors

5.5.3.3   Gain Lower Bound

5.6   Adaptive Filtering Algorithms of Maneuvering Target Track Parameters

5.6.1   Principles of Designing the Filtering Algorithms of Maneuvering Target Track Parameters

5.6.1.1   First Approach

5.6.1.2   Second Approach

5.6.1.3   Third Approach

5.6.2   Implementation of Mixed Coordinate Systems under Adaptive Filtering

5.6.3   Adaptive Filtering Algorithm Version Based on Bayesian Approach in Maneuvering Target

5.7   Logical Flowchart of Complex Radar Signal Reprocessing Algorithm

5.8   Summary and Discussion

References

Chapter 6 Principles of Control Algorithm Design for Complex Radar System Functioning at Dynamical Mode

6.1   Configuration and Flowchart of Radar Control Subsystem

6.2   Direct Control of Complex Radar Subsystem Parameters

6.2.1   Initial Conditions

6.2.2   Control under Directional Scan in Mode of Searched New Targets

6.2.3   Control Process under Refreshment of Target in Target Tracing Mode

6.3   Scan Control in New Target Searching Mode

6.3.1   Problem Statement and Criteria of Searching Control Optimality

6.3.2   Optimal Scanning Control under Detection of Single Target

6.3.3   Optimal Scanning Control under Detection of Unknown Number of Targets

6.3.4   Example of Scanning Control Algorithm in Complex Radar Systems under Aerial Target Detection and Tracking

6.4 Power Resource Control under Target Tracking

6.4.1   Control Problem Statement

6.4.2   Example of Control Algorithm under Target Tracking Mode

6.4.3   Control of Energy Expenditure under Accuracy Aligning

6.5   Distribution of Power Resources of Complex Radar System under Combination of Target Searching and Target Tracking Modes

6.6   Summary and Discussion

References

Part II Design Principles of Computer System for radar Digital Signal Processing and Control algorithms

Chapter 7 Design Principles of Complex Algorithm Computational Process in Radar Systems

7.1   Design Considerations

7.1.1   Parallel General-Purpose Computers

7.1.2   Custom-Designed Hardware

7.2   Complex Algorithm Assignment

7.2.1   Logical and Matrix Algorithm Flowcharts

7.2.2   Algorithm Graph Flowcharts

7.2.3   Use of Network Model for Complex Algorithm Analysis

7.3   Evaluation of Work Content of Complex Digital Signal Processing Algorithm Realization by Microprocessor Subsystems

7.3.1   Evaluation of Elementary Digital Signal Processing Algorithm Work Content

7.3.2   Definition of Complex Algorithm Work Content Using Network Model

7.3.3   Evaluation of Complex Digital Signal Reprocessing Algorithm Work Content in Radar System

7.4   Paralleling of Computational Process

7.4.1   Multilevel Graph of Complex Digital Signal Processing Algorithm

7.4.2   Paralleling of Linear Recurrent Filtering Algorithm. Macro-Operations

7.4.3   Paralleling Principles of Complex Digital Signal Processing Algorithm by Object Set

7.5   Summary and Discussion

References

Chapter 8 Design Principles of Digital Signal Processing Subsystems Employed by a Complex Radar System

8.1   Structure and Main Engineering Data of Digital Signal Processing Subsystems

8.1.1   Single-Computer Subsystem

8.1.2   Multicomputer Subsystem

8.1.3   Multimicroprocessor Subsystems for Digital Signal Processing

8.1.4   Microprocessor Subsystems for Digital Signal Processing in Radar

8.2 Requirements for Effective Speed of Operation

8.2.1   Microprocessor Subsystem as a Queuing System

8.2.2   Functioning Analysis of Single-Microprocessor Control Subsystem as Queuing System

8.2.3   Specifications for Effective Speed of Microprocessor Subsystem Operation

8.3   Requirements for RAM Size and Structure

8.4   Selection of Microprocessor for Designing the Microprocessor Subsystems

8.5   Structure and Elements of Digital Signal Processing and Complex Radar System Control Microprocessor Subsystems

8.6   High-Performance Centralized Microprocessor Subsystem for Digital Signal Processing of Target Return Signals in Complex Radar Systems

8.7   Programmable Microprocessor for Digital Signal Preprocessing of Target Return Signals in Complex Radar Systems

8.8   Summary and Discussion

References

Chapter 9 Digital Signal Processing Subsystem Design (Example)

