10.1.2 Catalyst Properties

Ten grams of this catalyst possess more surface area than a U.S. football field

Catalyst types:

• Porous

• Molecular sieves

• Monolithic

• Supported

• Unsupported

Typical zeolite catalyst

High selectivity to para-xylene

Because a catalytic reaction occurs at the fluid–solid interface, a large interfacial area is almost always essential in attaining a significant reaction rate. In many catalysts, this area is provided by an inner porous structure (i.e., the solid contains many fine pores, and the surface of these pores supplies the area needed for the high rate of reaction). The area possessed by some porous catalysis materials is surprisingly large. A typical silica-alumina cracking catalyst has a pore volume of 0.6 cm3/g and an average pore radius of 4 nm. The corresponding surface area is 300 m2/g of these porous catalysts. Examples include the Raney nickel used in the hydrogenation of vegetable and animal oils, platinum-on-alumina used in the reforming of petroleum naphthas to obtain higher octane ratings, and promoted iron used in ammonia synthesis. Sometimes pores are so small that they will admit small molecules but prevent large ones from entering. Materials with this type of pore are called molecular sieves, and they may be derived from natural substances such as certain clays and zeolites, or may be totally synthetic, such as some crystalline aluminosilicates (see Figure 10-2). These sieves can form the basis for quite selective catalysts; the pores can control the residence time of various molecules near the catalytically active surface to a degree that essentially allows only the desired molecules to react. One example of the high selectivity of zeolite catalysts is the formation of para-xylene from toluene and methane shown in Figure 10-2(b).3 Here, benzene and toluene enter through the zeolite pore and react on the interior surface to form a mixture of ortho-, meta-, and para-xylenes. However, the size of the pore mouth, is such that only para-xylene can exit through the pore mouth, as meta- and ortho- xylene with their methyl group on the side cannot fit through the pore mouth. There are interior sites that can isomerize ortho- and meta- to para-xylene. Hence we have a very high selectivity to form para-xylene.

Figure 10-2. (a) Framework structures and (b) pore cross sections of two types of zeolites. (a) Faujasite-type zeolite has a three-dimensional channel system with pores at least 7.4 Å in diameter. A pore is formed by 12 oxygen atoms in a ring. (b) Schematic of reaction CH4 and C6H5CH3. (Note that the size of the pore mouth and the interior of the zeolite are not to scale.)

image

In some cases a catalyst consists of minute particles of an active material dispersed over a less active substance called a support. The active material is frequently a pure metal or metal alloy. Such catalysts are called supported catalysts, as distinguished from unsupported catalysts. Catalysts can also have small amounts of active ingredients added called promoters, which increase their activity. Examples of supported catalysts are the packed-bed catalytic converter in an automobile, the platinum-on-alumina catalyst used in petroleum reforming, and the vanadium pentoxide on silica used to oxidize sulfur dioxide in manufacturing sulfuric acid. On the other hand, platinum gauze for ammonia oxidation, promoted iron for ammonia synthesis, and silica–alumina dehydrogenation catalyst used in butadiene manufacture typify unsupported catalysts.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.145.12.242