Section 1.1

  1. 11. If y=y1=x2, then y(x)=2x3 and y(x)=6x4, so x2y+5xy+4y=x2(6x4)+5x(2x3)+4(x2)=6x210x2+4x2=0. If y=y2=x2ln x, then y(x)=x32x3ln x and y(x)=5x4+6x4ln x, so x2y+5xy+4y=x2(5x4+6x4ln x)+5x(x32x3ln x)+4(x2ln x)=0.

  2. 13. r=23

  3. 14. r=±12

  4. 15. r=2, 1

  5. 16. r=16(3±57)

  6. 17. C=2

  7. 18. C=3

  8. 19. C=6

  9. 20. C=11

  10. 21. C=7

  11. 22. C=1

  12. 23. C=56

  13. 24. C=17

  14. 25. C=π/4

  15. 26. C=π

  16. 27. y=x+y

  17. 28. y=2y/x

  18. 29. y=x/(1y)

  19. 31. y=(yx)/(y+x)

  20. 32. dP/dt=kP

  21. 33. dv/dt=kv2

  22. 35. dN/dt=k(PN)

  23. 37. y1 or y=x

  24. 39. y=x2

  25. 41. y=12ex

  26. 42. y=cosx or y=sinx

  27. 43. (b) The identically zero function x(0)0

  28. 44. (a) The graphs (figure below) of typical solutions with k=12 suggest that (for each) the value x(t) increases without bound as t increases.

    (b) The graphs (figure below) of typical solutions with k=12 suggest that now the value x(t) approaches 0 as t increases without bound.

  29. 45. P(t)=100/(50t); P=100 when t=49, and P=1000 when t=49.9. Thus it appears that P(t) grows without bound as t approaches 50.

  30. 46. v(t)=50/(5+2t); v=1 when t=22.5, and v=110 when t=247.5. Thus it appears that v(t) approaches 0 as t increases without bound.

  31. 47. (a) C=10.1; (b) No such C, but the constant function y(x)0 satisfies the conditions y=y2 and y(0)=0.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.191.235.62