Chapter P Review and Tests

Review

Definitions, Concepts, and Formulas Examples

P.1 The Real Numbers and Their Properties

  1. Classifying numbers.

    Natural numbers N={1, 2, 3,}N={1, 2, 3,}
    Whole numbers W={0, 1, 2, 3,}W={0, 1, 2, 3,}
    Integers Z={,2, 1, 0, 1, 2,}Z={,2, 1, 0, 1, 2,}
    Rational numbers Q: Numbers that can be expressed as the quotient abab of two integers, where b0;b0; a terminating or repeating decimal
    Irrational numbers Decimals that neither terminate nor repeat
    Real numbers R: All of the rational and irrational numbers
  2. Coordinate line. Real numbers can be associated with a geometric line called a number line or coordinate line. Numbers associated with points to the right (left) of zero are called positive (negative) numbers.

  3. Ordering numbers. a<ba<b means that b=a+cb=a+c for some positive number c.

    Trichotomy property. For two numbers a and b, exactly one of the following is true: a<b,a<b, a=b,a=b, or a>b.a>b.

    Transitive property. If a<ba<b and b<c,b<c, then a<c.a<c.

  4. Absolute value.

    |a|=a if a0, and |a|=a if a<0.
    |a|=a if a0, and |a|=a if a<0.

    The distance between points a and b on a number line is |ab||ab|.

  5. Algebraic properties. Let a, b, and c be real numbers.

    Closure a+ba+b is a real number, abab is a real number.
    Commutative a+b=b+a,ab=baa+b=b+a,ab=ba
    Associative (a+b)+c=a+(b+c)(ab)c=a(bc)(a+b)+c(ab)c==a+(b+c)a(bc)
    Distributive

    a(b+c)=ab+aca(b+c)=ab+ac

    (a+b)c=ac+bc(a+b)c=ac+bc

    Identity a+0=0+a=a,a+0=0+a=a,a1=1a=aa1=1a=a
    Inverse properties a+(a)=0a+(a)=0, a1a=1,a1a=1, where a0a0
    Zero-product properties

    0a=0=a00a=0=a0

    If ab=0,ab=0, then a=0a=0 or b=0.b=0.

7, 18, 537, 18, 53

0, 3, 80, 3, 8

5, 1, 0, 17, 235, 1, 0, 17, 23

157, 63, 0, 12, 0.25, 0.1¯23157, 63, 0, 12, 0.25, 0.123¯¯¯¯

6, 2, 3, π, 5.0200200026, 2, 3, π, 5.020020002

11, 3.57, 0, 2, 57411, 3.57, 0, 2, 574

3<7,2<2,0<23<7,2<2,0<2

|3|=3;|4|=(4)=4|3|=3;|4|=(4)=4

3+73+7 is a real number; 2π2π is a real number.

3+5=5+3;57=7(5)3+5=5+3;57=7(5)

[5+(3)]+7=5+[(3)+7][5+(3)]+7=5+[(3)+7]

(56)15=5(615)(56)15=5(615)

2(3+7)=23+272(3+7)=23+27

5+0=0+5=5;71=17=75+0=0+5=5;71=17=7

15+(5)=0;15115=115+(5)=0;15115=1

03=0=3003=0=30

P.2 Integer Exponents and Scientific Notation

  1. If n is a positive integer, then

    an=aaan factros
    an=aaan factros
    a0=1an=1an}a0
    a0=1an=1ana0
  2. Rules of exponents. Denominators and exponents attached to a base of zero are assumed not to be zero.

    Product rule aman=am+naman=am+n
    Quotient rule aman=amnaman=amn
    Power-of-a-power rule (am)n=amn(am)n=amn
    Power-of-a-product rule (ab)n=anbn(ab)n=anbn
    Power-of-a-quotient rules

    (ab)n=anbn(ab)n=anbn

    (ab)n=(ba)n=bnan(ab)n=(ba)n=bnan

a4=aaaaa4=aaaa

50=1, π0=1, (17)0=150=1, π0=1, (17)0=1

53=15353=153

7372=73+2=755652=562=54(a3)4=a34=a12(3u)4=34u4=81u4(x2)3=x323=x38(3y)2=(y3)2=y232=y29
7372=73+2=755652=562=54(a3)4=a34=a12(3u)4=34u4=81u4(x2)3=x323=x38(3y)2=(y3)2=y232=y29

P.3 Polynomials

An algebraic expression of the form

anxn+an1xn1++a2x2+a1x+a0,
anxn+an1xn1++a2x2+a1x+a0,

where n is a nonnegative integer, is a polynomial in x. If an0,an0, then n is called the degree of the polynomial. The term anxnanxn is the leading term, and a0a0 is the constant term.

