References

[1] Akagi H., Kanazawa Y., Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans. Ind. Appl. 1984;IA-20(3):625–630.

[2] Bhattacharya S., Divan D. Design and implementation of a hybrid series active filter system. In: Power Electronics Specialists Conference, 1995. PESC '95 Record., 26th Annual IEEE, vol. 1; 1995:189–195 vol. 1.

[3] Dixon J., Tepper S., Moran L. Practical evaluation of different modulation techniques for current-controlled voltage source inverters. IEE Proc. Electr. Power Appl. 1996;143(4):301–306.

[4] Nabae A., Ogasawara S., Akagi H. A novel control scheme for current-controlled PWM inverters. IEEE Trans. Ind. Appl. 1986;IA-22(4):697–701.

[5] Peng F.Z., Akagi H., Nabae A. A new approach to harmonic compensation in power systems-a combined system of shunt passive and series active filters. IEEE Trans. Ind. Appl. 1990;26(6):983–990.

[6] Peng F.Z., Akagi H., Nabae A. Compensation characteristics of the combined system of shunt passive and series active filters. IEEE Trans. Ind. Appl. 1993;29(1):144–152.

[7] Tanaka T., Wada K., Akagi H. A new control scheme of series active filters. In: Presented at the IPEC; 1995:376–381.

[8] Moran L.A., Pastorini I., Dixon J., Wallace R. A fault protection scheme for series active power filters. IEEE Trans. Power Electron. 1999;14(5):928–938.

[9] Fujita H., Yamasaki T., Akagi H. A hybrid active filter for damping of harmonic resonance in industrial power systems. IEEE Trans. Power Electron. 2000;15(2):215–222.

[10] Fukuda S., Endoh T. Control method for a combined active filter system employing a current source converter and a high pass filter. IEEE Trans. Ind. Appl. 1995;31(3):590–597.

Further Reading

[1] Zou Z.X., Zhou K., Wang Z., Cheng M. Frequency-adaptive fractional-order repetitive control of shunt active power filters. IEEE Trans. Ind. Electron. 2015;62(3):1659–1668.

[2] Lee T.L., Wang Y.C., Li J.C., Guerrero J.M. Hybrid active filter with variable conductance for harmonic resonance suppression in industrial power systems. IEEE Trans. Ind. Electron. 2015;62(2):746–756.

[3] Kanjiya P., Khadkikar V., Zeineldin H.H. Optimal control of shunt active power filter to meet IEEE Std. 519 current harmonic constraints under nonideal supply condition. IEEE Trans. Ind. Electron. 2015;62(2):724–734.

[4] Das D., Kandula R.P., Muñoz J.A., Divan D., Harley R.G., Schatz J.E. An Integrated controllable network transformer-hybrid active filter system. IEEE Trans. Ind. Appl. 2015;51(2):1692–1701.

[5] Acuña P., Morán L., Rivera M., Aguilera R., Burgos R., Agelidis V.G. A single-objective predictive control method for a multivariable single-phase three-level NPC converter-based active power filter. IEEE Trans. Ind. Electron. 2015;62(7):4598–4607.

[6] Santos W.R.N., et al. The transformerless single-phase universal active power filter for harmonic and reactive power compensation. IEEE Trans. Power Electron. 2014;29(7):3563–3572.

[7] Rahmani S., Hamadi A., Al-Haddad K., Dessaint L.A. A combination of shunt hybrid power filter and thyristor-controlled reactor for power quality. IEEE Trans. Ind. Electron. 2014;61(5):2152–2164.

[8] Acuña P., Morán L., Rivera M., Dixon J., Rodriguez J. Improved active power filter performance for renewable power generation systems. IEEE Trans. Power Electron. 2014;29(2):687–694.

[9] Trinh Q.N., Lee H.H. An advanced current control strategy for three-phase shunt active power filters. IEEE Trans. Ind. Electron. 2013;60(12):5400–5410.

[10] Hernandez J.E., Kandula R.P., Lambert F.C., Divan D. A practical directional third harmonic hybrid active filter for medium-voltage utility applications. IEEE Trans. Ind. Appl. 2013;49(6):2674–2683.

[11] Angulo M., Ruiz-Caballero D.A., Lago J., Heldwein M.L., Mussa S.A. Active power filter control strategy with implicit closed-loop current control and resonant controller. IEEE Trans. Ind. Electron. 2013;60(7):2721–2730.

[12] Liu J., Zanchetta P., Degano M., Lavopa E. Control design and implementation for high performance shunt active filters in aircraft power grids. IEEE Trans. Ind. Electron. 2012;59(9):3604–3613.

[13] Lam C.S., Choi W.H., Wong M.C., Han Y.D. Adaptive DC-link voltage-controlled hybrid active power filters for reactive power compensation. IEEE Trans. Power Electron. 2012;27(4):1758–1772.

