8.3 Spectral Decomposition Methods

Here, we present an alternative approach to the computation of the matrix exponential eAteAt, one that does not require that eigenvectors (including generalized ones) of the n×nn×n matrix A be found first. Assume that the characteristic polynomial of A is written in the form

p(λ)=(1)n|AλI|,
p(λ)=(1)n|AλI|,
(1)

with leading term +λn+λn. [Compare Eqs. (4) and (5) in Section 6.1.] If the (not necessarily distinct) eigenvalues of A are λ1,λ2,,λnλ1,λ2,,λn, then

p(λ)=(λλ1)(λλ2)(λλn).
p(λ)=(λλ1)(λλ2)(λλn).
(2)

The Cayley-Hamilton theorem (Section 6.3) says that any matrix A satisfies its own characteristic equation; that is,

p(A)=ni=1(AλiI)=0
p(A)=i=1n(AλiI)=0
(3)

(where I denotes the n×nn×n identity matrix). This crucial fact is the key to our method in this section.

The way we proceed to calculate the matrix exponential eAteAt depends on whether or not the eigenvalues of A are distinct.

The Case of Distinct Eigenvalues

If the eigenvalues of A are distinct (whether real or complex), the reciprocal 1/p(λ)1/p(λ) has a partial fraction decomposition of the form

1p(λ)=a1λλ1+a2λλ2++anλλn,
1p(λ)=a1λλ1+a2λλ2++anλλn,
(4)

where the numerators a1,a2,,ana1,a2,,an are constants. Indeed, these constants can be found by multiplying Eq. (4) by p(λ)p(λ) to get

1=ni=1aibi(λ)=a1b1(λ)+a2b2(λ)++anbn(λ),
1=i=1naibi(λ)=a1b1(λ)+a2b2(λ)++anbn(λ),
(5)

where the polynomial

bi(λ)=p(λ)λλi=ji(λλj)
bi(λ)=p(λ)λλi=ji(λλj)
(6)

is obtained from the characteristic polynomial p(λ)p(λ) upon deletion of the factor (λλi)(λλi) corresponding to the ith eigenvalue.

It follows immediately from (6) that bi(λi)0bi(λi)0, whereas bj(λi)=0bj(λi)=0 if ijij [because in this case bj(λi)bj(λi) includes the factor (λiλi)(λiλi)]. Consequently, substitution of λ=λiλ=λi into Eq. (5) gives the value

ai=1bi(λi)=1ji(λiλj)
ai=1bi(λi)=1ji(λiλj)
(7)

for i=1,2,,ni=1,2,,n. Given these coefficient values, we define the projection matrices P1,P2,,PnP1,P2,,Pn of the fixed n×nn×n matrix A by writing

Pi=aibi(A)=aiji(AλjI)=ji(AλjI)ji(λiλj).
Pi=aibi(A)=aiji(AλjI)=ji(AλjI)ji(λiλj).
(8)

These matrices have very special properties that are summarized by the following proposition.

Remark

In terms of the Kronecker delta defined by

δij={1if i=j0if ij,
δij={10if i=jif ij,

the conditions in (10) and (11) say that

PiPj=δijPi.
PiPj=δijPi.
(13)

Also, note that (12) says that PiPi is effectively an “eigenmatrix” associated with the eigenvalue λiλi of the matrix A—that is, multiplication of PiPi by the matrix A (on the right) gives a scalar multiple of PiPi.

The following theorem expresses the matrix A in terms of its projection matrices.

Remark 1

If we square both sides in (14) and then use (13), we get

(λ1P1+λ2P2++λnPn)(λ1P1+λ2P2++λnPn)=ni,j=1λiλjPiPj,
(λ1P1+λ2P2++λnPn)(λ1P1+λ2P2++λnPn)=i,j=1nλiλjPiPj,

or

A2=ni=1λ2iPi=λ21P2+λ22P2++λ2nPn.
A2=i=1nλ2iPi=λ21P2+λ22P2++λ2nPn.

Continuing in this fashion, we deduce by repeated multiplication that

Ak=ni=1λkiPi=λk1P1+λk2P2++λknPn
Ak=i=1nλkiPi=λk1P1+λk2P2++λknPn
(15)

for any positive integer k. We will see in the proof of Theorem 2 that this single fact is all we need to express the matrix exponential eAteAt simply and explicitly in terms of the eigenvalues and projection matrices of the matrix A.

