]>

Appendix 2D: Nonuniform Transmission Lines

Appendix 2D: Nonuniform Transmission Lines

2D.1Nonuniform Transmission Lines

A nonuniform transmission line can represent many physical phenomena in an inhomogeneous medium whose medium properties are functions of position. A one-dimensional equivalent ideal transmission line will have the per unit values of series inductance L′ and the shunt capacitance C′ as functions of one spatial coordinate.

Let

(2D.1a)L=L(z),
L=L(z),
(2D.1b)C=C(z).
C=C(z).

If ε and μ are homogenous in the transverse plane, then

(2D.2)1LC=1εμ=up,
1LC=1εμ=up,

where up is the phase velocity.

The first-order coupled differential equations are

(2D.3a)Vz=L(z)It,
Vz=L(z)It,
(2D.3b)Iz=C(z)Vt.
Iz=C(z)Vt.

In the phasor form,

(2D.4a)˜Vz=L(z)jω˜I,
V˜z=L(z)jωI˜,
(2D.4b)˜Iz=C(z)jω˜V.
I˜z=C(z)jωV˜.

From Equations 2D.3a and 2D.3b, we can obtain

(2D.5a)2Vz21L(z)LzVzL(z)C(z)2Vt2=0.
2Vz21L(z)LzVzL(z)C(z)2Vt2=0.

The equation for I can be obtained similarly as

(2D.5b)2Iz21C(z)CzIzL(z)C(z)2It2=0.
2Iz21C(z)CzIzL(z)C(z)2It2=0.

The phasor form of Equations 2D.5a and 2D.5b are

(2D.6a)2˜Vz21L(z)Lz˜Vz+ω2L(z)C(z)˜V=0,
2V˜z21L(z)LzV˜z+ω2L(z)C(z)V˜=0,
(2D.6b)2˜Iz21C(z)Cz˜Iz+ω2L(z)C(z)˜I=0.
2I˜z21C(z)CzI˜z+ω2L(z)C(z)I˜=0.

Analytical solutions can be obtained for an exponential transmission line and this aspect is discussed in the following section.

2D.2Exponential Transmission Line

In this section, we define an exponential transmission line where both the inductance and capacitance are exponential functions as shown below.

Let

(2D.7a)L=L0eqz,
L=L0eqz,
(2D.7b)C=C0eqz.
C=C0eqz.

Note that

(2D.7c)LC=L0C0=εμ.
LC=L0C0=εμ.

Equations 2D.5a and 2D.5b assume the form of

(2D.8)2Vz2qVzL0C02Vt2=0,
2Vz2qVzL0C02Vt2=0,
(2D.9)2Iz2+qIzL0C02It2=0.
2Iz2+qIzL0C02It2=0.

For harmonic variation in space and time, let

(2D.10)V(z,t)=V0ej(ωtkvz).
V(z,t)=V0ej(ωtkvz).

From Equations 2D.8 and 2D.10, we obtain

(2D.11)(jkv)2q(jkv)L0C0(jω)2=0,k2v+jkvq+ω2L0C0=0,ω2L0C0=k2vjkvq.
(jkv)2q(jkv)L0C0(jω)2=0,k2v+jkvq+ω2L0C0=0,ω2L0C0=k2vjkvq.

For a real ω, kv will be complex, so

(2D.12)kv=βvjαv.
kv=βvjαv.

By substituting Equation 2D.12 into Equation 2D.11, we obtain

(2D.13a)ω2L0C0=(βvjαv)2j(βvjαv)q,ω2L0C0=β2vα2vαvq,
ω2L0C0ω2L0C0==(βvjαv)2j(βvjαv)q,β2vα2vαvq,
(2D.13b)βv(2αv+q)=0.
βv(2αv+q)=0.

Thus, we have

(2D.14)αv=q2.
αv=q2.

Substituting Equation 2D.14 into Equation 2D.13a, we obtain

(2D.15a)β2vq24+q22=ω2L0C0,βv=±β,
β2vq24+q22βv==ω2L0C0,±β,

where

(2D.15b)β=ω2L0C0q24.
β=ω2L0C0q24.

Thus kv = ±β − jαv = ±β + j(q/2),

(2D.16)ejkvz=e±jβzeq2z.
ejkvz=e±jβzeq2z.

Let

(2D.17a)ωc=q2L0C0,
ωc=q2L0C0,
(2D.17b)β0=ωL0C0,
β0=ωL0C0,

then

(2D.18)βv=β01ω2cω2,
βv=β01ω2cω2,

and

(2D.19)ejkvz=e[±jβ01ω2cω2+q2]z.
ejkvz=e[±jβ01ω2cω2+q2]z.

Therefore, the time-harmonic solution for an exponential transmission line described by Equation 2D.8 is given as

(2D.20)˜V(z)=V+0e(q/2)zejβz+V0e(q/2)ze+jβz.
V˜(z)=V+0e(q/2)zejβz+V0e(q/2)ze+jβz.

The first term on the RHS is the positive traveling wave and the second term is the negative traveling wave given by

(2D.21)˜V+(z)=V+0e(q/2)zejβz(positivetravelingwave),
V˜+(z)=V+0e(q/2)zejβz(positivetravelingwave),
(2D.22)˜V(z)=V0e(q/2)ze+jβz(negativetravelingwave).
V˜(z)=V0e(q/2)ze+jβz(negativetravelingwave).