[14] Bhattacharya A., Chakraborty C., Bhattacharya S. Parallel-connected shunt hybrid active power filters operating at different switching frequencies for improved performance. IEEE Trans. Ind. Electron. 2012;59(11):4007–4019.

[15] Akagi H., Isozaki K. A hybrid active filter for a three-phase 12-pulse diode rectifier used as the front end of a medium-voltage motor drive. IEEE Trans. Power Electron. 2012;27(1):69–77.

[16] Acuña P., Moran L., Dixon J. Current harmonics compensation for electrolytic processes using a series active scheme. IET Power Electron. 2012;5(8):1254–1261.

[17] dos Santos E.C., Jacobina C.B., Dias J.A.A., Rocha N. Single-phase to three-phase universal active power filter. IEEE Trans. Power Deliv. 2011;26(3):1361–1371.

[18] Bhattacharya A., Chakraborty C. A shunt active power filter with enhanced performance using ANN-based predictive and adaptive controllers. IEEE Trans. Ind. Electron. 2011;58(2):421–428.

[19] Varschavsky A., Dixon J., Rotella M., Moran L. Cascaded nine-level inverter for hybrid-series active power filter, using industrial controller. IEEE Trans. Ind. Electron. 2010;57(8):2761–2767.

[20] Prasai A., Sastry J., Divan D.M. Dynamic capacitor (D-CAP): an integrated approach to reactive and harmonic compensation. IEEE Trans. Ind. Appl. 2010;46(6):2518–2525.

[21] Maza-Ortega J.M., Rosendo-Macias J.A., Gomez-Exposito A., Ceballos-Mannozzi S., Barragan-Villarejo M. Reference current computation for active power filters by running DFT techniques. IEEE Trans. Power Deliv. 2010;25(3):1986–1995.

[22] Akagi H., Kondo R. A transformerless hybrid active filter using a three-level pulsewidth modulation (PWM) converter for a medium-voltage motor drive. IEEE Trans. Power Electron. 2010;25(6):1365–1374.

[23] Luo A., Shuai Z., Shen Z.J., Zhu W., Xu X. Design considerations for maintaining DC-side voltage of hybrid active power filter with injection circuit. IEEE Trans. Power Electron. 2009;24(1):75–84.

[24] Flores P., Dixon J., Ortuzar M., Carmi R., Barriuso P., Moran L. Static var compensator and active power filter with power injection capability, using 27-level inverters and photovoltaic cells. IEEE Trans. Ind. Electron. 2009;56(1):130–138.

[25] Corasaniti V.F., Barbieri M.B., Arnera P.L., Valla M.I. Hybrid active filter for reactive and harmonics compensation in a distribution network. IEEE Trans. Ind. Electron. 2009;56(3):670–677.

[26] Aredes M., Akagi H., Watanabe E.H., Salgado E.V., EncarnaÇÃo L.F. Comparisons between the p–q and p–q–r theories in three-phase four-wire systems. IEEE Trans. Power Electron. 2009;24(4):924–933.

[27] Akagi H., Hatada T. Voltage balancing control for a three-level diode-clamped converter in a medium-voltage transformerless hybrid active filter. IEEE Trans. Power Electron. 2009;24(3):571–579.

[28] Superti-Furga G., Todeschini G. Discussion on instantaneous p #x2013; q strategies for control of active filters. IEEE Trans. Power Electron. 2008;23(4):1945–1955.

[29] Ramos-Carranza H.A., Medina A., Chang G.W. Real-time shunt active power filter compensation. IEEE Trans. Power Deliv. 2008;23(4):2623–2625.

[30] Mahomar J., Moran L., Guzman J., Dixon J. A new mathematic algorithm to analyze power distribution systems with active compensation and nonlinear loads. IEEE Trans. Power Deliv. 2008;23(4):2535–2544.

[31] Lee T.L., Cheng P.T., Akagi H., Fujita H. A dynamic tuning method for distributed active filter systems. IEEE Trans. Ind. Appl. 2008;44(2):612–623.

[32] Herrera R.S., SalmerÓn P., Kim H. Instantaneous reactive power theory applied to active power filter compensation: different approaches, assessment, and experimental results. IEEE Trans. Ind. Electron. 2008;55(1):184–196.

[33] Chen B.S., JoÓs G. Direct power control of active filters with averaged switching frequency regulation. IEEE Trans. Power Electron. 2008;23(6):2729–2737.

[34] Bina M.T., Bhat A.K.S. Averaging technique for the modeling of STATCOM and active filters. IEEE Trans. Power Electron. 2008;23(2):723–734.

[35] Asiminoaei L., Blaabjerg F., Hansen S., Th'gersen P. Adaptive compensation of reactive power with shunt active power filters. IEEE Trans. Ind. Appl. 2008;44(3):867–877.

[36] Asiminoaei L., Aeloiza E., Enjeti P.N., Blaabjerg F. Shunt active-power-filter topology based on parallel interleaved inverters. IEEE Trans. Ind. Electron. 2008;55(3):1175–1189.