Remark 2

The relation in (15) holds also if k=12k=12. For instance, if n=2n=2 and B=λ1P1+λ2P2B=λ1P1+λ2P2, then the basic properties of projection matrices (Proposition 1) and (14) yield

B2=(λ1P1+λ2P2)(λ1P1+λ2P2)=λ1P21+λ1λ2P1P2+λ2λ1P2P1+λ2P22=λ1P1+λ2P2=A.
B2===(λ1P1+λ2P2)(λ1P1+λ2P2)λ1P21+λ1λ2P1P2+λ2λ1P2P1+λ2P22λ1P1+λ2P2=A.

It follows that if (for each i) λiλi denotes either square root of the eigenvalue λiλi of A, then

A=λ1P1+λ2P2
A=λ1P1+λ2P2
(16)

is a square root of the matrix A.

Example 1

If A is a 2×22×2 matrix with distinct eigenvalues λ1λ1 and λ2λ2, then Eqs. (7), (8), and (17) give first

a1=1λ1λ2anda2=1λ2λ1,
a1=1λ1λ2anda2=1λ2λ1,
(18)

then

P1=Aλ2Iλ1λ2andP2=Aλ1Iλ2λ1,
P1=Aλ2Iλ1λ2andP2=Aλ1Iλ2λ1,
(19)

and finally

eAt=eλ1tP1+eλ2tP2.
eAt=eλ1tP1+eλ2tP2.
(20)

Thus the calculation of the matrix exponential eAteAt using the projection matrices P1P1 and P2P2 reduces to a routine matter of numerical substitution.

Example 2

The matrix

A=[10138]
A=[10318]

has the characteristic polynomial

p(λ)=(10λ)(8λ)3=λ218λ+77=(λ7)(λ11),
p(λ)=(10λ)(8λ)3=λ218λ+77=(λ7)(λ11),

so its eigenvalues are λ1=7λ1=7 and λ2=11λ2=11. Hence Eq. (19) gives

P1=14[101113811]=14[1133]
P1=14[101131811]=14[1313]

and

P2=14[1071387]=14[3131],
P2=14[1073187]=14[3311],

so Eq. (20) gives

eAt=14e7t[1133]+14e11t[3131]=14[e7t+3e11te7t+e11t3e7t+3e11t3e7t+e11t].
eAt==14e7t[1313]+14e11t[3311]14[e7t+3e11t3e7t+3e11te7t+e11t3e7t+e11t].

Example 3

The 3×33×3 matrix

A=[30046216155]
A=34160615025

has the characteristic polynomial

p(λ)=|AλI|=(3λ)[(6λ)(5λ)+30]=(3λ)[λ2λ]p(λ)=λ(λ1)(λ3).
p(λ)p(λ)====|AλI|(3λ)[(6λ)(5λ)+30](3λ)[λ2λ]λ(λ1)(λ3).

Hence the eigenvalues of A are λ1=0, λ2=1λ1=0, λ2=1, and λ3=3λ3=3. To find the matrix exponential

eAt=eλ1tP1+eλ2tP2+eλ3tP3,
eAt=eλ1tP1+eλ2tP2+eλ3tP3,
(21)

we need only calculate the three projections matrices P1, P2P1, P2, and P3P3 defined by Eq. (8). But first we need the coefficients

a1=1(λ1λ2)(λ1λ3)=1(01)(03)=13,a2=1(λ2λ1)(λ2λ3)=1(10)(13)=12,anda3=1(λ3λ1)(λ3λ2)=1(30)(31)=16
a1a2a3===1(λ1λ2)(λ1λ3)=1(01)(03)=13,1(λ2λ1)(λ2λ3)=1(10)(13)=12,1(λ3λ1)(λ3λ2)=1(30)(31)=16and

that are given by Eq. (7). Then

P1=a1(Aλ2I)(Aλ3I)=13[20045216156][00043216158]=[00045212156],P2=a2(Aλ1I)(Aλ3I)=12[30046216155][00043216158]=[00046210155],
P1P2====a1(Aλ2I)(Aλ3I)132416051502604160315028=04120515026,a2(Aλ1I)(Aλ3I)123416061502504160315028=04100615025,

and

P3=a3(Aλ1I)(Aλ2I)=16[30046216155][20045216156]=[100000200].
P3==a3(Aλ1I)(Aλ2I)163416061502524160515026=102000000.

Finally, (17) gives the desired matrix exponential

eAt=e0t[00045212156]+e1t[00046210155]+e3t[100000200]=[e3t0044et5+6et2+2et12+10et+2e3t1515et65et].
eAt==e0t04120515026+e1t04100615025+e3t102000000e3t44et12+10et+2e3t05+6et1515et02+2et65et.

