Section 11.2

  1. 1. cn+2=cn; y(x)=c0n=0x2n+c1n=0x2n+1=c0+c1x1x2; ρ=1

  2. 2. cn+2=12cn; ρ=2; y(x)=c0n=0(1)nx2n2n+c1n=0(1)nx2n+12n

  3. 3. (n+2)cn+2=cn; y(x)=c0n=0(1)nx2nn!2n+c1n=0(1)nx2n+1(2n+1)!!; ρ=+

  4. 4. (n+2)cn+2=(n+4)cn; ρ=1; c0n=0(1)n(n+1)x2n+13c1n=0(1)n(2n+3)x2n+1

  5. 5. 3(n+2)cn+2=ncn; ρ=3; y(x)=c0+c1n=0x2n+1(2n+1)3n

  6. 6. (n+1)(n+2)cn+2=(n3)(n4)cn; ρ=; y(x)=c0(1+6x2+x4)+c1(x+x3)

  7. 7. 3(n+1)(n+2)cn+2=(n4)2cn; y(x)=c0(18x23+8x427)+c1(xx32+x5120+9n=3(1)n[(2n5)!!]2x2n+1(2n+1)!3n)

  8. 8. 2(n+1)(n+2)cn+2=(n4)(n+4)cn; y(x)=c0(14x2+2x4)+c1(x5x34+7x532+n=3(2n5)!!(2n+3)!!x2n+1(2n+1)!2n)

  9. 9. (n+1)(n+2)cn+2=(n+3)(n+4)cn; ρ=1; y(x)=c0n=0(n+1)(2n+1)x2n+c13n=0(n+1)(2n+3)x2n+1

  10. 10. 3(n+1)(n+2)cn+2=(n4)cn; y(x)=c0(1+2x23+x427)+c1(x+x36+x5360+3n=3(1)n(2n5)!!x2n+1(2n+1)!3n)

  11. 11. 5(n+1)(n+2)cn+2=2(n5)cn; y(x)=c1(x4x315+4x5375)+c0(1x2+x410+x6750+15n=4(2n7)!!2nx2n(2n)!5n)

  12. 12. c2=0; (n+2)cn+3=cn; y(x)=c0(1+n=1x3n2·5(3n1))+c1n=0x3n+1n!3n

  13. 13. c2=0; (n+3)cn+3=cn; y(x)=c0n=0(1)nx3nn!3n+c1n=0(1)nx3n+11·4(3n+1)

  14. 14. c2=0; (n+2)(n+3)cn+3=cn; y(x)=c0(1+n=1(1)nx3n3n·n!·2·5(3n1))+c1n=0(1)nx3n+13n·n!·1·4(3n+1)

  15. 15. c2=c3=0; (n+3)(n+4)cn+4=cn; y(x)=c0(1+n=1(1)nx4n4n·n!·3·7(4n1))+c1n=0(1)nx4n+14n·n!·5·9(4n+1)

  16. 16. y(x)=x

  17. 17. y(x)=1+x2

  18. 18. y(x)=2n=0(1)n(x1)2nn!2n; converges for all x

  19. 19. y(x)=13n=0(2n+3)(x1)2n+1; converges if 0<x<2

  20. 20. y(x)=26(x3)2; converges for all x

  21. 21. y(x)=1+4(x+2)2; converges for all x

  22. 22. y(x)=2x+6

  23. 23. 2c2+c0=0; (n+1)(n+2)cn+2+cn+cn1=0 for n1; y1(x)=1x22x36+; y2(x)=xx36x412+

  24. 24. y1(x)=1+x33+x55+x645+; y2(x)=x+x33+x46+x55+

  25. 25. c2=c3=0, (n+3)(n+4)cn+4+(n+1)cn+1+cn=0 for n0; y1(x)=1x412+x7126+; y2(x)=xx412x520+

  26. 26. y(x)=c0(1x630+x972+)+c1(xx742+x1090+)

  27. 27. y(x)=1xx22+x33x424+x530+29x6720+13x7630143x840320+; y(0.5)0.4156

  28. 28. y(x)=c0(1x22+x36+)+c1(xx36+x412+)

  29. 29. y1(x)=112x2+1720x6+; y2(x)=x16x3160x5+

  30. 30. y(x)=c0(1x22+x36+)+c1(xx22+x418+)

  31. 33. The following figure shows the interlaced zeros of the 4th and 5th Hermite polynomials.

  32. 34. The figure below results when we use n=40 terms in each summation. But with n=50 we get the same picture as Fig. 8.2.3 in the text.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.139.80.15