[37] Tangtheerajaroonwong W., Hatada T., Wada K., Akagi H. Design and performance of a transformerless shunt hybrid filter integrated into a three-phase diode rectifier. IEEE Trans. Power Electron. 2007;22(5):1882–1889.

[38] Singh B.N., Singh B., Chandra A., Rastgoufard P., Al-Haddad K. An improved control algorithm for active filters. IEEE Trans. Power Deliv. 2007;22(2):1009–1020.

[39] Montero M.I.M., Cadaval E.R., Gonzalez F.B. Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE Trans. Power Electron. 2007;22(1):229–236.

[40] Herrera R.S., Salmeron P. Instantaneous reactive power theory: a comparative evaluation of different formulations. IEEE Trans. Power Deliv. 2007;22(1):595–604.

[41] Gonzalez S.A., Garcia-Retegui R., Benedetti M. Harmonic computation technique suitable for active power filters. IEEE Trans. Ind. Electron. 2007;54(5):2791–2796.

[42] Fujita H., Akagi H. Voltage-regulation performance of a shunt active filter intended for installation on a power distribution system. IEEE Trans. Power Electron. 2007;22(3):1046–1053.

[43] Asiminoaei L., Lascu C., Blaabjerg F., Boldea I. Performance improvement of shunt active power filter with dual parallel topology. IEEE Trans. Power Electron. 2007;22(1):247–259.

[44] Singh B., Verma V. An indirect current control of hybrid power filter for varying loads. IEEE Trans. Power Deliv. 2006;21(1):178–184.

[45] Ortuzar M.E., Carmi R.E., Dixon J.W., Moran L. Voltage-source active power filter based on multilevel converter and ultracapacitor DC link. IEEE Trans. Ind. Electron. 2006;53(2):477–485.

[46] Lin B.R., Huang C.H. Implementation of a three-phase capacitor-clamped active power filter under unbalanced condition. IEEE Trans. Ind. Electron. 2006;53(5):1621–1630.

[47] Cheng P.T., Lee T.L. Distributed active filter systems (DAFSs): a new approach to power system harmonics. IEEE Trans. Ind. Appl. 2006;42(5):1301–1309.

[48] Kim S., Enjeti P.N. A new hybrid active power filter (APF) topology. IEEE Trans. Power Electron. 2002;17(1):48–54.

[49] Singh B., Al-Haddad K., Chandra A. A review of active filters for power quality improvement. IEEE Trans. Ind. Electron. 1999;46(5):960–971.

[50] Thomas T., Haddad K., Joos G., Jaafari A. Design and performance of active power filters. IEEE Ind. Appl. Mag. 1998;4(5):38–46.

[51] Bhattacharya S., Frank T.M., Divan D.M., Banerjee B. Active filter system implementation. IEEE Ind. Appl. Mag. 1998;4(5):47–63.

[52] Akagi H. Control strategy and site selection of a shunt active filter for damping of harmonic propagation in power distribution systems. IEEE Trans. Power Deliv. 1997;12(1):354–363.

[53] Fujita H., Tominaga S., Akagi H. Analysis and design of a DC voltage-controlled static VAr compensator using quad-series voltage-source inverters. IEEE Trans. Ind. Appl. 1996;32(4):970–978.

[54] Bhavaraju V.B., Enjeti P.N. An active line conditioner to balance voltages in a three-phase system. IEEE Trans. Ind. Appl. 1996;32(2):287–292.

[55] Tanaka T., Akagi H. A new method of harmonic power detection based on the instantaneous active power in three-phase circuits. IEEE Trans. Power Deliv. 1995;10(4):1737–1742.

[56] Moran L.A., Dixon J.W., Wallace R.R. A three-phase active power filter operating with fixed switching frequency for reactive power and current harmonic compensation. IEEE Trans. Ind. Electron. 1995;42(4):402–408.

[57] Aredes M., Watanabe E.H. New control algorithms for series and shunt three-phase four-wire active power filters. IEEE Trans. Power Deliv. 1995;10(3):1649–1656.

[58] Campos A., Joos G., Ziogas P.D., Lindsay J.F. Analysis and design of a series voltage unbalance compensator based on a three-phase VSI operating with unbalanced switching functions. IEEE Trans. Power Electron. 1994;9(3):269–274.

[59] Akagi H. Trends in active power line conditioners. IEEE Trans. Power Electron. 1994;9(3):263–268.

[60] Watanabe E.H., Stephan R.M., Aredes M. New concepts of instantaneous active and reactive powers in electrical systems with generic loads. IEEE Trans. Power Deliv. 1993;8(2):697–703.

[61] Moran L., Ziogas P.D., Joos G. A solid-state high-performance reactive-power compensator. IEEE Trans. Ind. Appl. 1993;29(5):969–978.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.219.213.196