As an application, the solution of the initial value problem

x(t)=Ax,x(0)=x0=[3711]T
x'(t)=Ax,x(0)=x0=[3711]T

is (by Theorem 2 in Section 8.1) given by

x(t)=eAtx0=[e3t0044et5+6et2+2et12+10et+2e3t1515et65et][3711]=[3e3t45+52et135130et+6e3t].
x(t)=eAtx0==e3t44et12+10et+2e3t05+6et1515et02+2et65et37113e3t45+52et135130et+6e3t.

Second-Order Linear Systems

Spectral decompositions of matrices also yield convenient solutions of second-order matrix linear systems.

Example 4

Mass-spring system Consider the mass-and-spring system shown in Fig. 8.3.1, with m1=2, m2=1, k1=100m1=2, m2=1, k1=100, and k2=50k2=50. As in Example 1 of Section 7.4, the position vector x(t)=[x1(t)x2(t)]Tx(t)=[x1(t)x2(t)]T satisfies the second-order system x=Axx''=Ax having coefficient matrix

A=[75255050].
A=[75502550].

FIGURE 8.3.1.

The mass-and-spring system of Example 4.

We find that A has characteristic polynomial p(λ)=λ2+125λ+2500=(λ+25)(λ+100)p(λ)=λ2+125λ+2500=(λ+25)(λ+100) and hence has eigenvalues λ1=25λ1=25 and λ2=100λ2=100. By using (19), we calculate the projection matrices

P1=Aλ2Iλ1λ2=175[25255050]=13[1122]andP2=Aλ1Iλ2λ1=175[50255025]=13[2121]
P1P2==Aλ2Iλ1λ2=175[25502550]=13[1212]andAλ1Iλ2λ1=175[50502525]=13[2211]

of A. Starting with the spectral decomposition

A=λ1P1+λ2P2=5iP1+10iP2
A=λ1P1+λ2P2=5iP1+10iP2

of AA, Theorem 2 yields

eAt=e5itP1+e10itP2andeAt=e5itP1+e10itP2.
eAt=e5itP1+e10itP2andeAt=e5itP1+e10itP2.

Consequently, Eq. (22) in Theorem 3 gives the following general solution:

x(t)=eAtc1+eAtc2=(e5itP1+e10itP2)c1+(e5itP1+e10itP2)c2=P1(c1e5it+c2e5it)+P2(c1e10it+c2e10it)x(t)=P1(a cos 5t+b sin 5t)+P2(a cos 10t+b sin 10t),
x(t)x(t)===eAtc1+eAtc2=(e5itP1+e10itP2)c1+(e5itP1+e10itP2)c2P1(c1e5it+c2e5it)+P2(c1e10it+c2e10it)P1(a cos 5t+b sin 5t)+P2(a cos 10t+b sin 10t),
(23)

where a=c1+c2a=c1+c2 and b=i(c1c2)b=i(c1c2). Now

p1a=13[1122][a1a2]=13(a1+a2)[12]andP1b=13(b1+b2)[12],P2a=13[2121][a1a2]=13(2a1a2)[11]
p1aP2a==13[1212][a1a2]=13(a1+a2)[12]andP1b=13(b1+b2)[12],13[2211][a1a2]=13(2a1a2)[11]

and

P2b=13(2b1b2)[11].
P2b=13(2b1b2)[11].

Hence (23) finally takes the form

x(t)=(acos5t+bsin5t)[12]+(ccos10t+dsin10t)[11].
x(t)=(acos5t+bsin5t)[12]+(ccos10t+dsin10t)[11].
(24)

This last equation expresses the motion x(t) of the mass-spring system in Fig. 8.3.1 as a linear combination of two natural modes of free oscillation. In the first mode, the two masses move with frequency ω1=5ω1=5 in the same direction and with the amplitude of m2m2 being twice that of m1m1. In the second mode, the two masses move with frequency ω2=10ω2=10 in opposite directions and with equal amplitudes of motion.

