1.2 Divisors and Prime Factorization

1.
a. 391=23·17+0
c. −116=(−9)·13+1
2.
a. n/d=51837/386=134.293, so q=134. Thus r=nqd=113.
3. If d>0, then imgdimg=d and this is the division algorithm. If d<0, then imgdimg=−d>0 so n=q(−d)+r=(−q)d+r, 0≤rimgdimg.
5. Write m=2k+1, n=2j+1. Then m2n2=4[k(k+1)−j(j+1)]. But each of k(k+1) and j(j+1) is even, so 8 img (m2n2).
7.
a. 10(11k+4)−11(10k+3)=7, so d img 7. Thus d=1 or d=7.
9.

equation


equation

11. If m=qd, then img, so img. Similarly, img. If d=xm+yn, then img, so any common divisor of img and img is a divisor of img.
13. It is prime for n=1, 2, . . ., 9; but 102+10+11=121=112.
15. If d=gcd(m, n) and d1=gcd(m1, n1), then d img m and d img n, so d img m1 and d img n1 by hypothesis. Thus d img d1.
17. If 1=xm+yn and 1=x1k+y1n, then

equation

Thus gcd(mk, n)=1 by Theorem 4. Alternatively, if d=gcd(mk, n)≠1 let p img d, p a prime. Then p img n and p img mk But then p img m or p img k, a contradiction either way because we have gcd(m, n)=1=gcd(m, n).
19. Write d=gcd(m, n) and d′=gcd(km, kn). We must show kd=d′. First, d img m and d img n, so kd img km and kd img kn. Hence, kd img d′. On the other hand, write km=qd′ and kn=pd′. We have d=xm+yn, img, so

equation

Thus dimg kd. As k≥1 it follows that d′=kd.
21. If p is not a prime, then assume p=mn with m≥2 and n≥2. But then p img m or p img n by hypothesis, so pm<p or pn<p, a clear contradiction.
23. No. If a=18 and n=12 then d=6 so img is not relatively prime to n=12.
25. Let them be 2k+1, 2k+3, 2k+5. We have k=3q+r, r=0, 1, 2. If r=0 then 3 img (2k+3); if r=1, then 3 img (2k+1); and if r=2, then 3 img (2k+5). Thus one of these primes is a multiple of 3, and so is 3.
27. Let d=gcd(m, pk), then d img m and d img pk. Thus d=pj, jk. If j>0, then p img d, so (since d img m) p img m. This contradicts gcd(m, p)=1. So j=0 and d=1.
29. We have a img a1b1 and (a, b1)=1. Hence a img a1 by Theorem 5. Similarly a1 img a, so a=a1 because both are positive. Similarly b=b1.
30.
a. 27783 = 34 · 73
c. 2431 = 11 · 13 · 17
e. 241 = 241 (a prime)
31.
a. 735=20·31·51·72·110 and 110=21·30·51·70·111. Hence gcd(735, 110)=20·30·51·72·110=5, and

equation

c. 139=20·1391 and 278=21·1391. Hence gcd(139, 278)=20·1391=139, and lcm(139, 278)=21·1391=278.
33. Use Theorem 8. In forming img, there are (n1+1) choices for d1 among 0, 1, 2, . . ., ni; then there are (n2+1) choices for d2 among 0, 1, 2, . . ., n2; and so on. Thus there are (n1+1)(n2+1)img(nr+1) choices in all, and each leads to a different divisor by the uniqueness in the prime factorization theorem.
35. Let img and img be the prime factorizations of m and n. Since gcd(m, n)=1, piqj for all i and j, so the prime factorization of mn is img. Since d img mn, we have img where 0≤dimi for each i and 0≤ejnj for each j. Take img and img.
37. Write img and img where the pi are distinct primes, ai≥0 and bi≥0. Let img and img and then take img and img. Then u img a, img and img Moreover uv=lcm(a, b) by Theorem 9 because img for each i.
39.
a. By the division algorithm, p=4k+r for r=0, 1, 2 or 3. But r=0 or 2 is impossible since p is odd (being a prime greater than 2).
41.
a. 28665=32·51·72·110·131 and 22869=33·50·71·112·130 so,

equation

43. Let img, x1a1+img+xkak≥1}. Then X≠∅ because img, so let m be the smallest member of X. Then m=x1a1+ img+xkak for integers ak, so we show d=m. Since d img ai for each i, it is clear that d img m. We can show m img d, if we can show that m is a common divisor of the ai (by definition of d=gcd(a1, img, ak)). Write a1=qm + r, 0≤r<m. Then

equation

and this contradicts the minimality if r≥1. So r=0 and m img a1. A similar argument shows m img ai for each i.
45. Let m=qn+r, 0≤r<n. If m<n, then q=0 and r=m. If mn, then q≥1. Thus q≥0. We want img such that 2m−1=x(2n−1)+(2r−1). Solving for x (possibly in img):

equation

If q=0, take x=2r=2m; if q>0, take x=(2n)q−1+img+2n+1.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.149.234.188