2.9 Factor Groups

1.
a. D6 = {1, a, a2, a3, a4, a5, b, ba, ba2, ba3, ba4, ba5}; K = Z(D6) = {1, a3} by Exercise 26 §2.6. The cosets are

img

img

We have img, img and KaKbKa = Kaba = Kb. Hence D6/KD3.
c. G = A × B, K = {(a, 1) img a img A}. Note K G because (x, y)−1(a, 1)(x, y) = (x−1ax, 1) img K. If b img B, a img A, note that (ab)(1, b)−1 img K, so

img

Thus G/K = {K(1, b) img b img B}. Observe that K(1, b)K(1, b′) = K(1, bb′) gives the Cayley table. Define θ : BG/K by θ(b) = K(1, b). Then θ is onto, and it is 1 : 1 because θ(b) = θ(b1) gives K(1, b) = K(1, b1), so img. Hence img, b = b1. Finally, θ(b) · θ(b1) = K(1, b)K(1, b1) = K(1, bb1) = θ(bb1). So θ is an isomorphism; G/KB.
3. a. We have G =img a img, so G/K =img Ka img. We claim img. Certainly (Ka)12 = Ka12 = K. But img, so, img because Ka generates G/K. Now img by Theorem 7 §2.4. Similarly, img, and img. Finally, Ka5 = (Ka)5 is a generator of G/K because gcd (5, 12) = 1 (Theorem 6 §2.4). Thus img.
4. a. G =img a img × img b img with o(a) = 8 and o(b) = 12, and K =img (a2, b3) img. We want img in G/K. Then, as (a4, b)12 = (1, 1) img K, img, so img. But since none of

img

or (a4, b)6 = (1, b6) are in K, img.
5. a. We have Ka2 = K because a2 img K. So o(Ka2) = 1. Next we have (Ka3)2 = Ka6 = K, so o(Ka3) divides 2. Since

img

Similarly (Kba)2 = K(ba)2 = K and baK, so o(Kba) = 2. Finally (Ka5)2 = Ka10 = K, so o(Ka5) = 2 because a5K.
7. If 0 < n < m in img, then img because img. Hence img contains the infinite set img. Now let img be any element of img. Then img, so img has finite order.
9. If o(g) = n, then gn = 1, so (Kg)n = Kgn = K1 = K. Thus o(Kg) divides n.
11. Let o(g) = n, g img G. Then (Kg)n = Kgn = K in G/K. On the other hand, img, so (Kg)m = K by Lagrange's theorem. But gcd (m, n) = 1 implies 1 = nx + my, img, so

img

Thus g img K.
13.
a. If z img Z(G), then zK img Z(G/K), so z img K. Then z img Z(K), so z = 1.
c. If g img G, then img for some n, so img. Thus img, so img, so o(g) = pk for some kn + m.
15. If Kg img G/K, then gimg img X img, say img, xi img X, img. Then Kg = (Kx1)k1(Kx2)k2img (Kxr)kr img img {Kx img x img X} img.
17.
a. If o(g) = n, o(g1) = m, then img because G is abelian, and (g−1)n = 1.
c. If G is torsion, it is clear that H and G/H are torsion. Conversely, if g img G then (Hg)n = H for some n, so gn img H. Thus (gn)m = 1 for some m ≠ 0, that is g img T(G). Hence T(G) = G.
19.
a. If G is abelian, then G/{1} is abelian, so G′ ⊆ {1}. Thus G′ = {1}.
c. Write

img

Let K = img a2 img = {1, a2, a4}. Then a2b = ba4 and a4b = ba2, so b−1KbK. Hence K D6 and D6/K is abelian (it has order 4). This means img. But img because D6 is not abelian. Thus img.
21. Given commutators [a, b] in G′ and [x, y] in H′, we have

img

If (g, h) img G′ × H′, then (g, h) = (g, 1)(1, h) and each of (g, 1) and (1, h) are products of commutators of the form ([a, b], [x, y]). Hence G′ × H′ ⊆ (G × H)′. Conversely [(a, x), (b, y)] = ([a, x], [b, y]) shows that every commutator of G × H lies in G′ × H′, so (G × H)′ ⊆ G′ × H′.
23. a. The unity K = K1 of G/K is in H/K because 1 img H. If Kh and Kh′ are in H/K where h, himg H, then Kh · Kh′ = Khhimg H/K and also (Kh)−1 = Kh−1 img H/K. Use the subgroup test.
25. a. [Ka, Kb] = (Ka)(Kb)(Ka−1)(Kb−1) = K(aba−1b−1) = K[a, b].
27. Let σ : GG be an automorphism. We must show σ(H) = H. Define img by img. Since K is characteristic in G, img. Hence img is well-defined and one-to-one; it is onto because σ is onto. Finally, img. Hence σ is an automorphism of G/K, so img by hypothesis. Hence, if h img H, img, h1 img H, so img. Thus σ(h) img H, whence σ(H) ⊆ H. Similarly σ−1(H) ⊆ H and so Hσ(H). Thus H = σ(H).
1. a. Suppose img is a prime. Then img, so the group G/Z(G) is cyclic by Lagrange's theorem (Corollary 3). Then Theorem 2 shows G is abelian. Thus Z(G) = G, so img, a contradiction.
29. Let n = kd and Dn = {1, a, . . ., an−1, b, ba, . . ., ban−1}, o(a) = n, o(b) = 2, aba = b. Let K =img ak img. Then K G because b−1akb = ak img K. In Dn/K, let img, img. Then img, img and

img

Since img, Dn/KDk.
31. Let AC4 and BCC8where |A| = |B| = 2 and |C| = 4 . (a) Let K = A × C and H = C4 × B. Then KC2 × C4H, but img while img So img
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.138.37.20