The General Case

Now we want to take into account the possibility of multiple eigenvalues. If the n×nn×n matrix A has distinct eigenvalues λ1,λ2,,λqλ1,λ2,,λq having multiplicities m1,m2,,mqm1,m2,,mq (respectively), then the reciprocal 1/p(λ)1/p(λ) has a partial-fraction decomposition of the form

1p(λ)=a1(λ)(λλ1)m1+a2(λ)(λλ2)m2++aq(λ)(λλq)mq,
1p(λ)=a1(λ)(λλ1)m1+a2(λ)(λλ2)m2++aq(λ)(λλq)mq,
(25)

where (for each i=1,2,,qi=1,2,,q) the numerator ai(λ)ai(λ) is a polynomial in λλ of degree at most mi1mi1. Once these numerator polynomials have been found, we can define the projection matrices P1,P2,,PqP1,P2,,Pq of A by the formula

Pi=ai(A)bi(A)=ai(A)Πji(AλjI)mj,
Pi=ai(A)bi(A)=ai(A)Πji(AλjI)mj,
(26)

analogous to Eq. (8), with the polynomial

bi(λ)=p(λ)(λλi)mi=Πji(λλj)mj
bi(λ)=p(λ)(λλi)mi=Πji(λλj)mj
(27)

being obtained from the characteristic polynomial p(λ)p(λ) upon deletion of the factor (λλi)mi(λλi)mi corresponding to the ith eigenvalue. It follows immediately from (27)that bi(λi)0bi(λi)0, whereas bj(λi)=0bj(λi)=0 if ijij[in which case bj(λi)bj(λi) includes the factor (λiλi)mi(λiλi)mi]. The following properties of the projection matrices P1,P2,,PqP1,P2,,Pq are established in essentially the same way as in the proof of Proposition 1.

In the distinct-eigenvalue case we saw in part (iv) of Proposition 1 that Pi(AλiI)=0Pi(AλiI)=0 for each i. This may no longer be so if mi>1mi>1, so we define

Ni=Pi(AλiI)
Ni=Pi(AλiI)
(31)

for each i=1,2,,qi=1,2,,q. Part (ii) of the following proposition asserts that these matrices are nilpotent. Note that Ni=0Ni=0 if mi=1mi=1 (so that λiλi is a nonrepeated eigenvalue).

The following theorem expresses the matrix A in terms of its projection and nilpotent matrices in the general case (allowing multiple eigenvalues).

As in the distinct-eigenvalue case of Theorem 2, the spectral decomposition of Theorem 4 can be used to calculate the matrix exponential eAteAt in the general case.

The complicated formula in (35) looks much simpler in low-dimensional special cases.

Example 5

If A is a 2×22×2 matrix with a single eigenvalue λ1λ1 of multiplicity 2 and corresponding projection matrix P1P1, then (35) reduces to eAt=eλ1tP1[I+(Aλ1I)t]eAt=eλ1tP1[I+(Aλ1I)t]. In this case, p(λ)=(λλ1)2p(λ)=(λλ1)2 so Eqs. (25)–(27) give a1(λ)=b1(λ)=1a1(λ)=b1(λ)=1, and hence P1=IP1=I. It therefore follows that

eAt=eλ1t[I+(Aλ1I)t].
eAt=eλ1t[I+(Aλ1I)t].

Example 6

If A is a 3×33×3 matrix with an eigenvalue λ1λ1 of multiplicity 1, an eigenvalue λ2λ2 of multiplicity 2, and corresponding projection matrices P1P1 and P2P2, then (35) reduces to

eAt=eλ1tP1+eλ2tP2[I+(Aλ2I)t].
eAt=eλ1tP1+eλ2tP2[I+(Aλ2I)t].

Example 7

If A is a 5×55×5 matrix with an eigenvalue λ1λ1 of multiplicity 2 and an eigenvalue λ2λ2 of multiplicity 3, then (35) reduces to

eAt=eλ1tP1[I+(Aλ1I)t]+eλ2tP2[I+(Aλ2I)t+12(Aλ2I)2t2].
eAt=eλ1tP1[I+(Aλ1I)t]+eλ2tP2[I+(Aλ2I)t+12(Aλ2I)2t2].

In this case, the principal labor may consist of finding the characteristic polynomial and its partial-fractions decomposition (25), so that Eqs. (26)(27) can be used to find the projection matrices P1P1 and P2P2.