To add or subtract two polynomials, we add or subtract the coefficients of the like terms.

To multiply two polynomials, distribute each term of the first polynomial to each term of the second polynomial and then combine terms.

Special Products

(x+a)(x+b)=x2+(a+b)x+ab(A+B)(AB)=A2B2(A+B)2=A2+2AB+B2(AB)2=A22AB+B2
(x+a)(x+b)(A+B)(AB)(A+B)2(AB)2====x2+(a+b)x+abA2B2A2+2AB+B2A22AB+B2

5x32x+75x32x+7 is a polynomial of degree 3, with leading term 5x35x3 and constant term 7.

(5x32x2+3x+1)+(2x3+5x7)=5x32x2+3x+1+2x3+0x2+5x7=(5+2)x3+(2+0)x2+(3+5)x+(17)=7x32x2+8x6(3x2+5x3)(2x2x7)=3x2+5x32x2+x+7=(32)x2+(5+1)x3+7=x2+6x+4
(5x32x2+3x+1)+(2x3+5x7)=5x32x2+3x+1+2x3+0x2+5x7=(5+2)x3+(2+0)x2+(3+5)x+(17)=7x32x2+8x6(3x2+5x3)(2x2x7)=3x2+5x32x2+x+7=(32)x2+(5+1)x3+7=x2+6x+4
(x+2)(x3)=x2x6(x+2y)(x2y)=x2(2y)2=x24y2(2x+3y)2=(2x)2+2(2x)(3y)+(3y)2=4x2+12xy+9y2(3x4)2=(3x)22(3x)(4)+42=9x224x+16
(x+2)(x3)=x2x6(x+2y)(x2y)=x2(2y)2=x24y2(2x+3y)2(3x4)2====(2x)2+2(2x)(3y)+(3y)24x2+12xy+9y2(3x)22(3x)(4)+429x224x+16

P.4 Factoring Polynomials

Factoring formulas:

  • A2B2=(AB)(A+B)A2B2=(AB)(A+B)

  • A2+2AB+B2=(A+B)2A2+2AB+B2=(A+B)2

  • A22AB+B2=(AB)2A22AB+B2=(AB)2

  • A3B3=(AB)(A2+AB+B2)A3B3=(AB)(A2+AB+B2)

  • A3+B3=(A+B)(A2AB+B2)A3+B3=(A+B)(A2AB+B2)

4x225=(2x+5)(2x5)4x2+12x+9=(2x+3)29x212xy+4y2=(3x2y)2x38=(x2)(x2+2x+4)8x3+27y3=(2x+3y)(4x26xy+9y2)
4x225=(2x+5)(2x5)4x2+12x+9=(2x+3)29x212xy+4y2=(3x2y)2x38=(x2)(x2+2x+4)8x3+27y3=(2x+3y)(4x26xy+9y2)

P.5 Rational Expressions

The quotient of two polynomials is called a rational expression.

  1. Multiplication and division.

    ABCD=ACBDABCD=AB÷CD=ABDC=ADBC
    ABCDABCD==ACBDAB÷CD=ABDC=ADBC

    All of the denominators are assumed not to be zero.

  2. Addition and subtraction.

    AB±CD=AD±BCBD
    AB±CD=AD±BCBD

    The denominators are assumed not to be zero.

23x5y=103xy
23x5y=103xy
3x4y÷5x26y3=3x4y6y35x2=18xy320x2y=9y210x
3x4y÷5x26y3=3x4y6y35x2=18xy320x2y=9y210x
2x+3y=2y+3xxy;x3y2=2x3y6
2x+3y=2y+3xxy;x3y2=2x3y6

P.6 Rational Exponents and Radicals

  1. If a>0,a>0, then na=ban=b means that bn=abn=a and b>0.b>0.

  2. If a<0a<0 and n is odd, then na=ban=b means that bn=abn=a. If a<0a<0 and n is even, then naan is not defined.

  3. When all expressions are defined,

    am/n=nam=(na)m;a m/n=1am/n.
    am/n=nam=(an)m;a m/n=1am/n.
  4. a2=|a|a2=|a|

481
814
823=(38)2=22=4
823=(83)2=22=4
32=3;(3)2=3
32=3;(3)2=3
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.145.83.150