The solution for the currents can be obtained in a similar fashion by solving Equation 2D.9 and it can be shown that

(2D.23a)˜I(z)=I+0e(q/2)zejβz+I0e(q/2)ze+jβz,
I˜(z)=I+0e(q/2)zejβz+I0e(q/2)ze+jβz,
(2D.23b)˜I+(z)=I+0e(q/2)zejβz(positivetravelingwave),
(2D.23c)˜I(z)=I0e(q/2)ze+jβz(negativetravelingwave).

The relationship between ˜V+0 and ˜I+0, and ˜V0 and ˜I0 can be obtained from Equations 2D.4a, 2D.21, and 2D.7a.

(2D.24)˜I+(z)=1jωL(z)˜V+(z)z,˜I+(z)=1jωL(z)(q2jβ)V+0e(q/2)zejβz,˜I+(z)=q/2jβjωL0eqzV+0e(q/2)zejβz,˜I+(z)=V+0(q/2jβ)jωL0e(q/2)zejβz,˜I+(z)=˜I+0e(q/2)zejβz,Z+0=V+0I+0=jωL0q/2jβ=ωL0β+j(q/2).

Similarly,

(2D.25)Z0=V0I0=ωL0βj(q/2).

One should note that in a nonuniform transmission line, the characteristic impedances for the oppositely traveling waves are not the same:

(2D.26)Z+0Z0.

Furthermore,

(2D.27)Z+(z)=V+(z)I+(z)=V+0e(q/2)zejβzI+0e(q/2)zejβz,Z+(z)=Z+0eqz.

Similarly,

(2D.28)Z(z)=Z0eqz.

Substituting for β from Equation 2D.18 and Equation 2D.24 can be written as

(2D.29a)Z+0=ωL0β+j(q/2)=ωL0β0[1ω2c/ω2]+jωcL0C0,Z+0=ωL0β0{[1ω2c/ω2]1/2+j(ωc/ω)},Z+0=L0C0[(1ω2c/ω2)1/2j(ωc/ω)]1ω2c/ω2+ω2c/ω2,Z+0=Z0[(1ω2cω2)1/2jωcω].

Similarly, we can show that

(2D.29b)Z0=Z0[(1ω2cω2)1/2+jωcω],

where Z0 is the nominal characteristic impedance given by

(2D.30)Z0=L0C0.

For a uniform line q = ωc = 0, all the formulas of a uniform line can be obtained from

(2D.31)Z+0=Z0=LC(uniformlineωc=0).

2D.3The Input Impedance

(2D.32)Z(z)=˜V+0e(q/2)zejβz[1+Γ0Vej2βz]˜I+0e(q/2)zejβz[1+Γ0Iej2βz],Z(z)=Z+0eqz[1+Γ0Vej2βz][1+Γ0Iej2βz],

where

(2D.33)Γ0V=V0V+0,
(2D.34)Γ0I=I0I+0.

Note that

(2D.35)Γ0V=V0V+0=Z0I0Z+0I+0,Γ0V=Z0Z+0Γ0I,Γ0I=Z+0Z0Γ0V.

2D.4Arbitrary Load at z = 0

(2D.36)ZL=VLIL=V+0+V0I+0+I0,ZL=V+0I+0(1+Γ0V1+Γ0I),ZL=Z+0(1+Γ0V1+Γ0I),ZL=Z+0[1+Γ0V1+(Z+0/Z0)Γ0V],ZL=Z+0Z0[1+Γ0VZ0Z+0Γ0V],ZL(Z0Z+0Γ0V)=Z+0Z0(1+Γ0V),Γ0V[Z+0Z+0+ZLZ+0]=ZLZ0Z+0Z0,Γ0V=Z0[ZLZ+0]Z+0[ZLZ0].

Similarly,

(2D.37)Γ0I=[ZLZ+0][ZLZ0].

From Equation 2D.32, the input impedance at z = −h is given by

(2D.38)Z(h)=Z+0eqh[1+Γ0Vej2βh1+Γ0Iej2βh],Z(h)=Z+0eqh[ejβh+Γ0Vejβhejβh+Γ0Iejβh],Z(h)=Z+0eqh(ZL+Z0)Z+0(ZL+Z0)Z+0(ZL+Z0)ejβh+Z0(ZL+Z+0)ejβh(ZL+Z0)ejβh(ZL+Z+0)ej2βh.

The above can be written as

(2D.39)Z(h)=eqhND,N=cosβh[Z+0(ZL+Z0)+Z0(ZLZ+0)]+jsinβh[Z+0(ZL+Z0)Z0(ZLZ+0)],N=cosβh[ZL(Z+0+Z0)]+jsinβh[Z+0ZLZ0ZL+2Z+0Z0],D=cosβh[ZL+Z0+ZL+Z+0]+jsinβh[ZL+Z0+ZLZ+0],D=cosβh[Z+0+Z0]+jsinβh[2ZL+Z0Z+0],Z(h)=eqhZL(Z+0+Z0)(Z+0+Z0){1+jtanβh[(Z+0ZLZ0ZL+2Z+0Z0)/ZL(Z+0+Z0)]1+jtanβh[(2ZL+Z0Z+0)/(Z+0+Z0)]},Z(h)=eqh(Z+0+Z0)2{ZL+jtanβh[(Z+0ZLZ0ZL+2Z+0Z0)/(Z+0+Z0)](Z+0+Z0)/2+jtanβh[(2ZL+Z0Z+0)/2]}.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.138.33.178