Example 8

The matrix

A=[421201223]
A=422202113
(37)

has the characteristic polynomial

p(λ)=|AλI|=λ37λ2+16λ12=(λ3)(λ2)2
p(λ)=|AλI|=λ37λ2+16λ12=(λ3)(λ2)2

and thus has eigenvalues λ1=3λ1=3 of multiplicity 1 and λ2=2λ2=2 of multiplicity 2. The partial-fractions decomposition

1(λ3)(λ2)2=1λ3+1λ(λ2)2
1(λ3)(λ2)2=1λ3+1λ(λ2)2

shows that a1(λ)=1a1(λ)=1 and a2=1λa2=1λ. Now b1(λ)=(λ2)2b1(λ)=(λ2)2 and b2(λ)=λ3b2(λ)=λ3, so (26)gives

P1=a1(A)b1(A)=(A2I)2=[221221221]2=[221221221]
P1=a1(A)b1(A)=(A2I)2=2222221112=222222111

and

P2=a2(A)b2(A)=(IA)(A3I)=[321211222][121231220]=[121231220].
P2==a2(A)b2(A)=(IA)(A3I)322212112122232110=122232110.

The result of Example 6 therefore gives

eAt=eλ1tP1+eλ2tP2[I+(Aλ2I)t]=e3t[221221221]+e2t[121231220]([100010001]+[221221221]t)eAt=[2e3te2t2e3t+2e2te3te2t2e3t2e2t2e3t+3e2te3te2t2e3t2e2t2e3t+2e2te3t].
eAteAt===eλ1tP1+eλ2tP2[I+(Aλ2I)t]e3t222222111+e2t122232110100010001+222222111t2e3te2t2e3t2e2t2e3t2e2t2e3t+2e2t2e3t+3e2t2e3t+2e2te3te2te3te2te3t.

For instance, suppose we want to solve the initial value problem

x(t)=Ax+f,x(0)=x0,
x'(t)=Ax+f,x(0)=x0,
(38)

where A is the matrix in (37), x0=[293743]T,x0=[293743]T, and f=[6000]T.f=[6000]T. In this case, the variation of parameters formula in Eq. (28) of Section 8.2 gives

eAtx(t)=x0+t0eAsf ds=[293743]+t0[2e3se2s2e3s+2e2se3se2s2e3s2e2s2e3s+3e2se3se2s2e3s2e2s2e3s+2e2se3s][6000] ds=[293743]+t0[120e3s60e2s120e3s120e2s120e3s120e2s] dseAtx(t)=[293743]+[1040e3t+30e2t2040e3t+60e2t2040e3t+60e2t]=[3940e3t+30e2t1740e3t+60e2t2340e3t+60e2t].
eAtx(t)eAtx(t)====x0+t0eAsf ds293743+t02e3se2s2e3s2e2s2e3s2e2s2e3s+2e2s2e3s+3e2s2e3s+2e2se3se2se3se2se3s6000 ds293743+t0120e3s60e2s120e3s120e2s120e3s120e2s ds293743+1040e3t+30e2t2040e3t+60e2t2040e3t+60e2t=3940e3t+30e2t1740e3t+60e2t2340e3t+60e2t.

Finally, multiplication by eAteAt yields the solution

x(t)=[2e3te2t2e3t+2e2te3te2t2e3t2e2t2e3t+3e2te3te2t2e3t2e2t2e3t+2e2te3t][3940e3t+30e2t1740e3t+60e2t2340e3t+60e2t]=[10+67e3t28e2t20+67e3t50e2t20+67e3t44e2t]
x(t)==2e3te2t2e3t2e2t2e3t2e2t2e3t+2e2t2e3t+3e2t2e3t+2e2te3te2te3te2te3t3940e3t+30e2t1740e3t+60e2t2340e3t+60e2t10+67e3t28e2t20+67e3t50e2t20+67e3t44e2t

of the initial value problem in (38).

8.3 Problems

  1. 1–20. Use projection matrices to find a fundamental matrix solution x(t)=eAtx(t)=eAt of each of the linear systems x=Axx'=Ax given in Problems 1 through 20 of Section 7.3 .

  2. 21–30. Use projection matrices to find a fundamental matrix solution of each of the linear systems given in Problems 1 through 10 of Section 7.6 .

  3. 31–40. Use projection matrices, as in Example 8 of this section, to find the matrix exponentials and particular solutions desired in Problems 21 through 30 (respectively) of Section 8.2 .

In each of Problems 41 through 46, use the spectral decomposition methods of this section to find a fundamental matrix solution x(t)=eAtx(t)=eAt for the linear system x=Axx'=Ax given in the problem.

Use projection matrices as in Example 4 of this section to solve Problems 47 through 50. You can simplify matters by taking c1=[10]Tc1=[10]T and c2=[01]Tc2=[01]T to calculate a typical particular solution x(t)=eAtc1+eAtc2x(t)=eAtc1+eAtc2 that exhibits the fundamental frequencies and modes of oscillation.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.149.231.128