9.1   General Statements

9.2   Design of Digital Signal Processing and Control Subsystem Structure

9.2.1   Initial Statements

9.2.2   Main Problems of Digital Signal Processing and Control Subsystem

9.2.3   Central Computer System Structure for Signal Processing and Control

9.3   Structure of Coherent Signal Preprocessing Microprocessor Subsystem

9.4   Structure of Noncoherent Signal Preprocessing Microprocessor Subsystem

9.4.1   Noncoherent Signal Preprocessing Problems

9.4.2   Noncoherent Signal Preprocessing Microprocessor Subsystem Requirements

9.5   Signal Reprocessing Microprocessor Subsystem Specifications

9.6   Structure of Digital Signal Processing Subsystem

9.7   Summary and Discussion

References

Chapter 10 Global Digital Signal Processing System Analysis

10.1 Digital Signal Processing System Design

10.1.1 Structure of Digital Signal Processing System

10.1.2 Structure and Operation of Nontracking MTI

10.1.3 MTI as Queuing System

10.2 Analysis of “n – 1 – 1” MTI System

10.2.1 Required Number of Memory Channels

10.2.2 Performance Analysis of Detector–Selector

10.2.3 Analysis of MTI Characteristics

10.3 Analysis of “nn – 1” MTI System

10.4 Analysis of “nm– 1” MTI System

10.5 Comparative Analysis of Target Tracking Systems

10.6 Summary and Discussion

References

Part III Stochastic Processes Measuring in radar Systems

Chapter 11 Main Statements of Statistical Estimation Theory

11.1 Main Definitions and Problem Statement

11.2 Point Estimate and Its Properties

11.3 Effective Estimations

11.4 Loss Function and Average Risk

11.5 Bayesian Estimates for Various Loss Functions

11.5.1 Simple Loss Function

11.5.2 Linear Module Loss Function

11.5.3 Quadratic Loss Function

11.5.4 Rectangle Loss Function

11.6 Summary and Discussion

References

Chapter 12 Estimation of Mathematical Expectation

12.1 Conditional Functional

12.2 Maximum Likelihood Estimate of Mathematical Expectation

12.3 Bayesian Estimate of Mathematical Expectation: Quadratic Loss Function

12.3.1 Low Signal-to-Noise Ratio (ρ2 ≪ 1)

12.3.2 High Signal-to-Noise Ratio (ρ2 ≫ 1)

12.4 Applied Approaches to Estimate the Mathematical Expectation

12.5 Estimate of Mathematical Expectation at Stochastic Process Sampling

12.6 Mathematical Expectation Estimate under Stochastic Process Amplitude Quantization

12.7 Optimal Estimate of Varying Mathematical Expectation of Gaussian Stochastic Process

12.8 Varying Mathematical Expectation Estimate under Stochastic Process Averaging in Time

12.9 Estimate of Mathematical Expectation by Iterative Methods

12.10 Estimate of Mathematical Expectation with Unknown Period

12.11 Summary and Discussion

References

Chapter 13 Estimation of Stochastic Process Variance

13.1 Optimal Variance Estimate of Gaussian Stochastic Process

13.2 Stochastic Process Variance Estimate under Averaging in Time

13.3 Errors under Stochastic Process Variance Estimate

13.4 Estimate of Time-Varying Stochastic Process Variance

13.5 Measurement of Stochastic Process Variance in Noise

13.5.1 Compensation Method of Variance Measurement

13.5.2 Method of Comparison

13.5.3 Correlation Method of Variance Measurement

13.5.4 Modulation Method of Variance Measurement

13.6 Summary and Discussion

References

Chapter 14 Estimation of Probability Distribution and Density Functions of Stochastic Process

14.1 Main Estimation Regularities

14.2 Characteristics of Probability Distribution Function Estimate

14.3 Variance of Probability Distribution Function Estimate

14.3.1 Gaussian Stochastic Process

14.3.2 Rayleigh Stochastic Process

14.4 Characteristics of the Probability Density Function Estimate

14.5 Probability Density Function Estimate Based on Expansion in Series Coefficient Estimations

14.6 Measurers of Probability Distribution and Density Functions: Design Principles

14.7 Summary and Discussion

References

Chapter 15 Estimate of Stochastic Process Frequency-Time Parameters

15.1 Estimate of Correlation Function

15.2 Correlation Function Estimation Based on Its Expansion in Series

15.3 Optimal Estimation of Gaussian Stochastic Process Correlation Function Parameter

15.4 Correlation Function Estimation Methods Based on Other Principles

15.5 Spectral Density Estimate of Stationary Stochastic Process

15.6 Estimate of Stochastic Process Spike Parameters

15.6.1 Estimation of Spike Mean

15.6.2 Estimation of Average Spike Duration and Average Interval between Spikes

15.7 Mean-Square Frequency Estimate of Spectral Density

15.8 Summary and Discussion

References

Notation Index

Index

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.116.42.208